請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96270完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張子璿 | zh_TW |
| dc.contributor.advisor | Tzu-Hsuan Chang | en |
| dc.contributor.author | 莊函倫 | zh_TW |
| dc.contributor.author | Han-Lun Chuang | en |
| dc.date.accessioned | 2024-11-28T16:30:05Z | - |
| dc.date.available | 2024-11-29 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-07 | - |
| dc.identifier.citation | [1] K. Fekete, K. Csorba, B. Forstner, M. Fehér, and T. Vajk, "Energy-efficient computation offloading model for mobile phone environment," in 2012 IEEE 1st International Conference on Cloud Networking (CLOUDNET), 2012: IEEE, pp.95-99.
[2] Rao. R. Tummala, "Moore’s Law for Packaging to Replace Moore’s Law for ICS, " in 2019 SMTA Pan Pacific Microelectronics Symposium, 2019: IEEE, pp.1-6. [3] K. J. Kuhn, "Moore's Law Past 32nm: Future Challenges in Device Scaling," 2009: IEEE, pp. 1-6. [4] N. Damrongplasit, L. Zamudio, T.-J. K. Liu, and S. Balasubramanian, "Threshold voltage and DIBL variability modeling based on forward and reverse measurements for SRAM and analog MOSFETs," IEEE Transactions on Electron Devices, vol. 62, no. 4, pp. 1119-1126, 2015. [5] G. Saini and A. K. Rana, "Physical scaling limits of FinFET structure: A simulation study," International Journal of VLSI design & communication Systems (VLSICS), vol. 2, no. 1, 2011. [6] J. T. Azpiroz and A. E. Rosenbluth, "Impact of sub-wavelength electromagnetic diffraction in optical lithography for semiconductor chip manufacturing," in 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), 2013: IEEE, pp. 1-5. [7] S. Owa and H. Nagasaka, "Immersion lithography: its potential performance and issues," in Optical Microlithography XVI, 2003, vol. 5040: SPIE, pp. 724-733 [8] H. Xiao, Introduction to semiconductor technology / Hong Xiao, 2nd ed. ed. (SPIE Press monograph ; PM220). Bellingham, Wash: SPIE, 2012. [9] D. Z. Pan, L. Liebmann, B. Yu, X. Xu, and Y. Lin, "Pushing multiple patterning in sub-10nm: Are we ready?," in Proceedings of the 52nd annual design automation conference, 2015, pp. 1-6. [10] Y. Chen, Q. Cheng, and W. Kang, "Technological merits, process complexity, and cost analysis of self-aligned multiple patterning," in Optical Microlithography XXV, 2012, vol. 8326: SPIE, pp. 699-712. [11] G. Tallents, E. Wagenaars, and G. Pert, "Lithography at EUV wavelengths," Nature photonics, vol. 4, no. 12, pp. 809-811, 2010. [12] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of ion-implanted MOSFET's with very small physical dimensions," IEEE Journal of solid-state circuits, vol. 9, no. 5, pp. 256-268, 1974. [13] Y. Wang et al., "Study of cut mask lithography options for sub-20nm metal routing," in Optical Microlithography XXVIII, 2015, vol. 9426: SPIE, pp. 133-140. [14] M. M. Frank, "High-k/metal gate innovations enabling continued CMOS scaling," in 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2011: IEEE, pp. 25-33. [15] H. Wong and H. Iwai, "The road to miniaturization," Physics World, vol. 18, no. 9, p. 40, 2005. [16] M. Bohr, "The evolution of scaling from the homogeneous era to the heterogeneous era," in 2011 international electron devices meeting, 2011: IEEE, pp. 1.1. 1-1.1. 6. [17] D. Hisamoto et al., "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm," IEEE transactions on electron devices, vol. 47, no. 12, pp. 2320-2325, 2000. [18] C. Auth et al., "A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors," in 2012 symposium on VLSI technology (VLSIT), 2012: IEEE, pp. 131-132. [19] S. Natarajan et al., "A 14nm logic technology featuring 2 nd-generation finfet, air-gapped interconnects, self-aligned double patterning and a 0.0588 μm 2 sram cell size," in 2014 IEEE international electron devices meeting, 2014: IEEE, pp. 3.7. 1-3.7. 3. [20] C. Auth et al., "A 10nm high performance and low-power CMOS technology featuring 3 rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017: IEEE, pp. 29.1. 1-29.1. 4. [21] J. H. Lau, "Overview and outlook of through‐silicon via (TSV) and 3D integrations," Microelectronics International, 2011. [22] H. Mertens et al., "Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates," 2016: IEEE, pp. 1-2. [23] N. Loubet et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," in 2017 Symposium on VLSI Technology, 2017: IEEE, pp. T230-T231. [24] J. Jiang, K. Parto, W. Cao, and K. Banerjee, "Ultimate monolithic-3D integration with 2D materials: Rationale, prospects, and challenges," IEEE Journal of the Electron Devices Society, vol. 7, pp. 878-887, 2019. [25] P. Garrou, C. Bower, and P. Ramm, Handbook of 3D integration, volume 1: technology and applications of 3D integrated circuits. John Wiley & Sons, 2011. [26] J. U. Knickerbocker et al., "3D silicon integration," in 2008 58th Electronic Components and Technology Conference, 2008: IEEE, pp. 538-543. [27] W.-W. Shen and K.-N. Chen, "Three-dimensional integrated circuit (3D IC) key technology: Through-silicon via (TSV)," Nanoscale research letters, vol. 12, pp. 1-9, 2017. [28] J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, "An overview of through-silicon-via technology and manufacturing challenges," Microelectronic Engineering, vol. 135, pp. 73-106, 2015. [29] S. Subramanian et al., "First monolithic integration of 3d complementary fet (cfet) on 300mm wafers," in 2020 IEEE Symposium on VLSI Technology, 2020: IEEE, pp. 1-2. [30] J. Ryckaert et al., "The Complementary FET (CFET) for CMOS scaling beyond N3," 2018: IEEE, pp. 141-142. [31] T.-Z. Hong et al., "First demonstration of heterogenous complementary FETs utilizing low-temperature (200° C) hetero-layers bonding technique (LT-HBT)," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020: IEEE, pp. 15.5. 1-15.5. 4. [32] B. Chehab et al., "Design-technology co-optimization of sequential and monolithic CFET as enabler of technology node beyond 2nm," in Design- Process-Technology Co-optimization XV, 2021, vol. 11614: SPIE, pp. 59-63. [33] S. K. Kim et al., "Heterogeneous 3D Sequential CFET with Ge (110) Nanosheet p-FET on Si (100) bulk n-FET by Direct Wafer Bonding," in 2022 International Electron Devices Meeting (IEDM), 2022: IEEE, pp. 20.1. 1-20.1. 4. [34] W. Rachmady et al., "300mm heterogeneous 3D integration of record performance layer transfer germanium PMOS with silicon NMOS for low power high performance logic applications," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019: IEEE, pp. 29.7. 1-29.7. 4. [35] C. Gui, M. Elwenspoek, N. Tas, and J. G. Gardeniers, "The effect of surface roughness on direct wafer bonding," Journal of applied physics, vol. 85, no. 10, pp. 7448-7454, 1999. [36] "SU-8 2-25 Data Sheet." Kayaku Advanced Materials. https://kayakuam.com/products/su-8-photoresists/ (accessed. [37] A. K. Panigrahi, S. Bonam, T. Ghosh, S. R. K. Vanjari, and S. G. Singh, "Low temperature, low pressure CMOS compatible Cu-Cu thermo-compression bonding with Ti passivation for 3D IC integration," in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 2015: IEEE, pp. 2205-2210. [38] I. Sugaya, H. Mitsuishi, H. Maeda, and K. Okamoto, "New precision wafer bonding technologies for 3DIC," in 2015 International 3D Systems Integration Conference (3DIC), 2015: IEEE, pp. TS7. 1.1-TS7. 1.7. [39] P. A. Totta, S. Khadpe, N. G. Koopman, T. C. Reiley, and M. J. Sheaffer, "Chip-to-package interconnections," Microelectronics Packaging Handbook: Semiconductor Packaging, pp. 129-283, 1997. [40] S. Skordas et al., "Wafer-scale oxide fusion bonding and wafer thinning development for 3D systems integration: Oxide fusion wafer bonding and wafer thinning development for TSV-last integration," in 2012 3rd IEEE International Workshop on Low Temperature Bonding for 3D Integration, 2012: IEEE, pp. 203-208. [41] Y. Kagawa et al., "Novel stacked CMOS image sensor with advanced Cu2Cu hybrid bonding," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016: IEEE, pp. 8.4. 1-8.4. 4. [42] J. Park et al., "Advanced Cu/Polymer Hybrid Bonding System for Fine‐Pitch 3D Stacking Devices," Advanced Materials Technologies, p. 2202134, 2023. [43] M. Motoyoshi, "Through-silicon via (TSV)," Proceedings of the IEEE, vol. 97, no. 1, pp. 43-48, 2009. [44] K.-N. Tu, C. Chen, and H.-M. Chen, Electronic Packaging Science and Technology. John Wiley & Sons, 2021. [45] J. K. W. Yang et al., "Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, no. 6, pp. 2622-2627, 2009. [46] J. Notte et al., "An introduction to the helium ion microscope," 2007, vol. 931: American Institute of Physics, 1 ed., pp. 489-496. [47] J. Morgan, J. Notte, R. Hill, and B. Ward, "An introduction to the helium ion microscope," Microscopy today, vol. 14, no. 4, pp. 24-31, 2006. [48] N. Ravi Kiran, M. Chauhan, S. K. Sharma, S. Ghosh, and K. E. Gonsalves,"Resists for helium ion beam lithography: recent advances," ACS Applied Electronic Materials, vol. 2, no. 12, pp. 3805-3817, 2020. [49] X. Shi and S. A. Boden, "Chapter 17 - Scanning helium ion beam lithography," in Frontiers of Nanoscience, vol. 11, A. Robinson and R. Lawson Eds.: Elsevier, 2016, pp. 563-594. [50] S.J. Pearton, S. Oh, S. Kim, Jihyun Kim, F. Ren, "Exfoliated and bulk β-gallium oxide electronic and photonic devices," Science Talks, vol. 1, March 2022, 100001. [51] J. R. Hauser, “Noise margin criteria for digital logic circuits,” IEEE Trans. Educ., vol. 36, no. 4, pp. 363–368, Nov. 1993. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96270 | - |
| dc.description.abstract | 近十年來,電晶體的發展遵循摩爾定律,該定律預測集成電路上電晶體密度大約每18 個月會翻倍。然而,傳統的電晶體微縮過程中遇到了物理和製程上的限制,使得難以按預測的速度繼續往前推進。為了維持摩爾定律的進展,科學家進一步地創新半導體技術。
最初,電晶體的微縮始於平面電晶體。隨著傳統微縮方法接近極限,短通道效應是其中最嚴重之問題。進而引入了鰭式電晶體(FinFET)。FinFET 具有鰭狀通道,通道周圍環繞三柵結構,有效地緩解短通道效應。 本論文研究了通過使用氦離子束微影技術(HIBL)將次奈米厚的Ga2O3 應變層與矽異質整合,以提升傳統 FinFET 的電性能。HIBL 在奈米級製程中的具有良好的精確度,改善傳統電子束微影的限制,並且Ga2O3 與矽的整合旨在增強FinFET 的電特性。 研究中詳細地描述利用 HIBL 製作FinFET。包括旋塗光阻,利用氦離子束曝光,並測試劑量,劑量是實驗的關鍵之一,以確定不同光阻之特性和圖案尺寸的最佳劑量,然後應用優化的參數以高精確度製作奈米級FinFET。 通過先進的HIBL 技術,與次奈米厚的Ga2O3 應變層與矽異質整合,顯著改善了傳統FinFET 的電性。包括更小的次臨界擺幅、降低汲極引發位能障下降效應、遷移率更高,提升電晶體開關特性。 | zh_TW |
| dc.description.abstract | In recent decades, transistor development has aligned with Moore's Law, which predicts the doubling of transistor density on integrated circuits approximately every 18 months. However, the traditional approach to miniaturizing transistors has encountered physical and fabrication constraints, making it difficult for advancements to continue at the predicted rate. To sustain the progress suggested by Moore's Law, researchers have increasingly focused on innovative semiconductor technologies.
Initially, transistor scaling began with planar MOSFETs. As traditional scaling approaches neared their limits, short-channel effects became problem. The FinFET architecture was introduced. FinFETs feature a fin-shaped channel with a tri-gate structure that wraps around the channel, providing excellent electrostatics and the control of the current flow. This thesis investigates the enhancement of conventional FinFETs' electrical performance through the hetero integration of sub-nanometer thick Ga2O3 strain layers with silicon using helium ion beam lithography (HIBL). HIBL is utilized due to its superior resolution and precision in nanoscale patterning, overcoming the limitations of traditional electron beam lithography. The integration of Ga2O3, a wide bandgap semiconductor, with Si aims to enhance the FinFETs' electrical characteristics. The study begins with the detailed process of fabricating FinFET structures using HIBL. The method involves spinning a resist on the sample, exposing it to a helium ion beam, and processing the patterns through etching or lift-off techniques. Dose testing is crucial in this process to determine the optimal ion energy per unit area for different resist and pattern dimensions. The optimized parameters are then applied to fabricate nanoscale FinFETs with high precision. FinFETs with Ga2O3 integration demonstrate significant improvements, including higher drain current levels, lower subthreshold swing, and reduced drain-induced barrier lowering (DIBL). These enhancements indicate better current conduction, higher mobility, and improved switching characteristics, attributed to the Ga2O3 layer. The hetero integration of sub-nanometer thick Ga2O3 strain layers with Si, facilitated by the advanced patterning capabilities of HIBL, significantly improves the electrical performance of conventional FinFETs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:30:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:30:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 .............................................................................................................. ii
致謝 ................................................................................................................................. iii 摘要 ................................................................................................................................. iv Abstract ........................................................................................................................... v Contents ......................................................................................................................... vii List of Figures ................................................................................................................. x List of Tables .............................................................................................................. xviii Chapter 1 Introduction ............................................................................................... 1 1.1 Moore’s Law Scaling and Technology Evaluation ...................................... 1 1.1.1 Moore’s Law ................................................................................................ 2 1.1.2 Physical challenges ..................................................................................... 4 1.1.3 Challenges of Fabricating Transistors ...................................................... 5 1.2 From planar MOSFET to FinFET to GAA ............................................... 10 1.2.1 Planar MOSFET ....................................................................................... 10 1.2.2 FinFET ........................................................................................................ 11 1.2.3 Gate-all-around FET (GAAFET) ............................................................ 12 1.3 Toward 3D Electronics ................................................................................. 14 1.3.1 Recent Development of 3D electronics .................................................... 15 1.3.2 3D integration ........................................................................................... 15 1.3.3 3D packaging ............................................................................................. 16 1.3.4 Vertical stacking transistor architectures ............................................... 17 CHAPTER 2 CFET ................................................................................................... 19 2.1 Physical definition of CFET......................................................................... 19 2.2 Monolithic CFET and Sequential CFET .................................................... 20 2.2.1 Monolithic CFET ...................................................................................... 20 2.2.2 Sequential CFET ...................................................................................... 22 2.2.3 The challenge of current CFET process ................................................. 24 2.2.4 Sequential integration of CFET .............................................................. 25 2.3 Wafer bonding for sequential integration .................................................. 25 2.3.1 Overview of wafer bonding Technologies ............................................... 26 2.3.2 Principles and Process of Oxide wafer bonding..................................... 27 2.3.3 From wafer bonding to hybrid bonding ................................................. 28 2.3.4 Principles of Hybrid Bonding .................................................................. 29 2.3.5 Processes of Hybrid Bonding ................................................................... 30 2.3.6 Application of Hybrid bonding in 3D IC integration ............................ 31 CHAPTER 3 Advanced technology: helium ion beam lithography and wide bandgap semiconductor: Ga2O3 ................................................................................. 33 3.1 Helium Ion beam lithography ..................................................................... 33 3.1.1 Negative photoresist dose Test layout design and result ....................... 38 3.1.2 Positive photoresist dose Test layout design and result ......................... 44 3.2 Wide Bandgap Semiconductor: Gallium oxide ......................................... 46 CHAPTER 4 Process development of different scale transistor and application on circuit ............................................................................................................................. 50 4.1 Conventional FinFET fabrication setup ..................................................... 50 4.1.1 Layout for Conventional FinFET ........................................................... 51 4.1.2 Fabrication process of conventional microscale FinFET ...................... 52 4.1.3 DC analysis of conventional microscale FinFET ................................... 58 4.2 Self-alignment ion implantation FinFET fabrication setup ..................... 60 4.2.1 Mask layout for self-alignment ion implantation FinFET .................... 61 4.2.2 Fabrication process of self-alignment ion implantation microscale FinFET ................................................................................................................... 64 4.2.3 DC analysis of self-alignment ion implantation microscale FinFET ... 70 4.2.4 Fabrication process of self-alignment ion implantation nanoscale FinFET ................................................................................................................... 71 4.2.5 DC analysis of self-alignment ion implantation nanoscale FinFET ..... 76 4.3 Voltage transfer characteristics of CMOS Inverter .................................. 77 CHAPTER 5 Conclusion and future works ............................................................ 79 5.1 Modify the misalignment in Helium Ion Beam Lithography ................... 79 5.2 GAAFET ....................................................................................................... 80 5.3 Sequential CFET .......................................................................................... 81 Reference ....................................................................................................................... 82 | - |
| dc.language.iso | en | - |
| dc.subject | 氦離子束微影 | zh_TW |
| dc.subject | 異質整合 | zh_TW |
| dc.subject | 鰭式電晶體 | zh_TW |
| dc.subject | 次奈米厚 Ga2O3 應變層 | zh_TW |
| dc.subject | 寬能隙半導體 | zh_TW |
| dc.subject | Helium ion beam lithography | en |
| dc.subject | Sub-nanometer thick Ga2O3 strain layer | en |
| dc.subject | Wide Bandgap Semiconductor | en |
| dc.subject | FinFETs | en |
| dc.subject | Hetero integration | en |
| dc.title | 應用氦離子束微影技術製作奈米級電晶體並透過次奈米厚Ga2O3應變層與Si異質整合改善傳統FinFET的電性 | zh_TW |
| dc.title | Application of Helium Ion Beam Lithography and Electrical Performance Improvement of Conventional FinFETs through Hetero Integration of Sub-nanometer Thick Ga2O3 Strain Layer with Si | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林致廷;陳敏璋;吳肇欣 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ting Lin;Miin-Jang Chen;Chao-Hsin Wu | en |
| dc.subject.keyword | 氦離子束微影,寬能隙半導體,次奈米厚 Ga2O3 應變層,鰭式電晶體,異質整合, | zh_TW |
| dc.subject.keyword | Helium ion beam lithography,Wide Bandgap Semiconductor,Sub-nanometer thick Ga2O3 strain layer,FinFETs,Hetero integration, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202404404 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-10-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 5.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
