請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96257完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林維真 | zh_TW |
| dc.contributor.advisor | Weijane Lin | en |
| dc.contributor.author | 曹詠甯 | zh_TW |
| dc.contributor.author | Yung-Ning Tsao | en |
| dc.date.accessioned | 2024-11-28T16:26:23Z | - |
| dc.date.available | 2024-11-29 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-14 | - |
| dc.identifier.citation | Amaral, A., Powell, D. M., & Ho, J. (2019). Why does impression management positively influence interview ratings? The mediating role of competence and warmth. International Journal of Selection and Assessment, 27(4), 315-327.https://doi.org/10.1111/ijsa.12260
Andrist, S., Spannan, E., & Mutlu, B. (2013). Rhetorical robots: Making robots more effective speakers using linguistic cues of expertise. 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI). https://doi.org/10.1109/hri.2013.6483608 Asch, S. E. (1946). Forming impressions of personality. The Journal of Abnormal and Social Psychology, 41(3), 258–290. https://doi.org/10.1037/h0055756 Bales, R. F. (1950). A set of categories for the analysis of small group interaction. American Sociological Review, 15(2), 257. https://doi.org/10.2307/2086790 Bartneck, C., Belpaeme, T., Eyssel, F., Kanda, T., Keijsers, M., & Šabanović, S. (2020). Human-Robot Interaction: An Introduction. Cambridge University Press. Belanche Gracia, D., Casaló, L. V., Schepers, J. J. L., & Flavián, C. (2021). Examining the effects of robots’ physical appearance, warmth, and competence in frontline services: The Humanness-Value-Loyalty model. Psychology & Marketing, 38(12), 2357-2376. https://doi.org/10.1002/mar.21532 Bergmann, K., Eyssel, F. A., & Kopp, S. (2012). A Second Chance to Make a First Impression? How Appearance and Nonverbal Behavior Affect Perceived Warmth and Competence of Virtual Agents over Time. In Lecture Notes in Computer Science (pp. 126–138). https://doi.org/10.1007/978-3-642-33197-8_13 Blut, M., Wang, C., Wünderlich, N. V., & Brock, C. (2021). Understanding anthropomorphism in service provision: a meta-analysis of physical robots, chatbots, and other AI. Journal of the Academy of Marketing Science, 49(4),632–658. https://doi.org/10.1007/s11747-020-00762-y Cameron, D., Aitken, J. M., Collins, E. C., Boorman, L., Chua, A., Fernando, S., McAree, O., Martinez-Hernandez, U., & Law, J. (2015). Framing factors: The importance of context and the individual in understanding trust in human-robot interaction. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Carpinella, C. M., Wyman, A. B., Perez, M. A., & Stroessner, S. J. (2017, March). The robotic social attributes scale (RoSAS) development and validation. In Proceedings of the 2017 ACM/IEEE International Conference on human-robot interaction (pp. 254-262). Castellano, G., Leite, I., Pereira, A., Martinho, C., Paiva, A., & McOwan, P. W. (2012). Detecting engagement in HRI: An exploration of social and task-based context. In 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing (pp. 421-428). IEEE. Chattaraman, V., Kwon, W., Gilbert, J. E., & Ross, K. (2019). Should AI-Based, conversational digital assistants employ social- or task-oriented interaction style? A task-competency and reciprocity perspective for older adults. Computers in Human Behavior, 90, 315–330. https://doi.org/10.1016/j.chb.2018.08.048 Cuddy, A. J., Glick, P., & Beninger, A. (2011). The dynamics of warmth and competence judgments, and their outcomes in organizations. Research in Organizational Behavior, 31, 73–98. https://doi.org/10.1016/j.riob.2011.10.004 Cuddy, A. J. C., & Fiske, S. T. (2002). Doddering, but dear: Process, content, and function in stereotyping of older persons. In T. Nelson (Ed.), Ageism: Stereotyping and prejudice against older persons (pp. 3–26). Cambridge, MA: MIT Press. Cuddy, A. J., Fiske, S. T., & Glick, P. (2004). When professionals become mothers, warmth doesn't cut the ice. Journal of Social issues, 60(4), 701-718. Cuddy, A. J., Fiske, S. T., & Glick, P. (2007). The BIAS map: Behaviors from intergroup affect and stereotypes. Journal of Personality and Social Psychology, 92(4), 631–648. https://doi.org/10.1037/0022-3514.92.4.631 Dervin, B. (1997). Given a context by any other name: Methodological tools for taming the unruly beast. Information seeking in context, 13, 38. Ebstein, R. P., Israel, S., Chew, S. H., Zhong, S., & Knafo, A. (2010). Genetics of human social behavior. Neuron, 65(6), 831–844. https://doi.org/10.1016/j.neuron.2010.02.020 Epley, N., Akalis, S., Waytz, A., & Cacioppo, J. T. (2008). Creating social connection through inferential reproduction. Psychological Science, 19(2), 114–120. https://doi.org/10.1111/j.1467-9280.2008.02056.x Fiske, S. T. (1980). Attention and weight in person perception: The impact of negative and extreme behavior. Journal of Personality and Social Psychology, 38(6), 889–906. https://doi.org/10.1037/0022-3514.38.6.889 Fiske, S. T. (2011). Managing ambivalent prejudices. Annals of the American Academy of Political and Social Science, 639(1), 33-48. https://doi.org/10.1177/0002716211418444 Fiske, S. T. (2018). Stereotype content: warmth and competence endure. Current Directions in Psychological Science, 27(2), 67-73. https://doi.org/10.1177/0963721417738825 Fiske, S. T., & Neuberg, S. L. (1990). A Continuum of Impression Formation, from Category-Based to Individuating Processes: Influences of Information and Motivation on Attention and Interpretation. In Advances in Experimental Social Psychology (pp. 1–74). https://doi.org/10.1016/s0065-2601(08)60317-2 Fiske, S. T., & Taylor, S. E. (1991). Social cognition. Mcgraw-Hill Book Company. Fiske, S. T., Cuddy, A. J. C., & Glick, P. (2007). Universal dimensions of social cognition: warmth and competence. Trends in Cognitive Sciences, 11(2), 77–83. https://doi.org/10.1016/j.tics.2006.11.005 Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition. Journal of Personality and Social Psychology, 82(6), 878–902. https://doi.org/10.1037/0022-3514.82.6.878 Fiske, S. T., Juan, X., Cuddy, A. C., & Glick, P. (1999). (Dis)respecting versus (Dis)liking: Status and Interdependence Predict Ambivalent Stereotypes of Competence and Warmth. Journal of Social Issues, 55(3), 473–489. https://doi.org/10.1111/0022-4537.00128 Gamborino, E., Yueh, H. P., Lin, W., Yeh, S. L., & Fu, L. C. (2019, October). Mood estimation as a social profile predictor in an autonomous, multi-session, emotional support robot for children. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1-6). IEEE. Gilmartin, E., Yu, M., & Litman, D. (2019). Comparing speech, silence, and overlap dynamics in a task-based game and casual conversation. In Proceedings of ICPhS (pp. 3408-3412). Gilmartin, E., Wade, V., Saam, C., Campbell, N., & Vogel, C. (2018). Just talking-modelling casual conversation. https://doi.org/10.18653/v1/W18-5006 Harley, D., & Fitzpatrick, G. (2009). Creating a conversational context through video blogging: A case study of Geriatric1927. Computers in Human Behavior, 25(3), 679–689. https://doi.org/10.1016/j.chb.2008.08.011 Harris, A. M., Larson, L. E., Lauharatanahirun, N., DeChurch, L. A., & Contractor, N. (2023). Social perception in Human-AI teams: Warmth and competence predict receptivity to AI teammates. Computers in Human Behavior, 145, 107765. https://doi.org/10.1016/j.chb.2023.107765 Hegel, F., Muhl, C., Wrede, B., Hielscher-Fastabend, M., & Sagerer, G. (2009). Understanding Social Robots. Advances in Computer-Human Interaction. https://doi.org/10.1109/achi.2009.51 Holoien, D. S., & Fiske, S. T. (2013). Downplaying positive impressions: Compensation between warmth and competence in impression management. Journal of Experimental Social Psychology, 49(1), 33–41. https://doi.org/10.1016/j.jesp.2012.09.001 Judd, C. H., James‐Hawkins, L., Yzerbyt, V., & Kashima, Y. (2005). Fundamental dimensions of social judgment: Understanding the relations between judgments of competence and warmth. Journal of Personality and Social Psychology, 89(6), 899–913. https://doi.org/10.1037/0022-3514.89.6.899 Kelly, D. (2009). Methods for evaluating interactive information retrieval systems with users. Foundations and Trends in Information Retrieval, 3(1-2), 1-224. https://doi.org/10.1561/1500000012 Kelley, H. H. (1950). The warm-cold variable in first impressions of persons. Journal of Personality, 18(4), 431–439. https://doi.org/10.1111/j.1467-6494.1950.tb01260.x Kim, S. Y., Schmitt, B. H., & Thalmann, N. M. (2019). Eliza in the uncanny valley: anthropomorphizing consumer robots increases their perceived warmth but decreases liking. Marketing Letters, 30(1), 1–12. https://doi.org/10.1007/s11002-019-09485-9 Ko, S. J., Judd, C. H., & Stapel, D. A. (2009). Stereotyping based on voice in the presence of individuating information: vocal femininity affects perceived competence but not warmth. Personality & Social Psychology Bulletin, 35(2), 198–211. https://doi.org/10.1177/0146167208326477 Koudenburg, N., Postmes, T., & Gordijn, E. H. (2017). Beyond content of conversation: The role of conversational form in the emergence and regulation of social structure. Personality and Social Psychology Review, 21(1), 50-71. Leite, I., Pereira, A., Mascarenhas, S., Martinho, C., Prada, R., & Paiva, A. (2013). The influence of empathy in human–robot relations. International Journal of Human-Computer Studies, 71(3), 250–260. https://doi.org/10.1016/j.ijhcs.2012.09.005 Liu, X. S., Yi, X. S., & Wan, L. C. (2022). Friendly or competent? The effects of perception of robot appearance and service context on usage intention. Annals of Tourism Research, 92, 103324. Mieczkowski, H., Liu, S. X., Hancock, J., & Reeves, B. (2019). Helping not hurting: Applying the stereotype content model and bias map to social robotics. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 222-229). IEEE. Murer, M., Meschtscherjakov, A., Fuchsberger, V., Giuliani, M., Neureiter, K., Moser, C., Aslan, I., & Tscheligi, M. (2015). Contextual Interaction Design Research: Enabling HCI. In Lecture Notes in Computer Science (pp. 621–623). https://doi.org/10.1007/978-3-319-22723-8_75 Nass, C., & Moon, Y. (2000). Machines and mindlessness: Social responses to computers. Journal of social issues, 56(1), 81-103. Nass, C., Moon, Y., Fogg, B. J., Reeves, B., & Dryer, D. C. (1995). Can computer personalities be human personalities? International Journal of Human-Computer Studies, 43(2), 223–239. https://doi.org/10.1006/ijhc.1995.1042 Nass, C., Steuer, J., & Tauber, E. R. (1994). Computers are social actors. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 72-78). Nguyen, T. D., Carstensdóttir, E., Ngo, N., El-Nasr, M. S., Gray, M. J., Isaacowitz, D. M., & DeSteno, D. (2015). Modeling warmth and competence in virtual characters. In Lecture Notes in Computer Science (pp. 167–180). https://doi.org/10.1007/978-3-319-21996-7_18 Pelau, C., Dabija, D., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, 106855. https://doi.org/10.1016/j.chb.2021.106855 Reeves, B., Hancock, J., & Liu, S. X. (2020). Social robots are like real people: First impressions, attributes, and stereotyping of social robots. Technology, Mind, and Behavior, 1(1). https://doi.org/10.1037/tmb0000018 Rosenberg, S., Nelson, C. E., & Vivekananthan, P. S. (1968). A multidimensional approach to the structure of personality impressions. Journal of Personality and Social Psychology, 9(4), 283–294. https://doi.org/10.1037/h0026086 Roy, R., & Naidoo, V. (2021). Enhancing chatbot effectiveness: The role of anthropomorphic conversational styles and time orientation. Journal of Business Research, 126, 23–34. https://doi.org/10.1016/j.jbusres.2020.12.051 Pütten, A. M. R. D., & Bock, N. (2018). Development and Validation of the Self-Efficacy in Human-Robot-Interaction Scale (SE-HRI). ACM Transactions on Human-robot Interaction, 7(3), 1–30. https://doi.org/10.1145/3139352 Scheunemann, M. M., Cuijpers, R. H., & Salge, C. (2020, August). Warmth and competence to predict human preference of robot behavior in physical human-robot interaction. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1340-1347). IEEE. Syrdal, D. S., Dautenhahn, K., Koay, K. L., & Walters, M. L. (2009). The negative attitudes towards robots scale and reactions to robot behaviour in a live human-robot interaction study. Adaptive and emergent behaviour and complex systems. Velentza, A., Fachantidis, N., & Pliasa, S. (2021). Which one? choosing favorite robot after different styles of storytelling and robots’ conversation. Frontiers in Robotics and AI, 8. https://doi.org/10.3389/frobt.2021.700005 Ventola, E. (1979). The structure of casual conversation in English. Journal of pragmatics, 3(3-4), 267-298. Lin, W., Yueh, H. P., Wu, H. Y., & Fu, L. C. (2014). Developing a service robot for a children's library: A design‐based research approach. Journal of the Association for Information Science and Technology, 65(2), 290-301. Wojciszke, B. (1994). Multiple meanings of behavior: Construing actions in terms of competence or morality. Journal of Personality and Social Psychology, 67(2), 222–232. https://doi.org/10.1037/0022-3514.67.2.222 Woods, S., Walters, M., Koay, K. L., & Dautenhahn, K. (2006). Comparing human robot interaction scenarios using live and video based methods: towards a novel methodological approach. In 9th IEEE International Workshop on Advanced Motion Control, 2006. (pp. 750-755). IEEE. Yokozuka, T., Miyamoto, H., Kasai, M., Miyake, Y., & Nozawa, T. (2021). The relationship between turn-taking, vocal pitch synchrony, and rapport in creative Problem-Solving communication. Speech Communication, 129, 33–40. https://doi.org/10.1016/j.specom.2021.03.001 Young, J. E., Sung, J., Voida, A., Sharlin, E., Igarashi, T., Christensen, H. I., & Grinter, R. E. (2010). Evaluating Human-Robot interaction. International Journal of Social Robotics, 3(1), 53–67. https://doi.org/10.1007/s12369-010-0081-8 Yueh, H. P., & Chiang, F. K. (2020). AI and robotics in reshaping the dynamics of learning. British journal of educational technology, 51(5). Yueh, H. P., & Lin, W. (2013). The interaction between human and the home service robot on a daily life cycle. In Cross-Cultural Design. Cultural Differences in Everyday Life: 5th International Conference, CCD 2013, Held as Part of HCI International 2013, Las Vegas, NV, USA, July 21-26, 2013, Proceedings, Part II 5 (pp. 175-181). Springer Berlin Heidelberg. Yueh, H. P., & Lin, W. (2016). Services, appearances and psychological factors in intelligent home service robots. In Cross-Cultural Design: 8th International Conference, CCD 2016, Held as Part of HCI International 2016, Toronto, ON, Canada, July 17-22, 2016, Proceedings 8 (pp. 608-615). Springer International Publishing. Yueh, H. P., Lin, W., Wang, S. C., & Fu, L. C. (2020). Reading with robot and human companions in library literacy activities: A comparison study. British Journal of Educational Technology, 51(5), 1884-1900. 張淑華(2009)。社會認知科學概論。光明日報出版社。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96257 | - |
| dc.description.abstract | Fiske 等(2007)及 Cuddy 等(2007)提出之(The stereotype content model)SCM 模型與(behaviors from intergroup affect and stereotypes)BIAS 模型指出,對他人溫暖與能力程度的感知會引起感知者不同的情緒與行為偏向(Fiske et al., 2002;Fiske et al., 1999;Cuddy et al., 2007),相關研究已將模型套用於人機互動,並確認其結果與人際互動相似(Mieczkowski et al., 2019;Reeves et al., 2020)。本研究相較於以往研究,加入工具型與互動型語境,探討不同的互動目的是否會影響人們對機器人的溫暖與能力的感知結果,以及其所引發的情緒和行為偏向是否與人際反應一致。
研究結果顯示工具型與互動型語境確實會影響人對機器人溫暖與能力的感知,尤其在工具型語境中,人對機器人的溫暖與能力感知程度更高。並且高溫暖高能力之機器人會引發人欣賞的情緒,並且引發主動與幫助的行為,低溫暖低能力之機器人則易引發人輕蔑的情緒,並且引發主動與被動的傷害行為。然而,嫉妒與同情等矛盾情緒在本研究中結果不明顯。 本研究結果顯示語境在討論人機互動時的重要性,並且證實人確實會對機器人產生溫暖與能力的感知,感知會進一步影響其情緒以及行為偏向。本研究結果有助於理解人感知機器人的機制,並為未來人機互動的研究與設計提供參考。 | zh_TW |
| dc.description.abstract | The SCM(The stereotype content model)and BIAS(behaviors from intergroup affect and stereotypes)model (Fiske et al., 2007; Cuddy et al., 2007) propose that perceptions of warmth and competence in others evoke distinct emotional and behavioral tendencies (Fiske et al., 2002; Cuddy et al., 2007). Prior studies have applied this to human-robot interaction, with findings similar to interpersonal results. (Mieczkowski et al., 2019; Reeves et al., 2020). This study adds instrumental and interactive contexts to examine how conversation goals affect warmth and competence perceptions of robots and whether these lead to responses akin to human interactions.
Results show that context significantly influences perceptions: instrumental contexts enhance perceived warmth and competence in robots. Robots seen as high in warmth and competence elicit admiration and facilitation behaviors, while low-warmth, low-competence robots evoke contempt and harm behaviors. However, ambivalent emotions such as envy and pity were minimal. This study underscores the importance of context in human-robot interaction, demonstrating how perceptions of warmth and competence shape emotional and behavioral responses. These insights support future human-robot interaction research and design. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:26:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:26:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 iv
圖目次 xi 表目次 xiii 第一章 緒論 1 第一節 研究背景 1 第二節 研究問題 4 第二章 文獻回顧 5 第一節 溫暖與能力之人際社會認知 5 一、 人如何感知他人 5 二、 溫暖與能力特徵 8 三、 溫暖與能力引發情緒反應(SCM模型) 15 四、 溫暖與能力影響行為偏向(BIAS 模型) 17 第二節 人機互動間的溫暖與能力研究 21 一、 人際互動研究運用於人機互動之中 21 二、 溫暖與能力理論的人機互動研究 22 第三節 互動語境 25 一、 互動類型 25 二、 互動語境相關研究 27 三、 互動語境差異分析必要性 27 第四節 小結 29 第三章 研究方法 30 第一節 實驗設計 30 一、 實驗介紹 30 二、 參與者 31 三、 機器人及運作系統 31 第二節 實驗一 33 一、 參與者 33 二、 實驗流程 33 第三節 實驗二 35 一、 參與者 35 二、 實驗流程 35 第四節 研究問卷與量表 37 一、 基本資料、機器人負面態度與自我效能量表 37 二、 溫暖與能力量表 37 第四章 結果 40 第一節 實驗一 40 一、 參與者對機器人既有態度與感知結果 40 二、 訪談結果 40 三、 人對機器人感知、情緒與行為偏向摘要 43 四、 統計分析結果 47 第二節 實驗二 54 一、參與者對機器人既有態度與感知結果 54 二、人對機器人感知、情緒與行為偏向摘要 54 三、統計分析結果 57 第五章 結論 66 一、研究結果與發現 66 二、研究限制與未來建議 70 參考文獻 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 互動語境 | zh_TW |
| dc.subject | 社會認知 | zh_TW |
| dc.subject | 人機互動 | zh_TW |
| dc.subject | interaction context | en |
| dc.subject | human-robot interaction | en |
| dc.subject | social cognition | en |
| dc.title | 互動語境如何影響大專院校生對機器人的感知、情緒與行為偏向 | zh_TW |
| dc.title | How Interactive Contexts Affect College Students' Perceptual, Emotional and Behavioral Tendencies toward Social Robots | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 岳修平 | zh_TW |
| dc.contributor.coadvisor | Hsiu-Ping Yueh | en |
| dc.contributor.oralexamcommittee | 林珊如;曾士桓 | zh_TW |
| dc.contributor.oralexamcommittee | Shan-Ju Lin;Shih-Huan Tseng | en |
| dc.subject.keyword | 人機互動,互動語境,社會認知, | zh_TW |
| dc.subject.keyword | human-robot interaction,interaction context,social cognition, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202404595 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-11-14 | - |
| dc.contributor.author-college | 文學院 | - |
| dc.contributor.author-dept | 圖書資訊學系 | - |
| dc.date.embargo-lift | 2029-11-14 | - |
| 顯示於系所單位: | 圖書資訊學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 1.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
