請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96253完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝之真 | zh_TW |
| dc.contributor.advisor | Chih-Chen Hsieh | en |
| dc.contributor.author | 利昀陽 | zh_TW |
| dc.contributor.author | Yun-Yang Li | en |
| dc.date.accessioned | 2024-11-28T16:25:16Z | - |
| dc.date.available | 2024-11-29 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-04 | - |
| dc.identifier.citation | 1. Du, F., et al., Dielectrophoretically intensified cross-flow membrane filtration. Journal of Membrane Science, 2009. 336(1-2): p. 71-78.
2. Islam, M.N., B. Jaiswal, and Z.R. Gagnon, High-Throughput Continuous Free-Flow Dielectrophoretic Trapping of Micron-Scale Particles and Cells in Paper Using Localized Nonuniform Pore-Scale-Generated Paper-Based Electric Field Gradients. Analytical Chemistry, 2024. 96(3): p. 1084-1092. 3. Molla, S. and S. Bhattacharjee, Dielectrophoretic levitation in the presence of shear flow: Implications for colloidal fouling of filtration membranes. Langmuir, 2007. 23(21): p. 10618-10627. 4. Du, F., et al., Intensification of cross-flow membrane filtration using dielectrophoresis with a novel electrode configuration. Journal of Membrane Science, 2013. 448: p. 256-261. 5. Zhang, C., et al., Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Analytical and Bioanalytical Chemistry, 2010. 396(1): p. 401-420. 6. Yunus, F.W., et al., Nanoporous Silicon Membrane Embedded With Dielectrophoresis (DEP) Electrodes for Ultrafiltration Improvement for Artificial Kidney. Journal of Microelectromechanical Systems, 2023. 32(1): p. 47-56. 7. Bharti, B., et al., Recent advances in sterilization and disinfection technology: A review. Chemosphere, 2022. 308: p. 24. 8. Z.F. Cui, Y.J.a.R.W.F., Fundamentals of Pressure-Driven Membrane Separation Processes. Membrane technology. 2010. 1-18. 9. Scheper, T., Sterile filtration. 2006. 18-23. 10. Pohl, H.A., THE MOTION AND PRECIPITATION OF SUSPENSOIDS IN DIVERGENT ELECTRIC FIELDS. Journal of Applied Physics, 1951. 22(7): p. 869-871. 11. Voldman, J., Electrical forces for microscale cell manipulation. Annual Review of Biomedical Engineering, 2006. 8: p. 425-454. 12. Jubery, T.Z., S.K. Srivastava, and P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis, 2014. 35(5): p. 691-713. 13. JONES, T.B., Electromechanics of Particles. 1995: p. 1-265. 14. Pethig, R., Limitations of the Clausius-Mossotti function used in dielectrophoresis and electrical impedance studies of biomacromolecules. Electrophoresis, 2019. 40(18-19): p. 2575-2583. 15. Gan, L., Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device. 2015, Arizona State University. p. 1-117. 16. Dingari, N.N. and C.R. Buie, Theoretical Investigation of Bacteria Polarizability under Direct Current Electric Fields. Langmuir, 2014. 30(15): p. 4375-4384. 17. Zhao, H. and H.H. Bau, The polarization of a nanoparticle surrounded by a thick electric double layer. Journal of Colloid and Interface Science, 2009. 333(2): p. 663-671. 18. Zheng, L.F., et al., Manipulating nanoparticles in solution with electrically contacted nanotubes using dielectrophoresis. Langmuir, 2004. 20(20): p. 8612-8619. 19. Bezryadin, A., C. Dekker, and G. Schmid, Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Applied Physics Letters, 1997. 71(9): p. 1273-1275. 20. Erickson, D., D. Sinton, and D.Q. Li, Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab on a Chip, 2003. 3(3): p. 141-149. 21. Regtmeier, J., et al., Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications. Electrophoresis, 2011. 32(17): p. 2253-2273. 22. Dash, S. and S. Mohanty, Dielectrophoretic separation of micron and submicron particles: A review. Electrophoresis, 2014. 35(18): p. 2656-2672. 23. Viefhues, M. and R. Eichhorn, DNA dielectrophoresis: Theory and applications a review. Electrophoresis, 2017. 38(11): p. 1483-1506. 24. Lewpiriyawong, N., C. Yang, and Y.C. Lam, Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. ELECTROPHORESIS, 2010. 31(15): p. 2622-2631. 25. Kang, K.H., et al., Continuous separation of microparticies by size with direct current-dielectrophoresis. Electrophoresis, 2006. 27(3): p. 694-702. 26. Faraghat, S.A., et al., High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proceedings of the National Academy of Sciences of the United States of America, 2017. 114(18): p. 4591-4596. 27. Gallo-Villanueva, R.C., et al., Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis. Electrophoresis, 2011. 32(18): p. 2456-2465. 28. Barrett, L.M., et al., Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Analytical Chemistry, 2005. 77(21): p. 6798-6804. 29. Park, S., et al., Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab on a Chip, 2011. 11(17): p. 2893-2900. 30. Lorenz, M., et al., High-throughput dielectrophoretic filtration of sub-micron and micro particles in macroscopic porous materials. Analytical and Bioanalytical Chemistry, 2020. 412(16): p. 3903-3914. 31. Ren, Q.L. and C.X. Liang, Insulator-based dielectrophoretic antifouling of nanoporous membrane for high conductive water desalination. Desalination, 2020. 482: p. 15. 32. Mukaibo, H., et al., Ultrathin nanoporous membranes for insulator-based dielectrophoresis. Nanotechnology, 2018. 29(23): p. 10. 33. Liu, B., et al., Dielectrophoresis-Based Universal Membrane Antifouling Strategy toward Colloidal Foulants. Environmental Science & Technology, 2022. 56(15): p. 10997-11005. 34. Giesler, J., et al., Semi-continuous dielectrophoretic separation at high throughput using printed circuit boards. Scientific Reports, 2023. 13(1): p. 11. 35. Yin, D.F., et al., Multi-Stage Particle Separation based on Microstructure Filtration and Dielectrophoresis. Micromachines, 2019. 10(2): p. 11. 36. Zaman, M.A., et al., Controlled Transport of Individual Microparticles Using Dielectrophoresis. Langmuir, 2023. 39(1): p. 101-110. 37. Morgan, H., M.P. Hughes, and N.G. Green, Separation of submicron bioparticles by dielectrophoresis. Biophysical Journal, 1999. 77(1): p. 516-525. 38. Weirauch, L., et al., Material-selective separation of mixed microparticles via insulator-based dielectrophoresis. Biomicrofluidics, 2019. 13(6): p. 12. 39. Kumar, S., S.H. Yoon, and G.H. Kim, Bridging the nanogap electrodes with gold nanoparticles using dielectrophoresis technique. Current Applied Physics, 2009. 9(1): p. 101-103. 40. 黃睿亭, 於圓柱陣列微流道中以脈衝式電場分離DNA之研究, in 化學工程學研究所. 2015, 臺灣大學. p. 1-114. 41. Ternovsky, V.I., Y. Okada, and R.Z. Sabirov, Sizing the pore of the volume-sensitive anion channel by differential polymer partitioning. Febs Letters, 2004. 576(3): p. 433-436. 42. Chan, V., et al., Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab on a Chip, 2010. 10(16): p. 2062-2070. 43. 羅聖全, 科學基礎研究之重要利器—掃描式電子顯微鏡(SEM). 國立臺灣科學教育館科學研習月刊, 2015. 52-5: p. 2-4. 44. 張乃云, 介電液滴於多孔介質中之介電泳現象, in 化學工程學研究所. 2023, 臺灣大學. p. 1-120. 45. Murphy, C.J., et al., Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts of Chemical Research, 2008. 41(12): p. 1721-1730. 46. García-Sánchez, P., et al., Alternating Current Electrokinetic Properties of Gold-Coated Microspheres. Langmuir, 2012. 28(39): p. 13861-13870. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96253 | - |
| dc.description.abstract | 介電泳效應是利用不均勻的電場,藉由溶液中的粒子與溶劑被極化的程度不同,使粒子在溶劑中移動的現象。傳統的研究中常應用此方法於低通量、高濃度微米粒子的分離,然而隨著各領域對高通量、低濃度奈米粒子分離的需求不斷增加,在回顧了以往使用介電泳效應操控溶液中粒子以達到分離的相關研究及其局限,並比較不同研究結果後,我們提出結合介電泳效應與微過濾,期望通過我們的實驗設計實現對溶液中低濃度奈米粒子的高效分離。
在實驗中,我們首先使用黃光微影製程製作透明的玻璃微流道來擬似薄膜孔洞,以觀察不同大小及材質的奈米粒子因介電泳效應所產生的分離行為。透過利用COMSOL Multiphysics模擬微流道中的電場梯度分布,並將模擬結果與實驗中粒子的實際分布情況進行比較,以確認粒子的介電泳特性。根據微流道實驗的結果,我們進一步將分離裝置改為微過濾薄膜,將薄膜視為由無數微流道構成的結構,並在薄膜兩邊架設電極,將介電泳效應結合薄膜過濾操作。我們使用水為背景溶液,以50nm的二氧化矽、100nm的polystyrene及5nm的金粒子作為分離目標,並選用孔徑大於粒子直徑10倍以上的薄膜進行分離實驗,發現介電泳效應結合微過濾能有效移除溶液中濃度等級數十至數百ppb的奈米顆粒,且具有同時分離不同介電泳性質粒子的能力,證實結合介電泳效應與微過濾的確能大幅提高過濾通量,並降低過濾壓力及能耗。利用SEM檢視過濾後的薄膜,我們也發現介電泳在加強薄膜過濾的同時,也會使奈米粒子在薄膜表面產生類似濾餅的結構,這是一般過濾奈米粒子時不易產生的現象。最後,我們展望未來的研究,期望能繼續優化此技術,以開發出適用於更小粒徑、且不受粒子與溶劑種類限制,並具有大通量潛力的分離技術。 | zh_TW |
| dc.description.abstract | The dielectrophoresis (DEP) effect utilizes a non-uniform electric field to exert different magnitudes of force on impurity particles and solvent in a solution. Traditional studies have often applied this method for the separation of low-throughput, high-concentration, or larger particles. However, as the demand for high-throughput, low-concentration nanoparticle separation continues to grow across various fields, we plan to combine the DEP effect with microfiltration membrane structures to improve upon previous research and introduce technological innovations. This study reviews prior research that used the DEP effect to manipulate particles in solutions for separation, as well as its limitations. Based on a comparison of different research results, we propose our experimental design, aiming to achieve efficient separation of particles in solutions through microfiltration membranes.
In the experiment, we first used photolithography to fabricate transparent glass microchannels to observe the separation behavior of particles under a non-uniform electric field caused by the DEP effect. We then used COMSOL Multiphysics to simulate the electric field gradient distribution in the microchannels, comparing the simulation results with the actual distribution of particles in the experiment to confirm their DEP characteristics. After confirming the DEP properties, we switched the separation apparatus to a microfiltration membrane, treating the membrane as a structure composed of numerous microchannels. Based on the results of the microchannel experiments, we set the operational conditions for combining the DEP effect with membrane filtration. We then conducted experiments using membranes with pore sizes 10 times larger than the particle sizes. The experiments targeted the separation of 50nm silica, 100nm polystyrene, and 5nm gold particles. The results from the DEP effect combined with microfiltration showed good separation performance, demonstrating the feasibility of separating particles with different DEP properties simultaneously, and confirming the method’s viability for purification operations at a laboratory scale. However, some unexpected results occurred during the experiments. We conducted further research to investigate these anomalies and proposed a possible separation mechanism, which was later verified through SEM imaging. Lastly, we look forward to future research, aiming to develop separation techniques suitable for smaller particles, independent of particle and solvent types, and with the potential for high throughput. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:25:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:25:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
致謝 II 摘要 IV Abstract VI 目次 VIII 圖次 XI 表次 XXI 第 1 章 、緒論 1 1.1 前言 1 1.2 研究動機 1 第 2 章 、文獻回顧 3 2.1 薄膜過濾 3 2.1.1 薄膜過濾種類與介紹 3 2.1.2 薄膜過濾相關理論 6 2.2 介電泳 9 2.3.1 介電泳簡介 9 2.3.2 介電泳力的推導 11 2.3 流體系統常見的電動力學 17 2.3.1 電雙層 17 2.3.2 電泳 18 2.3.3 電滲流 18 2.3.4 電流熱效應 19 2.4 介電泳於粒子分離之研究 21 2.4.1 介電泳於微流道分離之應用 21 2.4.2 使用介電泳結合薄膜或多孔介質分離粒子之研究 28 2.5 研究目的與實驗設計構想 32 2.5.1.以微流道測定粒子介電性質與過濾之可行性分析 35 2.5.2 結合介電泳效應與微過濾裝置分離粒子 36 第 3 章 、設備、材料與方法 38 3.1 實驗設備 38 3.2 實驗材料 40 3.3 玻璃微流道製作 42 3.3.1 基材平面之二維圖樣製作 43 3.3.2 玻璃微流道微影製程 44 3.3.2 玻璃微流道封裝 46 3.4 PDMS微流道製作 47 3.5石蠟封口膜(parafilm)微流道製作 48 3.6 溶液配置 49 3.6.1微流道分離實驗 49 3.6.2微過濾薄膜分離實驗 49 3.7 過濾裝置的設計與實驗架設 50 3.8 結果收集與分析 51 3.8.1微流道實驗之數據分析 51 3.8.2結合介電泳與微孔過濾實驗之數據分析 52 3.8.3薄膜表面與截面分析 55 第 4 章 、結果與討論 57 4.1 以微流道測定粒子介電泳性質與過濾之可行性分析 57 4.1.1玻璃微流道對粒子分離之模擬 57 4.1.2玻璃微流道對粒子分離驗證實驗 62 4.1.3改變鹽類濃度對粒子介電泳性質的影響 68 4.1.4 以多孔介質結合介電泳效應分離粒子之可行性驗證 69 4.2 結合介電泳與微過濾系統分離實驗 70 4.2.1 選擇介電泳結合過濾實驗的操作參數 71 4.2.2 單一種類介電泳性質粒子於微過濾中的分離可行性驗證 73 4.2.3含多種介電泳性質粒子於微過濾中的分離可行性驗證 80 4.3介電泳效應後粒子濃度無法回升現象之探討 82 4.3.1 檢驗無介電泳影響下濾液濃度無法回升之可能性 82 4.3.2 以SEM對薄膜形貌分析 86 4.3.3以低濃度溶液改善濃度極化現象之驗證 90 第 5 章 、結論與未來展望 92 5.1 結論 92 5.2 未來展望 93 第 6 章 、參考文獻 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 介電泳 | zh_TW |
| dc.subject | 微過濾 | zh_TW |
| dc.subject | 奈米粒子分離 | zh_TW |
| dc.subject | 絕緣式介電泳 | zh_TW |
| dc.subject | Insulator-based dielectrophoresis | en |
| dc.subject | Nanoparticle separation | en |
| dc.subject | Dielectrophoresis | en |
| dc.subject | Microfiltration | en |
| dc.subject | Microchannal | en |
| dc.title | 結合介電泳現象與微過濾去除溶液中低濃度奈米粒子之研究 | zh_TW |
| dc.title | Integration of Dielectrophoresis Phenomenon and Microfiltration for the Removal of Low-Concentration Nanoparticles from Solvent | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王大銘;莊怡哲;黃國政 | zh_TW |
| dc.contributor.oralexamcommittee | Da-Ming Wang;Yi-Je Juang;Kuo-Cheng Huang | en |
| dc.subject.keyword | 奈米粒子分離,介電泳,微過濾,微流道,絕緣式介電泳, | zh_TW |
| dc.subject.keyword | Nanoparticle separation,Dielectrophoresis,Microfiltration,Microchannal,Insulator-based dielectrophoresis, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202404529 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-11-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2029-10-29 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2029-10-29 | 5.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
