Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啓光zh_TW
dc.contributor.advisorChi-Kuang Sunen
dc.contributor.author黃崇恩zh_TW
dc.contributor.authorChung-En Huangen
dc.date.accessioned2024-11-28T16:17:50Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-10-28-
dc.identifier.citation1. Margaret McGuinness. Obama’s BAM Project Becomes BRAIN Initiative. the nerve blog https://sites.bu.edu/ombs/2013/04/06/obamas-bam-project-becomes-brain-initiative/ (2013).
2. Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. nature.comW Zong, R Wu, M Li, Y Hu, Y Li, J Li, H Rong, H Wu, Y Xu, Y Lu, H Jia, M Fan, Z ZhouNature methods, 2017•nature.com.
3. Zong, W., Obenhaus, H., Skytøen, E., Cell, H. E.- & 2022, undefined. Large-scale two-photon calcium imaging in freely moving mice. cell.comW Zong, HA Obenhaus, ER Skytøen, H Eneqvist, NL de Jong, R Vale, MR Jorge, MB MoserCell, 2022•cell.com.
4. Fields, H. L., Hjelmstad, G. O., Margolis, E. B. & Nicola, S. M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. annualreviews.org 30, 289–316 (2007).
5. Ozbay, B. et al. Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning. nature.comBN Ozbay, GL Futia, M Ma, VM Bright, JT Gopinath, EG Hughes, D Restrepo, EA GibsonScientific reports, 2018•nature.com.
6. Aharoni, D., Khakh, B., Silva, A., methods, P. G.-N. & 2019, undefined. All the light that we can see: a new era in miniaturized microscopy. nature.comD Aharoni, BS Khakh, AJ Silva, P GolshaniNature methods, 2019•nature.com.
7. Zhang, Y. et al. A miniaturized mesoscope for the large-scale single-neuron-resolved imaging of neuronal activity in freely behaving mice. Nat Biomed Eng 1–21 (2024).
8. Phillips, M. L., Urban, N. T., Salemi, T., Dong, Z. & Yasuda, R. Functional imaging of nine distinct neuronal populations under a miniscope in freely behaving animals. bioRxiv (2023).
9. Guo, C. et al. Miniscope-LFOV: a large-field-of-view, single-cell-resolution, miniature microscope for wired and wire-free imaging of neural dynamics in freely behaving animals. Sci Adv 9, eadg3918 (2023).
10. Zhao, P. et al. MiniXL: An open-source, large field-of-view epifluorescence miniature microscope for mice capable of single-cell resolution and multi-brain region imaging. bioRxiv 2024–2028 (2024).
11. Chen, X., Leischner, U., Rochefort, N. L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011).
12. Stamatakis, A. M. et al. Miniature microscopes for manipulating and recording in vivo brain activity. Microscopy 70, 399–414 (2021).
13. Heffernan, B. M. et al. Two-photon, fiber-coupled, super-resolution microscope for biological imaging. APL Photonics 7, (2022).
14. Grienberger, C., Giovannucci, A., Zeiger, W. & Portera-Cailliau, C. Two-photon calcium imaging of neuronal activity. Nature Reviews Methods Primers 2, 67 (2022).
15. Zhao, C. et al. Millimeter field-of-view miniature two-photon microscopy for brain imaging in freely moving mice. Opt. Express 31, 32925–32934 (2023).
16. Lecoq, J., Orlova, N. & Grewe, B. F. Wide. fast. deep: recent advances in multiphoton microscopy of in vivo neuronal activity. Journal of Neuroscience 39, 9042–9052 (2019).
17. Guo, C., Wang, A., Cheng, H. & Chen, L. New imaging instrument in animal models: Two‐photon miniature microscope and large field of view miniature microscope for freely behaving animals. J Neurochem (2022) doi:10.1111/jnc.15711.
18. Segal, M. Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability. European Journal of Neuroscience 31, 2178–2184 (2010).
19. Berry, K. P. & Nedivi, E. Spine dynamics: are they all the same? Neuron 96, 43–55 (2017).
20. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).
21. Bhatt, D. H., Zhang, S. & Gan, W.-B. Dendritic spine dynamics. Annu Rev Physiol 71, 261–282 (2009).
22. Parnass, Z., Tashiro, A. & Yuste, R. Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons. Hippocampus 10, 561–568 (2000).
23. Konur, S., Rabinowitz, D., Fenstermaker, V. L. & Yuste, R. Systematic regulation of spine sizes and densities in pyramidal neurons. J Neurobiol 56, 95–112 (2003).
24. Chen, X., Leischner, U., Rochefort, N. L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011).
25. Majewska, A., Tashiro, A. & Yuste, R. Regulation of spine calcium dynamics by rapid spine motility. Journal of Neuroscience 20, 8262–8268 (2000).
26. Bonhoeffer, T. & Yuste, R. Spine motility: phenomenology, mechanisms, and function. Neuron 35, 1019–1027 (2002).
27. Por, E., van Kooten, M. & Sarkovic, V. Nyquist–Shannon sampling theorem. Leiden University 1, 1–2 (2019).
28. Wang, J. & Fleischmann, D. Improving Spatial Resolution at CT: Development, Benefits, and Pitfalls. https://doi.org/10.1148/radiol.2018181156 289, 261–262 (2018).
29. Moses, W. W. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 648, S236–S240 (2011).
30. Uecker, M. et al. Real-time MRI at a resolution of 20 ms. NMR Biomed 23, 986–994 (2010).
31. Goense, J., Bohraus, Y. & Logothetis, N. K. fMRI at high spatial resolution implications for BOLD-models. Front Comput Neurosci 10, 172485 (2016).
32. Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).
33. So, P. T. C. et al. Time-resolved fluorescence microscopy using two-photon excitation. Bioimaging 3, 49–63 (1995).
34. Soeller, C. & Cannell, M. B. Two-photon microscopy: Imaging in scattering samples and three-dimensionally resolved flash photolysis. Microsc Res Tech 47, 182–195 (1999).
35. Masters, B. R. & So, P. Handbook of Biomedical Nonlinear Optical Microscopy. (Oxford University Press, 2008).
36. RAYLEIGH, Lord. On the theory of optical images, with special reference to the microscope. SPIE milestone series 178, 51–65 (2004).
37. Inoué, S. Foundations of confocal scanned imaging in light microscopy. in Handbook of biological confocal microscopy 1–19 (Springer, 2006).
38. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie 9, 413–468 (1873).
39. Mertz, J. Nonlinear microscopy: new techniques and applications. Curr Opin Neurobiol 14, 610–616 (2004).
40. Waves and Fields in Optoelectronics: Haus, Hermann A.: 9780139460531: Amazon.com: Books. https://www.amazon.com/Fields-Optoelectronics-Prentice-Hall-physical-electronics/dp/0139460535.
41. Y.R. Shen. Principles of nonlinear optics. Principles of nonlinear optics 1–39 (1873).
42. Oheim, M., Michael, D. J., Geisbauer, M., Madsen, D. & Chow, R. H. Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Adv Drug Deliv Rev 58, 788–808 (2006).
43. Rubart, M. Two-photon microscopy of cells and tissue. Circ Res 95, 1154–1166 (2004).
44. Hoy, C. L. et al. Miniaturized probe for femtosecond laser microsurgery and two-photon imaging. Opt Express 16, 9996–10005 (2008).
45. Hoy, C. L. et al. Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe. Opt Express 19, 10536–10552 (2011).
46. Liu, T.-M., Chan, M.-C., Chen, I.-H., Chia, S.-H. & Sun, C.-K. Miniaturized multiphoton microscope with a 24Hz frame-rate. Opt Express 16, 10501–10506 (2008).
47. Chia, S.-H. et al. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope. Opt Express 18, 17382–17391 (2010).
48. Rivera, D. R. et al. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. Proceedings of the National Academy of Sciences 108, 17598–17603 (2011).
49. Engelbrecht, C. J., Johnston, R. S., Seibel, E. J. & Helmchen, F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt Express 16, 5556–5564 (2008).
50. Bortoletto, F., Bonoli, C., Panizzolo, P., Ciubotaru, C. D. & Mammano, F. Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics. PLoS One 6, e22321 (2011).
51. Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).
52. Helmchen, F. & Denk, W. New developments in multiphoton microscopy. Curr Opin Neurobiol 12, 593–601 (2002).
53. Göbel, W., Kerr, J. N. D., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).
54. Harzic, R. Le, Riemann, I., Weinigel, M., König, K. & Messerschmidt, B. Rigid and high-numerical-aperture two-photon fluorescence endoscope. Appl Opt 48, 3396–3400 (2009).
55. Harzic, R. Le, Weinigel, M., Riemann, I., König, K. & Messerschmidt, B. Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens. Opt Express 16, 20588–20596 (2008).
56. Knittel, J., Schnieder, L., Buess, G., Messerschmidt, B. & Possner, T. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt Commun 188, 267–273 (2001).
57. Jung, J. C. & Schnitzer, M. J. Multiphoton endoscopy. Opt Lett 28, 902–904 (2003).
58. Jung, J. C., Mehta, A. D., Aksay, E., Stepnoski, R. & Schnitzer, M. J. In vivo mammalian brain imaging using one-and two-photon fluorescence microendoscopy. J Neurophysiol 92, 3121–3133 (2004).
59. Piyawattanametha, W. et al. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Opt Lett 34, 2309–2311 (2009).
60. Flusberg, B. A., Jung, J. C., Cocker, E. D., Anderson, E. P. & Schnitzer, M. J. In vivo brain imaging using a portable 3.9? gram two-photon fluorescence microendoscope. Opt Lett 30, 2272–2274 (2005).
61. Piyawattanametha, W. et al. A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror. in 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics 6–7 (2007).
62. Barretto, R. P. J., Messerschmidt, B. & Schnitzer, M. J. In vivo fluorescence imaging with high-resolution microlenses. Nat Methods 6, 511–512 (2009).
63. Helmchen, F., Fee, M., Tank, D., Neuron, W. D.- & 2001, undefined. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. cell.comF Helmchen, MS Fee, DW Tank, W DenkNeuron, 2001•cell.com.
64. Sawinski, J. et al. Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci U S A 106, 19557–19562 (2009).
65. Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nature Methods 2017 14:7 14, 713–719 (2017).
66. Zong, W. et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nature Methods 2021 18:1 18, 46–49 (2021).
67. Klioutchnikov, A. et al. Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nature Methods 2020 17:5 17, 509–513 (2020).
68. Guo, C., Wang, A., Cheng, H. & Chen, L. New imaging instrument in animal models: Two-photon miniature microscope and large field of view miniature microscope for freely behaving animals. J Neurochem 164, 270–283 (2023).
69. Kwon, H. G. & Jang, S. H. Differences in neural connectivity between the substantia nigra and ventral tegmental area in the human brain. Front Hum Neurosci 8, 41 (2014).
70. Hara, E., Kubikova, L., Hessler, N. A. & Jarvis, E. D. Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context. European Journal of Neuroscience 25, 3406–3416 (2007).
71. Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).
72. An, S. et al. A whole-brain connectivity map of VTA and SNc glutamatergic and GABAergic neurons in mice. Front Neuroanat 15, 818242 (2021).
73. Lillehaug, S. et al. Brain-wide distribution of reporter expression in five transgenic tetracycline-transactivator mouse lines. Scientific Data 2019 6:1 6, 1–15 (2019).
74. Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18, 101–113 (2017).
75. Obeso, J. A., Rodriguez-Oroz, M. C., Stamelou, M., Bhatia, K. P. & Burn, D. J. The expanding universe of disorders of the basal ganglia. The Lancet 384, 523–531 (2014).
76. Parent, A. & Hazrati, L.-N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20, 91–127 (1995).
77. Ashpole, N. et al. Endoscopic Imaging. (2010).
78. Robinson, A. Which lens is better to couple light into Photonic crystal fiber, Aspheric lens or microscope objective ? Preprint at (2020).
79. Paxinos, G. & Franklin, K. B. J. The mouse brain in stereotaxic coordinates. Academic Press. San Diego 296, (2001).
80. Goodman, J. W. Introduction to Fourier Optics. (Roberts and Company publishers, 2005).
81. Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198, 82–87 (2000).
82. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Elsevier, 2013).
83. Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. in Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII vol. 3919 141–150 (2000).
84. Ceto, S., Sekiguchi, K. J., Takashima, Y., Nimmerjahn, A. & Tuszynski, M. H. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell 27, 430–440 (2020).
85. Gritton, H. J. et al. Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement. Nat Neurosci 22, 586–597 (2019).
86. Kaszas, A. et al. Exploring the spatial precision of focal infrared neural stimulation in the cortex of GCaMP6f mice. in Optogenetics and Optical Manipulation 2020 vol. 11227 32–37 (2020).
87. Kaszas, A. et al. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci Rep 11, 9775 (2021).
88. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).
89. Guo, C., Wang, A., Cheng, H. & Chen, L. New imaging instrument in animal models: Two-photon miniature microscope and large field of view miniature microscope for freely behaving animals. J Neurochem 164, 270–283 (2023).
90. Sawinski, J. et al. Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci U S A 106, 19557–19562 (2009).
91. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology 2003 21:11 21, 1369–1377 (2003).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96228-
dc.description.abstract解密及揭開腦神經功能性影像一直是這個世紀最重要的科學議題之一,因此於此篇論文中,會發表一項全新開發的雙光子微型化內視鏡技術,不只可以用來知悉小鼠中腦區 (黑質緻密部腦區)(深度:4.3 mm)的功能性神經影像並且可以看到清楚的神經脊隨柱,對於腦神經科學在功能性影像上是非常重要的議題。

因此,我們開發出一套雙光子螢光微型化顯微內視鏡系統,用於在長時間尺度的觀測小鼠深腦區的細胞活動影像。由於是使用點掃描式的雙光子影像系統,又需要減輕整體顯微鏡的重量,因此挑選微機電掃描鏡(MEMS)及搭配漸變折射柱狀透鏡(GRIN lens),以看到更深層的腦區。於此篇論文中,主要分為三個部分進行詳細說明,包含光學設計使用Zemax軟體模擬出2P的理論解析度為1.14um,視野範圍為123 〖μm〗^2、光機械結構設計使用Shapr3D軟體並使用3D列印機器進行列印、發展獨特對光技巧(籠式洞口對準技術)等的開發適用於此微型化系統、C++/ CLI 圖形化使用介面的開發,用於做高速資料擷取以及使用圖形化介面卡做即時影像高速處理。

然而,若要看到細胞的神經脊隨柱影像,那麼此顯微鏡的解析度必須要為微米等級的橫向解析度。以及由於希望未來能在小鼠活動時,觀測其腦中的神經功能性影像,因此此套顯微鏡系統必須是基於光纖來傳輸激發的雷射光,以及收螢光訊號。順道一提,在做活體實驗之前,要先將病毒(AAV9-syn-GCamp6f)打到我們有興趣的腦區,以有利於我們影像螢光的收集及觀測。

在此第一代NTU miniScope的開發下,主要分為兩個部分,分別為「影像模組」、「底座模組」,兩者是用磁吸式的方式做定位跟固定,是可以做拆裝的設計。也根據我們所做的光學設計,可以根據我們今日想要觀察的腦區,只要替換「底座模組」即可! 總結來說,此創新的NTU miniScope的設計,其重量為5克、尺寸為22mm x 6 mm x 21 mm、影像幀率為20 frames/sec、橫向解析度可以達到1.292 ± 0.012 微米、視野範圍為128{\\mu m}^2。並搭配著特殊的光機械設計,可以看到黑質緻密部腦區的神經脊隨柱功能性影像。
zh_TW
dc.description.abstractDecoding and unveiling the neuron functions have become one of the most significant scientific challenges of this century. In this paper, we present a newly developed two-photon miniaturized endoscopic technology, which not only allows for the visualization of functional neural activities in the midbrain region (specifically the substantia nigra pars compacta, at a depth of 4.3 mm) but also provides clear images of neuronal spines, making significant contributions to the field of neuroscience.

To address this challenge, this thesis focuses on developing a novel two-photon fluorescence miniaturized microscope system capable of imaging cellular activity in deep brain regions of mice, nicknamed NTUminiscope. Given that we are utilizing a point-scanning two-photon imaging system and need to reduce the overall weight of the microscope, we selected a miniaturized scanning mirror (MEMS) in combination with a gradient-index lens (GRIN lens) to reach deeper brain regions. The system design and implementartion of NTUminiscope is divided into four main sections: optical design using Zemax software, which simulates a theoretical 2P resolution of 1.14 μm with a field of view of 123 μm²; optomechanical structural design using Shapr3D software and 3D printing technology, and the development of unique optical alignment techniques (the "hole-cage alignment method") suited for this miniaturized system. Additionally, a C++/CLI graphical user interface for high-speed data acquisition and real-time image processing using a graphics card.

For the microscope to visualize neuronal images, it must achieve sub-micron level lateral resolution. Furthermore, to observe neural functional imaging in freely moving mice in the future, the system needs to be based on fiber optics for laser light transmission and fluorescent signal collection. It is also worth mentioning that before conducting in vivo experiments, viruses (AAV9-syn-GCamp6f) need to be introduced into the targeted brain regions, enhancing the collection and observation of fluorescent images.

The first-generation NTU miniScope is divided into two main modules: the "imaging module" and the "base module, which is to be implanted into the mouse brain." These two modules are magnetically attached for easy positioning and detachment, allowing the system to partially disconnected from the animal as needed. Based on our optical design, the base module can be swapped depending on the specific brain region we aim to observe on any given day. In summary, this innovative NTU miniScope design weighs just 5 grams, with dimensions of 22 mm x 6 mm x 21 mm, an imaging frame rate of 20 frames per second, and a 2P lateral resolution of 1.292 ± 0.012 microns. The specialized optomechanical design enables functional neural imaging of the substantia nigra pars compacta.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:17:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:17:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 i
誌謝 ii
中文摘要 iv
Abstract vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABELS xix
Chapter 1 Introduction 1
1.1 Motivation and the goal of this thesis 1
1.2 Thesis scope and arrangement 2
Chapter 2 Background Knowledge 5
2.1 Biomedical imaging modalities for in-vivo applications 5
2.2 Principle of two-photon excitation fluorescence microscopy 7
2.3 Scope of different mini scopes 10
2.4 The substantia nigra pars compacta (SNc) brain region 13
2.5 Gradient index (GRIN) micro lens 15
2.6 Hollow-core 920 fiber 17
Chapter 3 20
3.1 Ti:Sapphire Mode-locked Oscillator 20
3.2 Optimization of the intensity autocorrelator monitoring setup for portable approaches 25
Chapter 4 Development of the 1st-generation NTU-miniScope System 27
4.1 Optical design of the excitation beam path based on Zemax Simulation 27
4.2 Optomechanical design and protocols for assembling the mini scope 32
4.2.1 The concepts of designing a 3D printing NTU miniScope 32
4.2.2 HC-920 (Hollow core) fiber assembly (1 hour) 34
4.2.3 Micro-electro-mechanical systems (MEMS) mirror alignment (2 hours) 41
4.2.4 Assembly of the base plate module and alignment with the imaging module (2 hours) 44
4.2.5 Custom supple fiber bundle and optimization of the collection light path 51
4.3 Development of C++/CLI-based software for data acquisition and real-time imaging display 56
4.3.1 Architecture of electrical control and data acquisition system 57
4.3.2 Synchronization of the frame and line clocks 59
4.3.3 Development of a custom NTU miniScope’s imaging software 61
Chapter 5 System tests --- in-vivo mice brain & in-vitro brain slice 68
5.1 Implantation of NTU miniScope onto the mice brain 68
5.2 Measurement of lateral resolution in-vitro mice brain slice 72
5.3 In-vivo mice brain imaging 74
Chapter 6 Results and future works 83
References 88
Appendix A: Setup of the CUDA environment in NTU miniScope software 99
Appendix B: List of publications and software 101
Appendix C: IACUC permissions 102
Appendix D: Copyright permissions 103
-
dc.language.isoen-
dc.title腦功能影像用微型化雙光子顯微鏡系統開發zh_TW
dc.titleDevelopment of a Miniaturized Two-photon Microscope System for Brain Functional Imagingen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee高甫仁;李翔傑zh_TW
dc.contributor.oralexamcommitteeFu-Jen Kao;Hsiang-Chieh Leeen
dc.subject.keyword微型化頭戴式顯微鏡,雙光子顯微鏡,光纖光學,zh_TW
dc.subject.keywordMiniaturized head-mount microscope,two-photon microscopy,fiber optics,en
dc.relation.page135-
dc.identifier.doi10.6342/NTU202404525-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-10-29-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2026-10-29-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2026-10-29
11.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved