請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96224完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李奕霈 | zh_TW |
| dc.contributor.advisor | Yi-Pei Li | en |
| dc.contributor.author | 葉丞祐 | zh_TW |
| dc.contributor.author | Cheng-You Yeh | en |
| dc.date.accessioned | 2024-11-28T16:16:38Z | - |
| dc.date.available | 2025-10-31 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-18 | - |
| dc.identifier.citation | (1) Austin, N. D.; Sahinidis, N. V.; Trahan, D. W. Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research and Design 2016, 116, 2-26.
(2) Papadopoulos11, A. I.; Tsivintzelis, I.; Linke, P.; Seferlis, P. Computer aided molecular design: fundamentals, methods and applications. Chem., Mol. Sci. and Chem. Eng 2018. (3) Lambora, A.; Gupta, K.; Chopra, K. Genetic algorithm-A literature review. In 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon), 2019; IEEE: pp 380-384. (4) Holland, J. H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence; MIT press, 1992. (5) Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Advances in neural information processing systems 2014, 27. (6) Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A. A. Generative adversarial networks: An overview. IEEE signal processing magazine 2018, 35 (1), 53-65. (7) Kingma, D. P. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 2013. (8) Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In International conference on machine learning, 2015; PMLR: pp 2256-2265. (9) Nigam, A.; Pollice, R.; Aspuru-Guzik, A. Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design. Digital Discovery 2022, 1 (4), 390-404. (10) Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. Machine Learning: Science and Technology 2020, 1 (4), 045024. (11) De Cao, N.; Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973 2018. (12) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; Von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Scientific data 2014, 1 (1), 1-7. (13) Xu, M.; Powers, A. S.; Dror, R. O.; Ermon, S.; Leskovec, J. Geometric latent diffusion models for 3d molecule generation. In International Conference on Machine Learning, 2023; PMLR: pp 38592-38610. (14) Scheffczyk, J.; Redepenning, C.; Jens, C. M.; Winter, B.; Leonhard, K.; Marquardt, W.; Bardow, A. Massive, automated solvent screening for minimum energy demand in hybrid extraction–distillation using COSMO-RS. Chemical Engineering Research and Design 2016, 115, 433-442. (15) Lee, Y. S.; Galindo, A.; Jackson, G.; Adjiman, C. S. Enabling the direct solution of challenging computer-aided molecular and process design problems: Chemical absorption of carbon dioxide. Computers & Chemical Engineering 2023, 174, 108204. (16) Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Bayesian reaction optimization as a tool for chemical synthesis. Nature 2021, 590 (7844), 89-96. (17) Hartono, N. T. P.; Ani Najeeb, M.; Li, Z.; Nega, P. W.; Fleming, C. A.; Sun, X.; Chan, E. M.; Abate, A.; Norquist, A. J.; Schrier, J. Principled exploration of bipyridine and terpyridine additives to promote methylammonium lead iodide perovskite crystallization. Crystal Growth & Design 2022, 22 (9), 5424-5431. (18) Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks, 1995; ieee: Vol. 4, pp 1942-1948. (19) Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: an overview. Soft computing 2018, 22 (2), 387-408. (20) Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. Optimization by simulated annealing. science 1983, 220 (4598), 671-680. (21) Van Laarhoven, P. J.; Aarts, E. H.; van Laarhoven, P. J.; Aarts, E. H. Simulated annealing; Springer, 1987. (22) Karaboga, D. An idea based on honey bee swarm for numerical optimization; Technical report-tr06, Erciyes university, engineering faculty, computer …, 2005. (23) Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization 2007, 39, 459-471. (24) Drucker, H.; Burges, C. J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Advances in neural information processing systems 1996, 9. (25) Montgomery, D. C.; Peck, E. A.; Vining, G. G. Introduction to linear regression analysis; John Wiley & Sons, 2021. (26) Vovk, V. Kernel ridge regression. In Empirical inference: Festschrift in honor of vladimir n. vapnik, Springer, 2013; pp 105-116. (27) Breiman, L. Classification and regression trees; Routledge, 2017. (28) Breiman, L. Random forests. Machine learning 2001, 45, 5-32. (29) Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T. Xgboost: extreme gradient boosting. R package version 0.4-2 2015, 1 (4), 1-4. (30) Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016; pp 785-794. (31) Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M. Mastering the game of Go with deep neural networks and tree search. nature 2016, 529 (7587), 484-489. (32) Bellemare, M. G.; Naddaf, Y.; Veness, J.; Bowling, M. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research 2013, 47, 253-279. (33) Aitchison, M.; Sweetser, P.; Hutter, M. Atari-5: Distilling the arcade learning environment down to five games. In International Conference on Machine Learning, 2023; PMLR: pp 421-438. (34) Yang, F.; Kamarudin, M. A.; Zhang, P.; Kapil, G.; Ma, T.; Hayase, S. Enhanced crystallization by methanol additive in antisolvent for achieving high‐quality MAPbI3 perovskite films in humid atmosphere. ChemSusChem 2018, 11 (14), 2348-2357. (35) Gupta, R.; Korukonda, T. B.; Gupta, S. K.; Dhamaniya, B. P.; Chhillar, P.; Datt, R.; Vashishtha, P.; Gupta, G.; Gupta, V.; Srivastava, R. Room temperature synthesis of perovskite (MAPbI3) single crystal by anti-solvent assisted inverse temperature crystallization method. Journal of Crystal Growth 2020, 537, 125598. (36) Konstantakou, M.; Perganti, D.; Falaras, P.; Stergiopoulos, T. Anti-solvent crystallization strategies for highly efficient perovskite solar cells. Crystals 2017, 7 (10), 291. (37) Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: a molecular descriptor calculator. Journal of cheminformatics 2018, 10, 1-14. (38) Rozemberczki, B.; Watson, L.; Bayer, P.; Yang, H.-T.; Kiss, O.; Nilsson, S.; Sarkar, R. The shapley value in machine learning. arXiv preprint arXiv:2202.05594 2022. (39) Żurański, A. M.; Wang, J. Y.; Shields, B. J.; Doyle, A. G. Auto-QChem: an automated workflow for the generation and storage of DFT calculations for organic molecules. Reaction Chemistry & Engineering 2022, 7 (6), 1276-1284. (40) Fitzgerald, M. A.; Soltani, O.; Wei, C.; Skliar, D.; Zheng, B.; Li, J.; Albrecht, J.; Schmidt, M.; Mahoney, M.; Fox, R. J. Ni-Catalyzed C–H Functionalization in the Formation of a Complex Heterocycle: Synthesis of the Potent JAK2 Inhibitor BMS-911543. The Journal of Organic Chemistry 2015, 80 (12), 6001-6011. (41) Fox, R. J.; Cuniere, N. L.; Bakrania, L.; Wei, C.; Strotman, N. A.; Hay, M.; Fanfair, D.; Regens, C.; Beutner, G. L.; Lawler, M. C–H Arylation in the formation of a complex pyrrolopyridine, the commercial synthesis of the potent JAK2 inhibitor, BMS-911543. The Journal of Organic Chemistry 2018, 84 (8), 4661-4669. (42) Gaussian 16 Rev. C.01; Wallingford, CT, 2016. (accessed. (43) Biau, G. Analysis of a random forests model. The Journal of Machine Learning Research 2012, 13 (1), 1063-1095. (44) Ab Wahab, M. N.; Nefti-Meziani, S.; Atyabi, A. A comprehensive review of swarm optimization algorithms. PloS one 2015, 10 (5), e0122827. (45) Murphy, K. Machine Learning: a probabilistic perspective; MIT Press, 2012. (46) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS central science 2018, 4 (2), 268-276. (47) Hinton, G. E.; Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. science 2006, 313 (5786), 504-507. (48) Griffiths, R.-R.; Hernández-Lobato, J. M. Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chemical science 2020, 11 (2), 577-586. (49) Jin, W.; Barzilay, R.; Jaakkola, T. Hierarchical generation of molecular graphs using structural motifs. In International conference on machine learning, 2020; PMLR: pp 4839-4848. (50) Wildman, S. A.; Crippen, G. M. Prediction of physicochemical parameters by atomic contributions. Journal of chemical information and computer sciences 1999, 39 (5), 868-873. (51) Preuer, K.; Renz, P.; Unterthiner, T.; Hochreiter, S.; Klambauer, G. Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery. Journal of chemical information and modeling 2018, 58 (9), 1736-1741. (52) Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. Journal of machine learning research 2008, 9 (11). (53) Morgan, H. L. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. Journal of chemical documentation 1965, 5 (2), 107-113. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96224 | - |
| dc.description.abstract | 新材料或新試劑的開發對於科技進步至關重要,而尋找更好的材料或試劑往往不是那麼容易,通常需要大量的實驗資源投入,而這類任務之所以困難是因為牽涉分子的選擇下導致潛在的組合變得比單純考慮操作條件時來的多非常多,因為牽涉到分子選擇與操作條件的最佳化,僅僅找到合適的分子並不足夠,還需要同時找出與該分子反應相匹配的實驗參數,才能最大限度地提升新材料或新試劑的效用,以找到最優的使用條件。
近年來,隨著計算機輔助技術的發展,已經有許多優秀的分子設計和操作條件優化的工具。這些工具都能有效地幫助實驗化學家做出較優的實驗選擇,並且取得了很好的結果。然而,現有的工具大多專注於單獨進行分子結構設計或操作條件優化,較少有人討論可以同時優化分子設計和操作條件的工具。 因此,本研究旨在開發一種適合分子設計與操作條件的協同優化工具,以提高新材料或試劑開發的效率,目標在於減少實驗資源與時間投入,並找出更好的分子結構和操作條件組合。在這個研究中,我採用了四種常用的智能演算法:基因算法(GA)、粒子群算法(PSO)、模擬退火算法(SA)以及人工蜂群算法(ABC)。這些演算法被修改並優化,以適應分子生成和實驗參數最佳化的任務需求。同時,我結合了分子生成變分自編碼器(Variational Autoencoder)和機器學習模型,對這些演算法的表現進行了比較。 結果顯示,在少量實驗數據作為起始資料的情況下,代理模型選擇基於樹的模型(tree-based model)較為合適,而人工蜂群演算法(ABC)和模擬退火算法(SA)在同時優化分子結構和操作條件方面表現尤為出色,在探索(Exploration)與利用(Exploitation)之間達到了良好的平衡,這表明即使在實驗數據點稀少的情況下,這些優化方法仍能為實驗推薦提供有力支持。 | zh_TW |
| dc.description.abstract | The development of new materials or reagents is crucial for technological advancement. However, finding better materials or reagents is not easy and typically requires a significant investment of experimental resources. This kind of task is challenging because the selection of molecules involved leads to a vast number of potential combinations, far exceeding the number when only considering reaction conditions. Since molecular selection and reaction condition optimization are intertwined, simply finding suitable molecules is insufficient. It is also necessary to identify experimental parameters simultaneously that match the reaction of the molecule to maximize the utility of the new material or reagent and find the optimal usage conditions.
In recent years, with the development of computer-aided technologies, there have been many excellent tools for molecular design and reaction condition optimization. These tools can effectively assist experimental chemists in selecting the next round of experiments and have achieved remarkable results. However, most existing tools focus only on either optimization of molecular structure or operational conditions, with fewer studies exploring tools that can simultaneously optimize both. This study aims to develop a coordinated optimization tool tailored for molecular design and operational conditions, with the goal of improving the efficiency of new material or reagent development. The focus is on reducing the resources and time required for experiments while identifying better combinations of molecular structures and operational conditions. In this research, I employed four commonly used intelligent algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Artificial Bee Colony (ABC). These algorithms were modified and optimized to suit the tasks of molecular generation and experimental condition optimization. Additionally, I integrated a Variational Autoencoder (VAE) for molecular generation and machine learning models to compare the performance of these algorithms. Our results demonstrate that, with a limited amount of initial experimental data, tree-based models are more suitable for surrogate modeling. Meanwhile, the Artificial Bee Colony (ABC) and Simulated Annealing (SA) algorithms excel in simultaneously optimizing molecular structures and operational conditions, achieving a good balance between exploration and exploitation. This demonstrates that even in situations with limited experimental data points, these optimization methods can still provide robust support for experimental recommendation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:16:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:16:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目次 v 圖次 vii 表次 viii 第1章 緒論 1 1.1 研究背景與動機 1 1.2 相關工作 3 第2章 環境(Environment)與工作流程(Workflow) 6 2.1 分子設計的工作流程 6 2.2 分子優化任務 7 2.2.1 鈣鈦礦合成之添加劑及操作條件優化 8 2.2.2 芳基化反應之試劑及操作條件優化 9 2.3 代理模型(Surrogate Model)之模型架構 12 2.3.1 支持向量回歸(Support Vector Regression) 13 2.3.2 線性回歸(Linear Regression) 13 2.3.3 核嵌套回歸(Kernel Ridge Regression) 13 2.3.4 決策樹(Decision Tree)與隨機森林(Random Forest) 13 2.3.5 梯度提升(Gradient Boosting)與極限梯度提升(XGBoost) 13 2.4 優化器(Optimizer) 14 2.4.1 粒子群優化算法(Particle Swarm optimization, PSO) 15 2.4.2 模擬退火算法(Simulation Annealing, SA) 16 2.4.3 人工蜂群算法(Artificial Bee Colony,ABC) 16 2.4.4 基因算法 17 2.5 變分自編碼器(Variational Auto-Encoder, VAE) 18 第3章 結果與討論 21 3.1 任務1:鈣鈦礦晶體添加劑 21 3.2 任務2:芳基化反應產率 28 第4章 結論 36 參考文獻 37 補充資料 40 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 優化算法 | zh_TW |
| dc.subject | 分子設計 | zh_TW |
| dc.subject | 計算化學 | zh_TW |
| dc.subject | 變分自動編碼器 | zh_TW |
| dc.subject | 群體智能 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | VAE | en |
| dc.subject | Molecule Design | en |
| dc.subject | Machine Learning | en |
| dc.subject | Computational Chemistry | en |
| dc.subject | Swarm Intelligence | en |
| dc.subject | Optimization Algorithm | en |
| dc.title | 分子與程序設計中優化演算法的性能比較 | zh_TW |
| dc.title | Comparative Performance of Optimization Algorithms in Molecular and Process Design | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林祥泰;趙聖德 | zh_TW |
| dc.contributor.oralexamcommittee | Shiang-Tai Lin;Sheng-Der Chao | en |
| dc.subject.keyword | 機器學習,優化算法,群體智能,變分自動編碼器,計算化學,分子設計, | zh_TW |
| dc.subject.keyword | Machine Learning,Optimization Algorithm,Swarm Intelligence,VAE,Computational Chemistry,Molecule Design, | en |
| dc.relation.page | 41 | - |
| dc.identifier.doi | 10.6342/NTU202404481 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-10-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
