Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96220
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文zh_TW
dc.contributor.advisorKevin C.-W. Wuen
dc.contributor.authorSiriboon Supajaruwongzh_TW
dc.contributor.authorSiriboon Supajaruwongen
dc.date.accessioned2024-11-28T16:15:26Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-10-16-
dc.identifier.citationAdibfar, M. , Kaghazchi, T. , Asasian, N. , & Soleimani, M. ( 2 0 1 4 ) . Conversion of Poly(Ethylene Terephthalate) Waste into Activated Carbon: Chemical Activation and Characterization. Chemical Engineering & Technology, 3 7 ( 6 ) , 9 7 9 - 9 8 6 . https://doi.org/https://doi.org/10.1002/ceat.201200719
Bhaumik, P., & Dhepe, P. L. (2 0 1 6 ) . Solid acid catalyzed synthesis of furans fromcarbohydrates. Catalysis Reviews, 5 8 ( 1 ) , 3 6 - 1 1 2 . https://doi.org/10.1080/01614940.2015.1099894
Blanchard, R., & Mekonnen, T. H. (2022). Synchronous pyrolysis and activation of poly ( ethylene terephthalate) for the generation of activated carbon for dye contaminated wastewater treatment. Journal of Environmental Chemical Engineering, 10(6), 108810. https://doi.org/https://doi.org/10.1016/j.jece.2022.108810
Blanchard, R., & Mekonnen, T. H. (2023). Utilization of epoxy thermoset waste to produce activated carbon for the remediation of nano-plastic contaminated wastewater. Separation and Purification Technology, 3 2 6 , 1 2 4 7 5 5 . https://doi.org/https://doi.org/10.1016/j.seppur.2023.124755
Cansado, I. P. P. , Galacho, C., Nunes, Â. S. , Carrott, M. L. R. , & Carrott, P. J. M. (2010). Adsorption Properties of Activated Carbons Prepared from Recycled PET in the Removal of Organic Pollutants from Aqueous Solutions. Adsorption Science & Technology, 28(8-9), 807-821. https://doi.org/10.1260/0263-6174.28.8-9.807
Cao, Y., Yang, L., Liu, F., & Yu, Q. (2024). Adsorption experiments and mechanisms of methylene blue on activated carbon from garden waste via deep eutectic solvents coupling KOH activation. Biomass and Bioenergy, 1 8 2 , 1 0 7 0 7 4 . https://doi.org/https://doi.org/10.1016/j.biombioe.2024.107074
Castro, C. S. d. , Viau, L. N., Andrade, J. T. , Mendonça, T. A. P. , & Gonçalves, M. (2 0 1 8 ). Mesoporous activated carbon from polyethyleneterephthalate (PET) waste: pollutant adsorption in aqueous solution [10.1039/C8NJ02715C]. New Journal of Chemistry, 42(17), 14612-14619. https://doi.org/10.1039/C8NJ02715C
Chen, H. , Shan, R. , Zhao, F. , Gu, J. , Zhang, Y. , Yuan, H. , & Chen, Y. ( 2 0 2 3 ) . A review on the NOx precursors release during biomass pyrolysis. Chemical Engineering Journal, 451, 138979. https://doi.org/https://doi.org/10.1016/j.cej.2022.138979
Chen, W., Gong, M., Li, K., Xia, M., Chen, Z., Xiao, H., Fang, Y., Chen, Y., Yang, H., & Chen, H. (2020). Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O- containing groups and KOH. Applied Energy, 2 7 8 , 115730. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115730
Chen, X. , Liu, Y. , & Wu, J. ( 2 0 2 0 ) . Sustainable production of formic acid from biomass and carbon dioxide. Molecular Catalysis, 4 8 3 , 1 1 0 7 1 6 . https://doi.org/https://doi.org/10.1016/j.mcat.2019.110716
Collard, F. -X. , & Blin, J. ( 2 0 1 4 ) . A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594-608. https://doi.org/https://doi.org/10.1016/j.rser.2014.06.013
Cruz, O. F., Gómez, I. C., Rodríguez-Reinoso, F., Silvestre-Albero, J., Rambo, C. R., & Martínez-Escandell, M. ( 2 0 2 3 ) . Activated carbons with high micropore volume obtained from polyurethane foams for enhanced CO2 adsorption. Chemical Engineering Science, 2 7 3 , 1 1 8 6 7 1 . https://doi.org/https://doi.org/10.1016/j.ces.2023.118671
da Paixão Cansado, I. P. , Belo, C. R. , & Mira Mourão, P. A. ( 2 0 1 9 ) . Pesticides abatement using activated carbon produced from a mixture of synthetic polymers by chemical activation with KOH and K2 CO3 . Environmental Nanotechnology, Monitoring & Management, 1 2 , 1 0 0 2 6 1 . https://doi.org/https://doi.org/10.1016/j.enmm.2019.100261
de Paula, F. G. F., de Castro, M. C. M., Ortega, P. F. R., Blanco, C., Lavall, R. L., & Santamaría, R. (2018). High value activated carbons from waste polystyrene foams. Microporous and Mesoporous Materials, 2 6 7 , 1 8 1 - 1 8 4 . https://doi.org/https://doi.org/10.1016/j.micromeso.2018.03.027
de Souza, F. M., Kahol, P. K., & Gupta, R. K. (2021). Introduction to Polyurethane Chemistry. In Polyurethane Chemistry: Renewable Polyols and Isocyanates ( Vol. 1 3 8 0 , pp. 1 - 2 4 ) . American Chemical Society. https: / /doi.org/doi:1 0.10 21/bk- 2021-1380.ch001 10.1021/bk-2021-1380.ch001
Dennis, P. (2023). Plastic Overshoot Day report highlights statistics on global plastic. Circular. https://www.circularonline.co.uk/news/plastic-overshoot-day-reporthighlights-statistics-on-global-plastic/
Efimov, M. N. , Vasilev, A. A. , Muratov, D. G. , Kostev, A. I. , Kolesnikov, E. A. , Kiseleva, S. G., & Karpacheva, G. P. (2023). Conversion of polyethylene terephthalate waste into high- yield porous carbon adsorbent via pyrolysis of dipotassium terephthalate. Waste Management, 1 6 2 , 1 1 3 - 1 2 2 . https://doi.org/https://doi.org/10.1016/j.wasman.2023.03.019
Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57U(1), 385-470. https://doi.org/doi:10.1515/zpch-1907-5723
Gamage, A., Jayasinghe, N., Thiviya, P., Wasana, M. L. D., Merah, O., Madhujith, T., & Koduru, J. R. (2023). Recent Application Prospects of Chitosan Based Composites for the Metal Contaminated Wastewater Treatment. Polymers, 1 5 ( 6 ) , 1 4 5 3 . https://www.mdpi.com/2073-4360/15/6/1453
Ge, C. , Song, J. , Qin, Z., Wang, J. , & Fan, W. ( 2 0 1 6 ) . Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture. ACS Applied Materials & Interfaces, 8(29), 18849-18859. https://doi.org/10.1021/acsami.6b04771
Gong, J. , Liu, J. , Chen, X. , Jiang, Z. , Wen, X. , Mijowska, E. , & Tang, T. ( 2 0 1 5 ) . Converting real- world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater [10.1039/C4TA05118A] . Journal of Materials Chemistry A, 3(1), 341-351. https://doi.org/10.1039/C4TA05118A
Han, Z., Tang, J., Wong, N. H., Sunarso, J., Zhao, Y., Zhou, J., & Zhuo, S. (2024). The influence of polyurethane precursor density on the electrochemical performance of supercapacitor composed of activated porous carbon. Journal of Energy Storage, 7 9, 110245. https://doi.org/https://doi.org/10.1016/j.est.2023.110245
Hazmi, B., Rashid, U., Kawi, S., Mokhtar, W. N. A. W., Yaw, T. C. S., Moser, B. R., & Alsalme, A. ( 2 0 2 2 ) . Palm fatty acid distillate esterification using synthesized heterogeneous sulfonated carbon catalyst from plastic waste: Characterization, catalytic efficacy and stability, and fuel properties. Process Safety and Environmental Protection, 1 6 2 , 1 1 3 9 - 1 1 5 1 . https://doi.org/https://doi.org/10.1016/j.psep.2022.05.001
Heidarinejad, Z. , Dehghani, M. H. , Heidari, M. , Javedan, G. , Ali, I. , & Sillanpää, M. ( 2 0 2 0 ) . Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 1 8 ( 2 ) , 3 9 3 - 4 1 5 . https://doi.org/10.1007/s10311-019-00955-0
Hosseini, M.-S., Masteri-Farahani, M., Ghahremani, M., & Forouzeshfar, N. (2021). New approach for sulfonation of carbonaceous materials: Highly efficient solid acid catalysts for benzaldehyde acetalization with ethylene glycol. Journal of Physics and Chemistry of Solids, 1 5 0 , 1 0 9 8 4 6 . https://doi.org/https://doi.org/10.1016/j.jpcs.2020.109846
Karimi, S. , Seidi, F. , Niakan, M. , Shekaari, H. , & Masteri-Farahani, M. ( 2 0 2 1 ) . Catalytic dehydration of fructose into 5-hydroxymethylfurfural by propyl sulfonic acid functionalized magnetic graphene oxide nanocomposite. Renewable Energy, 1 8 0 , 132-139. https://doi.org/https://doi.org/10.1016/j.renene.2021.08.048
Kwak, Y., Eom, J. , Nam, H., & Nam, C. (2 0 2 4 ) . Upcycling of PVC waste to highvalue sorbent with KOH- activation for efficient removal of organic dyes. Chemosphere, 3 5 9 , 1 4 2 2 8 3 . https://doi.org/https://doi.org/10.1016/j.chemosphere.2024.142283
Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute, 1 8 3 ( 1 ) , 1 0 2 - 1 0 5 . https://doi.org/https://doi.org/10.1016/S0016-0032(17)90938-X
Le, G. T. T. , Arunaditya, K. , Panichpol, J. , Rodruangnon, T. , Thongratkaew, S. , Chaipojjana, K., Faungnawakij, K., & Charinpanitkul, T. (2021). Sulfonated magnetic carbon nanoparticles from eucalyptus oil as a green and sustainable catalyst for converting fructose to 5 - HMF. Catalysis Communications, 1 4 9 , 1 0 6 2 2 9 . https://doi.org/https://doi.org/10.1016/j.catcom.2020.106229
Leal Silva, J. F. , Grekin, R. , Mariano, A. P. , & Maciel Filho, R. ( 2 0 1 8 ) . Making Levulinic Acid and Ethyl Levulinate Economically Viable: A Worldwide Technoeconomic and Environmental Assessment of Possible Routes. Energy Technology, 6 ( 4 ) , 6 1 3 - 6 3 9 . https://doi.org/https://doi.org/10.1002/ente.201700594
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3 ( 2 ) , 2 7 5 - 2 9 0 . https://doi.org/https://doi.org/10.1016/j.biori.2019.09.001
Li, M. , Zhang, Q. , Luo, B. , Chen, C., Wang, S. , & Min, D. ( 2 0 2 0 ) . Lignin-based carbon solid acid catalyst prepared for selectively converting fructose to 5 - hydroxymethylfurfural. Industrial Crops and Products, 1 4 5 , 1 1 1 9 2 0 . https://doi.org/https://doi.org/10.1016/j.indcrop.2019.111920
Lian, F., Xing, B., & Zhu, L. (2011). Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. Journal of Colloid and Interface Science, 3 6 0 ( 2 ) , 7 2 5 - 7 3 0 . https://doi.org/https://doi.org/10.1016/j.jcis.2011.04.103
Malin zu Castell-Rüdenhausen, A. A. , Ive Vanderreydt. ( 2 0 2 2 ) . Non- packaging plastics in Europe. European Environment Agency.
Mariana, M. , Mistar, E. M., Alfatah, T., & Supardan, M. D. ( 2 0 2 1 ) . High-porous activated carbon derived from Myristica fragrans shell using one- step KOH activation for methylene blue adsorption. Bioresource Technology Reports, 1 6 , 1 0 0 8 4 5 . https://doi.org/https://doi.org/10.1016/j.biteb.2021.100845
Mashkoor, F., & Nasar, A. (2 0 2 0 ). Magnetized Tectona grandis sawdust as a novel adsorbent: preparation, characterization, and utilization for the removal of methyleneblue from aqueous solution. Cellulose, 2 7 ( 5 ) , 2 6 1 3 - 2 6 3 5 . https://doi.org/10.1007/s10570-019-02918-8
Mendoza-Carrasco, R., Cuerda-Correa, E. M., Alexandre-Franco, M. F. , Fernández- González, C. , & Gómez-Serrano, V. ( 2 0 1 6 ) . Preparation of high-quality activated carbon from polyethyleneterephthalate (PET) bottle waste. Its use in the removal of pollutants in aqueous solution. Journal of Environmental Management, 1 8 1 , 5 2 2 - 535. https://doi.org/https://doi.org/10.1016/j.jenvman.2016.06.070
Mirza, A., & Ahmad, R. (2020). An efficient sequestration of toxic crystal violet dye from aqueous solution by Alginate/Pectin nanocomposite: A novel and ecofriendly adsorbent. Groundwater for Sustainable Development, 1 1 , 1 0 0 3 7 3 . https://doi.org/https://doi.org/10.1016/j.gsd.2020.100373
Niakan, M., Masteri-Farahani, M., & Seidi, F. (2023). Catalytic fructose dehydration to 5 - hydroxymethylfurfural on the surface of sulfonic acid modified ordered mesoporous SBA- 1 6 . Fuel, 3 3 7 , 1 2 7 2 4 2 . https://doi.org/https://doi.org/10.1016/j.fuel.2022.127242 Nikje, M. M. A. ,
Garmarudi, A. B. , & Idris, A. B. ( 2 0 1 1 ) . Polyurethane Waste Reduction and Recycling: From Bench to Pilot Scales. Designed Monomers and Polymers, 14(5), 395-421. https://doi.org/10.1163/138577211X587618
Poots, V. J. P. , McKay, G. , & Healy, J. J. ( 1 9 7 6 ) . The removal of acid dye from effluent using natural adsorbents—I peat. Water Research, 1 0 ( 1 2 ), 1 0 6 1 - 1 0 6 6 . https://doi.org/https://doi.org/10.1016/0043-1354(76)90036-1
Quirk, R. P. (1989). 5 - Anionic Synthesis of Polymers with Functional Groups. In G. Allen & J. C. Bevington (Eds.), Comprehensive Polymer Science and Supplements (pp. 83-106). Pergamon. https://doi.org/https://doi.org/10.1016/B978-0-08- 096701-1.00223-8
Ramesh, T. , Rajalakshmi, N. , & Dhathathreyan, K. ( 2 0 1 7 ) . Synthesis and characterization of activated carbon from jute fibers for hydrogen storage. Renewable Energy and Environmental Sustainability, 2 , 4 . https://doi.org/10.1051/rees/2017001
Ryu, Z. , Zheng, J. , Wang, M. , & Zhang, B. ( 1 9 9 9 ) . Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon, 3 7 ( 8 ) , 1 2 5 7 - 1 2 6 4 . https://doi.org/https://doi.org/10.1016/S0008-6223(98)00322-4
Sahu, A., & Poler, J. C. (2024). Removal and degradation of dyes from textile industry wastewater: Benchmarking recent advancements, toxicity assessment and cost analysis of treatment processes. Journal of Environmental Chemical Engineering, 1 2 ( 5 ) , 113754. https://doi.org/https://doi.org/10.1016/j.jece.2024.113754
Sampath, G., & Kannan, S. (2013). Fructose dehydration to 5-hydroxymethylfurfural: Remarkable solvent influence on recyclability of Amberlyst- 1 5 catalyst and regeneration studies. Catalysis Communications, 3 7 , 4 1 - 4 4 . https://doi.org/https://doi.org/10.1016/j.catcom.2013.03.021
Saravanan, A. , Yaashikaa, P. R. , Kumar, P. S. , Thamarai, P. , Deivayanai, V. C. , & Rangasamy, G. ( 2 0 2 3 ) . A comprehensive review on techno- economic analysis ofbiomass valorization and conversional technologies of lignocellulosic residues. Industrial Crops and Products, 2 0 0 , 1 1 6 8 2 2 . https://doi.org/https://doi.org/10.1016/j.indcrop.2023.116822
Saravanan, S. , Carolin C, F. , Kumar, P. S. , Chitra, B. , & Rangasamy, G. ( 2 0 2 2 ) . Biodegradation of textile dye Rhodamine-B by Brevundimonas diminuta and screening of their breakdown metabolites. Chemosphere, 3 0 8 , 1 3 6 2 6 6 . https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.136266
Siyasukh, A. , Chimupala, Y. , & Tonanon, N. ( 2 0 1 8 ) . Preparation of magnetic hierarchical porous carbon spheres with graphitic features for high methyl orange adsorption capacity. Carbon, 1 3 4 , 2 0 7 - 2 2 1 . https://doi.org/https://doi.org/10.1016/j.carbon.2018.03.093
van Putten, R.-J., Soetedjo, J. N. M., Pidko, E. A., van der Waal, J. C., Hensen, E. J. M., de Jong, E., & Heeres, H. J. (2013). Dehydration of Different Ketoses and Aldoses to 5 - Hydroxymethylfurfural. ChemSusChem, 6 ( 9 ) , 1 6 8 1 - 1 6 8 7 . https://doi.org/https://doi.org/10.1002/cssc.201300345
Wang, J., Cui, H., Wang, J., Li, Z., Wang, M., & Yi, W. (2021). Kinetic insight into glucose conversion to 5 - hydroxymethyl furfural and levulinic acid in LiCl⋅ 3H2O without additional catalyst. Chemical Engineering Journal, 4 1 5 , 1 2 8 9 2 2 . https://doi.org/https://doi.org/10.1016/j.cej.2021.128922
Wang, J., & Liu, Q. (2014). An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO2adsorption [ 1 0 . 1 0 3 9 / C3 NR0 5 8 2 5 E] . Nanoscale, 6 ( 8 ) , 4 1 4 8 - 4 1 5 6 . https://doi.org/10.1039/C3NR05825E
Wataniyakul, P. , Boonnoun, P. , Quitain, A. T. , Kida, T. , Laosiripojana, N. , & Shotipruk, A. (2018). Preparation of hydrothermal carbon acid catalyst from defatted rice bran. Industrial Crops and Products, 1 1 7 , 2 8 6 - 2 9 4 . https://doi.org/https://doi.org/10.1016/j.indcrop.2018.03.002
Wataniyakul, P., Boonnoun, P., Quitain, A. T., Sasaki, M., Kida, T., Laosiripojana, N., & Shotipruk, A. (2 0 1 8 ) . Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catalysis Communications, 104, 41-47. https://doi.org/https://doi.org/10.1016/j.catcom.2017.10.014
Wilson, K. , & Lee, A. F. ( 2 0 1 4 ) . 1 9 - Bio- based chemicals from biorefining: carbohydrate conversion and utilisation. In K. Waldron (Ed.), Advances in Biorefineries ( pp. 6 2 4 - 6 5 8 ) . Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9780857097385.2.624
Wu, H.-Y., Chen, S. S., Liao, W., Wang, W., Jang, M.-F., Chen, W.-H., Ahamad, T., Alshehri, S. M., Hou, C.-H., Lin, K.-S., Charinpanitkul, T., & Wu, K. C. W. (2020). Assessment of agricultural waste- derived activated carbon in multiple applications. Environmental Research, 1 9 1 , 1 1 0 1 7 6 . https://doi.org/https://doi.org/10.1016/j.envres.2020.110176
Xamena, F. X. L. i. , Areán, C. O. , Spera, S. , Merlo, E. , & Zecchina, A. ( 2 0 0 4 ) . Formaldehyde Oligomerization on Silicalite: An FTIR and NMR Study. Catalysis Letters, 95(1), 51-55. https://doi.org/10.1023/B:CATL.0000023721.90964.e2
Yao, N., Wang, X., Yang, Z., Zhao, P., & Meng, X. (2023). Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water. Journal of Hazardous Materials, 4 5 6 , 1 3 1 6 8 7 . https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131687
Zhang, G. , Wang, Y. , Wang, X. , Jiang, B., Liu, Y., & Song, H. ( 2 0 2 3 ) . Rapid and facile synthesis of micro- mesoporous ZIF- 8 materials with enhanced adsorption of methylene blue. Polyhedron, 2 4 4 , 1 1 6 6 2 0 . https://doi.org/https://doi.org/10.1016/j.poly.2023.116620
Zhang, X., Lu, H., Wu, K., Liu, Y., Zhu, Y., & Liang, B. (2024). Hierarchical porous carbon-based solid acid as a high-performance catalyst for conversion of fructose to 5- hydroxymethylfurfural. Fuel, 3 6 3 , 1 3 0 8 3 5 . https://doi.org/https://doi.org/10.1016/j.fuel.2023.130835
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96220-
dc.description.abstract聚氨酯聚合廢料(Polyurethane Poly Waste),一種被高度關注的廢棄物,主要原因為此廢棄物可以藉由熱裂解或其他熱化學回收與處理的方式得到富含碳的固體產物,具有相當大的潛力開發有價值的材料。本研究使用富含碳的固體產物製備活性碳,並利用此活性碳分別應用於吸附廢水中的亞甲基藍,以及催化果糖脫水生成5-羥甲基糠醛(5-hydroxymethylfurfural, 5-HMF)。本研究所使用的活性碳利用兩種製備方式,產出不同特性的活性碳,分別是兩步熱解後活化的PA-800-2 和一步直接活化A-800-2。在吸附亞甲基藍的應用中,A-800-2 的吸附能力與PA-800-2 相比之下,因高比表面積有高吸附量的相互關係,前者有較高的比表面積2860 m²/g 而後者僅1406 m²/g ,吸附量的結果分別對應到437 mg/g 與373 mg/g 的吸附量。在催化反應的應用之中,A-800-2 會先將表面的羥基透過矽烷類化合物修飾,再以烷基磺內酯化合物進一步修飾,讓表面產生磺酸官能基而形成一種酸性的固體磺酸化催化劑,此催化劑進行果糖的脫水反應表現良好的催化活性,果糖在水溶液中脫水後生成5-羥甲基糠醛。綜合前述兩種應用,本研究所製備出的活性碳,發展出合適且永續的方式應用聚氨酯聚合廢料,有效地提升聚氨酯聚合廢料的價值。zh_TW
dc.description.abstractPolyurethane (PU) waste, a significant polymer waste of environmental concern, can be valorized through thermochemical recycling processes like pyrolysis. The resulting solid residue, rich in carbon, presents an opportunity for the development of valuable materials. This study investigates the potential of this residue to prepare activated carbon for two applications: adsorption of methylene blue from wastewater and catalysis of fructose dehydration to 5- hydroxymethylfurfural ( 5- HMF) . Activated carbons were prepared using two methods: two- step pyrolysis followed by activation (PA-800-2) and one- step direct activation (A-800-2) . The adsorption capacities of A-800-2 and PA-800-2 for methylene blue were evaluated. A-800-2 exhibited a higher adsorption capacity (437 mg/g) compared to PA-800-2 (373 mg/g), likely due to its larger surface area (2860 m²/g) compared to PA-800-2 (1406 m²/g). Additionally, A-800-2 was further modified to prepare a sulfonated solid acid catalyst by interaction of alkyl sultone and silane onto hydroxyl groups of the material. This catalyst exhibited catalytic activity in the fructose dehydration reaction to 5- hydroxymethylfurfural ( 5-HMF) in aqueous solution. This sustainable approach offers a promising pathway for the valorization of PUPW.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:15:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:15:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of content
Acknowledgement ............................................................................................................. I
摘要 ..................................................................................................................................II
Abstarct........................................................................................................................... III
List of figures ................................................................................................................. VI
List of tables .................................................................................................................VIII
CHAPTER I...................................................................................................................... 1
1.1 Motivation............................................................................................................... 1
1.2 Objective................................................................................................................. 4
1.3 Working Scope ....................................................................................................... 5
1.4 Expected Benefits ................................................................................................... 6
CHAPTER II .................................................................................................................. 10
2.1 Solid residue from pyrolysis of polyurethane....................................................... 10
2.2 Adsorption of organic dye .................................................................................... 10
2.3 Biomass................................................................................................................. 16
2.4 Using BrØnsted acids for HMF production.......................................................... 17
CHAPTER III ................................................................................................................. 30
3.1 Materials and chemicals........................................................................................ 30
3.2 Preparation of activated carbon from PUPW ....................................................... 30
3.3 Catalyst characterizations ..................................................................................... 31
3.4 Methylene blue (MB) adsorption experiment....................................................... 32
3.5 Preparation of catalyst .......................................................................................... 33
3.6 Catalyst activity test on fructose conversion ........................................................ 34
3.7 Analytical method................................................................................................. 34
CHAPTER IV................................................................................................................. 35
4.1 Characterization of activated carbon .................................................................... 35
4.2 Adsorption of methylene blue............................................................................... 46
4.3 Catalytic application ............................................................................................. 67
CHAPTER V.................................................................................................................. 74
5.1Conclusion ............................................................................................................. 74
5.2 Recomenation ....................................................................................................... 75
APPENDIX A ................................................................................................................ 77
A.1 Standard calibration curve for UV-VIS analysis of methylene blue ................... 77
A.2 Standard calibration curve for HPLC analysis of fructose ans 5-HMF............... 78
REFERENCES............................................................................................................... 81

List of figures
Fig 1.1 preparation of activated carbon ............................................................................ 7
Fig 1.2 Adsorption of methylene blue .............................................................................. 8
Fig 1.3 Preparation of carbon based solid acid catalsyt and dehydration of fructose ...... 9
Fig 2.1 structure of methylene blue ................................................................................ 11
Fig 2.2 Interaction between AC and MB........................................................................ 11
Fig 2.3 a) monolayer from Langmuir isotherm and b) multilayer from Freundlich isotherm .......................................................................................................................... 16
Fig 2.4 potential application of 5-HMF.......................................................................... 17
Fig 2.5 Mechanism of fructose dehydration................................................................... 18
Fig 2.6 Possible chemical reaction pathway of KOH activation during biomass pyrolysis. ........................................................................................................................ 22
Fig 2.7 SEM of PU, pyrolyzed PU and AC................................................................... 22
Fig 2.8 N2 adsorption and desorption ............................................................................. 23
Fig 2.9 specific surface area and N2 adsorption and desorption ..................................... 23
Fig 2.10 FTIR of AC was prepared in a direct KOH activation..................................... 24
Fig 2.11 FTIR of carbon based solid acid catalyst ......................................................... 28
Fig 2.12 reaction of 1,3-propanesultone with nucleophiles............................................ 29
Fig 2.13 FTIR of sulfonated activated carbon)............................................................... 29
Fig 4.1 FTIR spectra of PUPW, P-800-1, PA-800-2, and A-800-2 ............................... 39
Fig 4.2 N2 adsorption-desorption isotherm of PA-800-2 and P-800-1 ........................... 42
Fig 4.3 Pore size distributions of PA-800-2 and A-800-2.............................................. 42
Fig 4.4 XRD of of PUPW, P-800-1, PA-800-2, and A-800-2........................................ 43
Fig 4.5 Thermal stability of PUPW, PA-800-2, and A-800-2........................................ 44
Fig 4.6 Zero-point charge of PA-800-2 and A-800-2..................................................... 45
Fig 4.7 Effect of pH on MB removal of PA-800-2 and A-800-2 ................................... 47
Fig 4.8 Kinetic model non-linear form a) PA-800-2 and b) A-800-2 ............................ 49
Fig 4.9 Kinetic model linear form a) PSO and b) PFO .................................................. 50
Fig 4.10 Intra-particle diffusion model........................................................................... 54
Fig 4.11 Isotherm non-linear form a) A-800-2 and b) PA-800-2................................... 59
Fig 4.12 Isotherm linear form a) Langmiur isotherm and n) Fruindlich isotherm......... 60
Fig 4. 13 Reusability of PA-800-2 and A-800-2 ............................................................ 64
Fig 4. 14 N2 adsorption-desorption isotherm of A-800-2 and A-800-2-AEP and A-800-2-AEP-PS ....................................................................................................................... 70
Fig 4.15 Fructose conversion (%) from 1 to 3 h............................................................. 72
Fig 4.16 5-HMF yield (%) from 1 to 3 h........................................................................ 72
Fig 4.17 5-HMF selectivity (%) from 1 to 3 h ............................................................... 73

List of tables
Table 2.1 AC derived from pytolysis following KOH activation for adsorption of MB 12
Table 2. 2 AC derived from direct KOH activation for adsorption of MB.................... 13
Table 2.3 5-HMF derived from fructose ........................................................................ 19
Table 2. 4 AC derived from pytolysis following KOH activation ................................. 26
Table 2.5 AC derived from direct KOH activation ........................................................ 27
Table 4.1 Element analysis of PUPW, P-800-1, PA-800-2, and A-800-2 ..................... 37
Table 4.2 Specific surface area and total pore volume................................................... 41
Table 4.3 Kinetic model non-linear form ....................................................................... 51
Table 4.4 Kinetic model linear form .............................................................................. 52
Table 4.5 Intra-particle diffusion.................................................................................... 55
Table 4.6 Isotherm non-linear form................................................................................ 61
Table 4.7 Isotherm linear form....................................................................................... 62
Table 4.8 XPS data for PA-800-2 and A-800-2, before adsorption of MB, after adsorption of MB, and desorption of MB ...................................................................... 65
Table 4.9 Element analysis for PA-800-2 and A-800-2, before adsorption of MB, after adsorption of MB, and desorption of MB ...................................................................... 66
Table 4. 10 Element analysis of activated carbon and carbon based solid catalyst ....... 69
-
dc.language.isoen-
dc.subject5-羥甲基糠醛zh_TW
dc.subject活性碳zh_TW
dc.subject亞甲基藍zh_TW
dc.subject吸附zh_TW
dc.subjectActivated carbonen
dc.subject5-hydroxymethylfurfuralen
dc.subjectadsorptionen
dc.subjectmethylene blueen
dc.title聚氨酯廢料製備活性碳之酸性固體催化劑應用於甲基藍吸附以及果糖脫水zh_TW
dc.titlePreparation of activated carbon and solid acid catalyst from polyurethane waste for adsorption of methylene blue and fructose dehydration in aqueous solutionen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisorArtiwan Shotiprukzh_TW
dc.contributor.coadvisorArtiwan Shotipruken
dc.contributor.oralexamcommitteePimporn Ponpesh;Muenduen Phisalaphong;Babasaheb Matsagarzh_TW
dc.contributor.oralexamcommitteePimporn Ponpesh;Muenduen Phisalaphong;Babasaheb Matsagaren
dc.subject.keyword活性碳,5-羥甲基糠醛,吸附,亞甲基藍,zh_TW
dc.subject.keywordActivated carbon,5-hydroxymethylfurfural,adsorption,methylene blue,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202404459-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-10-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2029-09-15-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
4.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved