Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳乃慧zh_TW
dc.contributor.advisorNai-Huei Wuen
dc.contributor.author吳承訓zh_TW
dc.contributor.authorCheng-Hsun Wuen
dc.date.accessioned2024-11-28T16:13:00Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-09-27-
dc.identifier.citation阮意雯. (2000). 台灣地區家禽白血病病毒之鑑定與分離. 國立臺灣大學獸醫學研究所碩士論文. https://hdl.handle.net/11296/s2bpje
徐玟良. (2002). 家禽白血病J亞群病毒在台灣土雞及白肉雞的感染情形. 國立臺灣大學獸醫學研究所碩士論文. https://hdl.handle.net/11296/wva558
張書維. (2010). 台灣土雞與蛋雞家禽白血病之病毒分離、序列分析及流行病學調查. 國立臺灣大學獸醫學研究所碩士論文. https://hdl.handle.net/11296/4p5wwf
許舒涵. (2023). 建立禽流感病毒於禽類呼吸道3D細胞培養之感染模式. 國立臺灣大學獸醫學研究所碩士論文.
陳慧真. (2004). 台灣土雞家禽白血病J亞群之血清學調查與酵素連結免疫吸附分析 (ELISA) 之開發. 國立臺灣大學獸醫學研究所碩士論文.
蔡宜蓓. (2023). 3D腸道類器官禽流感病毒感染模式之建立. 國立臺灣大學獸醫學研究所碩士論文.
Arshad, S. S., Howes, K., Barron, G. S., Smith, L. M., Russell, P. H., & Payne, L. N. (1997). Tissue tropism of the HPRS-103 strain of J subgroup avian leukosis virus and of a derivative acutely transforming virus. Vet Pathol, 34(2), 127-137. https://doi.org/10.1177/030098589703400205
Bai, J., Howes, K., Payne, L. N., & Skinner, M. A. (1995). Sequence of host-range determinants in the env gene of a full-length, infectious proviral clone of exogenous avian leukosis virus HPRS-103 confirms that it represents a new subgroup (designated J). J Gen Virol, 76 ( Pt 1), 181-187. https://doi.org/10.1099/0022-1317-76-1-181
Bande, F., Arshad, S. S., & Omar, A. R. (2016). Isolation and Metagenomic Identification of Avian Leukosis Virus Associated with Mortality in Broiler Chicken. Adv Virol, 2016, 9058403. https://doi.org/10.1155/2016/9058403
Barnard, R. J., Elleder, D., & Young, J. A. (2006). Avian sarcoma and leukosis virus-receptor interactions: from classical genetics to novel insights into virus-cell membrane fusion. Virology, 344(1), 25-29. https://doi.org/10.1016/j.virol.2005.09.021
Barsov Eugene, V., Payne William, S., & Hughes Stephen, H. (2001). Adaptation of Chimeric Retroviruses In Vitro and In Vivo: Isolation of Avian Retroviral Vectors with Extended Host Range. Journal of Virology, 75(11), 4973-4983. https://doi.org/10.1128/jvi.75.11.4973-4983.2001
Bates, P., Young, J. A., & Varmus, H. E. (1993). A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell, 74(6), 1043-1051. https://doi.org/10.1016/0092-8674(93)90726-7
Begum, M., Rahman, M., Akter, M. R., Haque, M., Rahman, K., Hossain, M., & Amin, M. (2016). Identification of Avian Leukosis Virus from layer chicken by serological test and embryo inoculation technique. Asian-Australasian Journal of Bioscience and Biotechnology, 2016, 23-30. https://doi.org/10.3329/aajbb.v1i1.61526
Benson, S. J., Ruis, B. L., Fadly, A. M., & Conklin, K. F. (1998). The unique envelope gene of the subgroup J avian leukosis virus derives from ev/J proviruses, a novel family of avian endogenous viruses. J Virol, 72(12), 10157-10164. https://doi.org/10.1128/jvi.72.12.10157-10164.1998
Böhnlein, S., Hauber, J., & Cullen, B. R. (1989). Identification of a U5-specific sequence required for efficient polyadenylation within the human immunodeficiency virus long terminal repeat. Journal of Virology, 63(1), 421-424. https://doi.org/doi:10.1128/jvi.63.1.421-424.1989
Borodin, A., Alekseev, Y., Konovalova, N., Terentyeva, Е. V., Efimov, D. N., Emanuilova, Z. V., Smolov, S. V., Ogneva, О. А., & Fisinin, V. I. (2018). Detection of avian leukosis virus Subgroup K in Russia and its molecular genetic analysis. 53, 842-850. https://doi.org/10.15389/agrobiology.2018.4.842eng
Borodin, A. M., Emanuilova, Z. V., Smolov, S. V., Ogneva, O. A., Konovalova, N. V., Terentyeva, E. V., Serova, N. Y., Efimov, D. N., Fisinin, V. I., Greenberg, A. J., & Alekseev, Y. I. (2022). Eradication of avian leukosis virus subgroups J and K in broiler cross chickens by selection against infected birds using multilocus PCR. PLoS One, 17(6), e0269525. https://doi.org/10.1371/journal.pone.0269525
Brandly, C. A., Thorp, F., & Prickett, C. O. (1949). Response of Chicken Embryos to Tissues of Chickens Affected with the Avian Leukosis Complex and to Tissues of Normal Birds. Poultry Science, 28(4), 486-498. https://doi.org/https://doi.org/10.3382/ps.0280486
Brothwell, D. R. (2002). Ancient avian osteopetrosis: the current state of knowledge. Acta Zoologica Cracoviensia, 45.
Burch, J. B., Davis, D. L., & Haas, N. B. (1993). Chicken repeat 1 elements contain a pol-like open reading frame and belong to the non-long terminal repeat class of retrotransposons. Proceedings of the National Academy of Sciences, 90(17), 8199-8203. https://doi.org/doi:10.1073/pnas.90.17.8199
Chai, N., & Bates, P. (2006). Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc Natl Acad Sci U S A, 103(14), 5531-5536. https://doi.org/10.1073/pnas.0509785103
Chang, S. W., Hsu, M. F., & Wang, C. H. (2013). Gene detection, virus isolation, and sequence analysis of avian leukosis viruses in Taiwan country chickens. Avian Dis, 57(2), 172-177. https://doi.org/10.1637/10387-092612-Reg.1
Chen, J., Li, J., Dong, X., Liao, M., & Cao, W. (2022). The key amino acid sites 199-205, 269, 319, 321 and 324 of ALV-K env contribute to the weaker replication capacity of ALV-K than ALV-A. Retrovirology, 19(1), 19. https://doi.org/10.1186/s12977-022-00598-0
Chen, J., Li, J., Li, L., Liu, P., Xiang, Y., & Cao, W. (2020). Single Amino Acids G196 and R198 in hr1 of Subgroup K Avian Leukosis Virus Glycoprotein Are Critical for Tva Receptor Binding. Front Microbiol, 11, 596586. https://doi.org/10.3389/fmicb.2020.596586
Chen, J., Zhao, Z., Chen, Y., Zhang, J., Yan, L., Zheng, X., Liao, M., & Cao, W. (2018). Development and application of a SYBR green real-time PCR for detection of the emerging avian leukosis virus subgroup K. Poult Sci, 97(7), 2568-2574. https://doi.org/10.3382/ps/pey086
Chen, W., Liu, Y., Li, A., Li, X., Li, H., Dai, Z., Yan, Y., Zhang, X., Shu, D., Zhang, H., Lin, W., Ma, J., & Xie, Q. (2017). A premature stop codon within the tvb receptor gene results in decreased susceptibility to infection by avian leukosis virus subgroups B, D, and E. Oncotarget, 8(62), 105942-105956. https://doi.org/10.18632/oncotarget.22512
Chen, Z. Q., Ritzel, R. G., Lin, C. C., & Hodgetts, R. B. (1991). Sequence conservation in avian CR1: an interspersed repetitive DNA family evolving under functional constraints. Proceedings of the National Academy of Sciences, 88(13), 5814-5818. https://doi.org/doi:10.1073/pnas.88.13.5814
Chesters, P. M., Howes, K., Petherbridge, L., Evans, S., Payne, L. N., & Venugopal, K. (2002). The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J Gen Virol, 83(Pt 10), 2553-2561. https://doi.org/10.1099/0022-1317-83-10-2553
Chesters, P. M., Smith, L. P., & Nair, V. (2006). E (XSR) element contributes to the oncogenicity of Avian leukosis virus (subgroup J). Journal of General Virology, 87(9), 2685-2692. https://doi.org/https://doi.org/10.1099/vir.0.81884-0
Cottral, G. E., Burmester, B. R., & Waters, N. F. (1954). Egg Transmission of Avian Lymphomatosis. Poultry Science, 33(6), 1174-1184. https://doi.org/https://doi.org/10.3382/ps.0331174
Crittenden, L. B. (1981). Exogenous and endogenous leukosis virus genes--a review. Avian Pathol, 10(2), 101-112. https://doi.org/10.1080/03079458108418464
Crittenden, L. B., Fadly, A. M., & Smith, E. J. (1982). Effect of endogenous leukosis virus genes on response to infection with avian leukosis and reticuloendotheliosis viruses. Avian Dis, 26(2), 279-294.
Crittenden, L. B., McMahon, S., Halpern, M. S., & Fadly, A. M. (1987). Embryonic infection with the endogenous avian leukosis virus Rous-associated virus-0 alters responses to exogenous avian leukosis virus infection. J Virol, 61(3), 722-725. https://doi.org/10.1128/jvi.61.3.722-725.1987
Crittenden, L. B., & Salter, D. W. (1992). A transgene, alv6, that expresses the envelope of subgroup A avian leukosis virus reduces the rate of congenital transmission of a field strain of avian leukosis virus. Poult Sci, 71(5), 799-806. https://doi.org/10.3382/ps.0710799
Crittenden, L. B., & Salter, D. W. (1998). Spontaneous mobility of subgroup a avian leukosis virus pro viruses in the genome of the chicken. Avian Pathology, 27(sup1), S26-S35. https://doi.org/10.1080/03079459808419290
Cui, N., Cui, X., Huang, Q., Yang, S., Su, S., Xu, C., Li, J., Li, W., & Li, C. (2020). Isolation and Identification of Subgroup J Avian Leukosis Virus Inducing Multiple Systemic Tumors in Parental Meat-Type Chickens. Front Vet Sci, 7, 614854. https://doi.org/10.3389/fvets.2020.614854
Cui, N., Su, S., Chen, Z., Zhao, X., & Cui, Z. (2014). Genomic sequence analysis and biological characteristics of a rescued clone of avian leukosis virus strain JS11C1, isolated from indigenous chickens. J Gen Virol, 95(Pt 11), 2512-2522. https://doi.org/10.1099/vir.0.067264-0
Cui, Z., Du, Y., Zhang, Z., & Silva, R. F. (2003). Comparison of Chinese Field Strains of Avian Leukosis Subgroup J Viruses with Prototype Strain HPRS-103 and United States Strains. Avian Diseases, 47(4), 1321-1330, 1310. https://doi.org/10.1637/6085
Cui, Z., Sun, S., Zhang, Z., & Meng, S. (2009). Simultaneous endemic infections with subgroup J avian leukosis virus and reticuloendotheliosis virus in commercial and local breeds of chickens. Avian Pathology, 38(6), 443-448. https://doi.org/10.1080/03079450903349188
Deng, Q., Li, M., He, C., Lu, Q., Gao, Y., Li, Q., Shi, M., Wang, P., & Wei, P. (2021). Genetic diversity of avian leukosis virus subgroup J (ALV-J): toward a unified phylogenetic classification and nomenclature system. Virus Evol, 7(1), veab037. https://doi.org/10.1093/ve/veab037
Deng, Q., Li, Q., Li, M., Zhang, S., Wang, P., Fu, F., Zhu, W., Wei, T., Mo, M., Huang, T., Zhang, H., & Wei, P. (2022). The Emergence, Diversification, and Transmission of Subgroup J Avian Leukosis Virus Reveals that the Live Chicken Trade Plays a Critical Role in the Adaption and Endemicity of Viruses to the Yellow-Chickens. Journal of Virology, 96(17), e00717-00722. https://doi.org/doi:10.1128/jvi.00717-22
Deng, Q., Li, Q., Li, M., Zhang, S., Wang, P., Fu, F., Zhu, W., Wei, T., Mo, M., Huang, T., Zhang, H., & Wei, P. (2022). The Emergence, Diversification, and Transmission of Subgroup J Avian Leukosis Virus Reveals that the Live Chicken Trade Plays a Critical Role in the Adaption and Endemicity of Viruses to the Yellow-Chickens. J Virol, 96(17), e0071722. https://doi.org/10.1128/jvi.00717-22
Dong, X., Zhao, P., Chang, S., Ju, S., Li, Y., Meng, F., Sun, P., & Cui, Z. (2015). Synergistic pathogenic effects of co-infection of subgroup J avian leukosis virus and reticuloendotheliosis virus in broiler chickens. Avian Pathology, 44(1), 43-49. https://doi.org/10.1080/03079457.2014.993359
Dorner, A. J., & Coffin, J. M. (1986). Determinants for receptor interaction and cell killing on the avian retrovirus glycoprotein gp85. Cell, 45(3), 365-374. https://doi.org/https://doi.org/10.1016/0092-8674(86)90322-3
Dougherty, R. M., & Di Stefano, H. S. (1967). Sites of avian leukosis virus multiplication in congenitally infected chickens. Cancer Res, 27(2), 322-332.
Dunwiddie, C. T., Resnick, R., Boyce-Jacino, M., Alegre, J. N., & Faras, A. J. (1986). Molecular cloning and characterization of gag-, pol-, and env-related gene sequences in the ev- chicken. J Virol, 59(3), 669-675. https://doi.org/10.1128/jvi.59.3.669-675.1986
Ellermann, V., & Bang, O. (1909). Experimentelle Leukämie bei Hühnern. II. Zeitschrift für Hygiene und Infektionskrankheiten, 63(1), 231-272. https://doi.org/10.1007/BF02227892
Fadly, A. M. (1988). Avian leukosis virus (ALV) infection, shedding, and tumors in maternal ALV antibody-positive and -negative chickens exposed to virus at hatching. Avian Dis, 32(1), 89-95.
Fadly, A. M. (2000). Isolation and identification of avian leukosis viruses: A review. Avian Pathology, 29(6), 529-535. https://doi.org/10.1080/03079450020016760
Fadly, A. M., Okazaki, W., Smith, E. J., & Crittenden, L. B. (1981). Relative efficiency of test procedures to detect lymphoid leukosis virus infection. Poult Sci, 60(9), 2037-2044. https://doi.org/10.3382/ps.0602037
Fadly, A. M., Okazaki, W., & Witter, R. L. (1981). Hatchery-related contact transmission and short- term small-group-rearing as related to lymphoid-leukosis-virus-eradication programs. Avian Dis, 25(3), 667-677.
Fadly, A. M., & Smith, E. J. (1999). Isolation and some characteristics of a subgroup J-like avian leukosis virus associated with myeloid leukosis in meat-type chickens in the United States. Avian Dis, 43(3), 391-400.
Fandiño, S., Gomez-Lucia, E., Benítez, L., & Doménech, A. (2023). Avian Leukosis: Will We Be Able to Get Rid of It? Animals, 13(14), 2358. https://www.mdpi.com/2076-2615/13/14/2358
https://mdpi-res.com/d_attachment/animals/animals-13-02358/article_deploy/animals-13-02358.pdf?version=1689776411
Federspiel, M. J. (2019). Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity. Viruses, 11(6). https://doi.org/10.3390/v11060497
Feng, M., & Zhang, X. (2016). Immunity to Avian Leukosis Virus: Where Are We Now and What Should We Do? Front Immunol, 7, 624. https://doi.org/10.3389/fimmu.2016.00624
Frisby, D. P., Weiss, R. A., Roussel, M., & Stehelin, D. (1979). The distribution of endogenous chicken retrovirus sequences in the DNA of galliform birds does not coincide with avian phylogenetic relationships. Cell, 17(3), 623-634. https://doi.org/https://doi.org/10.1016/0092-8674(79)90270-8
Fulton, J. E., Mason, A. S., Wolc, A., Arango, J., Settar, P., Lund, A. R., & Burt, D. W. (2021). The impact of endogenous Avian Leukosis Viruses (ALVE) on production traits in elite layer lines. Poult Sci, 100(6), 101121. https://doi.org/10.1016/j.psj.2021.101121
Gao, Q., Yun, B., Wang, Q., Jiang, L., Zhu, H., Gao, Y., Qin, L., Wang, Y., Qi, X., Gao, H., Wang, X., & Gao, Y. (2020). Development and Application of a Multiplex PCR Method for Rapid Differential Detection of Subgroup A, B, and J Avian Leukosis Viruses. Journal of Clinical Microbiology, 52(1), 37-44. https://doi.org/10.1128/jcm.02200-13
Gao, Y., Yun, B., Qin, L., Pan, W., Qu, Y., Liu, Z., Wang, Y., Qi, X., Gao, H., & Wang, X. (2012). Molecular epidemiology of avian leukosis virus subgroup J in layer flocks in China. J Clin Microbiol, 50(3), 953-960. https://doi.org/10.1128/jcm.06179-11
García, M., El-Attrache, J., Riblet, S. M., Lunge, V. R., Fonseca, A. S., Villegas, P., & Ikuta, N. (2003). Development and application of reverse transcriptase nested polymerase chain reaction test for the detection of exogenous avian leukosis virus. Avian Dis, 47(1), 41-53. https://doi.org/10.1637/0005-2086(2003)047[0041:Daaort]2.0.Co;2
Givol, I., Givol, D., & Hughes, S. H. (1998). Overexpression of p21waf1/cip1 arrests the growth of chicken embryo fibroblasts that overexpress E2F1. Oncogene, 16(24), 3115-3122. https://doi.org/10.1038/sj.onc.1201849
Gordon, C. T., Rodda, F. A., & Farlie, P. G. (2009). The RCAS retroviral expression system in the study of skeletal development. Dev Dyn, 238(4), 797-811. https://doi.org/10.1002/dvdy.21907
Greenhouse, J. J., Petropoulos, C. J., Crittenden, L. B., & Hughes, S. H. (1988). Helper-independent retrovirus vectors with Rous-associated virus type O long terminal repeats. Journal of Virology, 62(12), 4809-4812. https://doi.org/10.1128/jvi.62.12.4809-4812.1988
Gudkov, A. V., Komarova, E. A., Nikiforov, M. A., & Zaitsevskaya, T. E. (1992). ART-CH, a new chicken retroviruslike element. Journal of Virology, 66(3), 1726-1736. https://doi.org/10.1128/jvi.66.3.1726-1736.1992
Guo, H.-j., Li, H.-m., Cheng, Z.-q., Liu, J.-z., & Cui, Z.-z. (2010). Influence of REV and ALV-J Co-Infection on Immunologic Function of T Lymphocytes and Histopathology in Broiler Chickens. Agricultural Sciences in China, 9(11), 1667-1676. https://doi.org/https://doi.org/10.1016/S1671-2927(09)60264-9
Guo, J., Deng, Q., Zhu, W., Fu, F., Liu, L., Wei, T., & Wei, P. (2023). The phylogenetic analysis of the new emerging ALV-K revealing the co-prevailing of multiple clades in chickens and a proposal for the classification of ALV-K. Front Vet Sci, 10, 1228109. https://doi.org/10.3389/fvets.2023.1228109
He, S., Zheng, G., Zhou, D., Huang, L., Dong, J., & Cheng, Z. (2021). High-frequency and activation of CD4+CD25+ T cells maintain persistent immunotolerance induced by congenital ALV-J infection. Veterinary Research, 52(1), 119. https://doi.org/10.1186/s13567-021-00989-9
He, S., Zheng, G., Zhou, D., Li, G., Zhu, M., Du, X., Zhou, J., & Cheng, Z. (2019). Clonal anergy of CD117+chB6+ B cell progenitors induced by avian leukosis virus subgroup J is associated with immunological tolerance. Retrovirology, 16(1), 1. https://doi.org/10.1186/s12977-018-0463-9
Himly, M., Foster, D. N., Bottoli, I., Iacovoni, J. S., & Vogt, P. K. (1998). The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology, 248(2), 295-304. https://doi.org/10.1006/viro.1998.9290
Holmen, S. L., Melder, D. C., & Federspiel, M. J. (2001). Identification of key residues in subgroup A avian leukosis virus envelope determining receptor binding affinity and infectivity of cells expressing chicken or quail Tva receptor. J Virol, 75(2), 726-737. https://doi.org/10.1128/jvi.75.2.726-737.2001
Hughes, S. H. (2004). The RCAS vector system. Folia Biol (Praha), 50(3-4), 107-119.
Hughes, S. H., Mutschler, A., Bishop, J. M., & Varmus, H. E. (1981). A Rous sarcoma virus provirus is flanked by short direct repeats of a cellular DNA sequence present in only one copy prior to integration. Proceedings of the National Academy of Sciences, 78(7), 4299-4303. https://doi.org/doi:10.1073/pnas.78.7.4299
Hunt, H. D., Lee, L. F., Foster, D., Silva, R. F., & Fadly, A. M. (1999). A genetically engineered cell line resistant to subgroup J avian leukosis virus infection (C/J). Virology, 264(1), 205-210. https://doi.org/10.1006/viro.1999.9993
Javier, R. T., & Butel, J. S. (2008). The History of Tumor Virology. Cancer Research, 68(19), 7693-7706. https://doi.org/10.1158/0008-5472.Can-08-3301
Jiang, L., Zeng, X., Hua, Y., Gao, Q., Fan, Z., Chai, H., Wang, Q., Qi, X., Wang, Y., Gao, H., Gao, Y., & Wang, X. (2014). Genetic diversity and phylogenetic analysis of glycoprotein gp85 of avian leukosis virus subgroup J wild-bird isolates from Northeast China. Arch Virol, 159(7), 1821-1826. https://doi.org/10.1007/s00705-014-2004-8
Justice, J., & Beemon, K. L. (2013). Avian retroviral replication. Current Opinion in Virology, 3(6), 664-669. https://doi.org/https://doi.org/10.1016/j.coviro.2013.08.008
Kannaki, T. R., Edigi, P., Yalagandula, N., & Haunshi, S. (2022). Simultaneous detection and differentiation of three oncogenic viral diseases of chicken by use of multiplex PCR. Animal Biotechnology, 33(7), 1760-1765. https://doi.org/10.1080/10495398.2021.1914643
Katz, R. A., Greger, J. G., Darby, K., Boimel, P., Rall, G. F., & Skalka, A. M. (2002). Transduction of interphase cells by avian sarcoma virus. J Virol, 76(11), 5422-5434. https://doi.org/10.1128/jvi.76.11.5422-5434.2002
Kučerová, D., Plachý, J., Reinišová, M., Šenigl, F., Trejbalová, K., Geryk, J., & Hejnar, J. (2013). Nonconserved Tryptophan 38 of the Cell Surface Receptor for Subgroup J Avian Leukosis Virus Discriminates Sensitive from Resistant Avian Species. Journal of Virology, 87(15), 8399-8407. https://doi.org/10.1128/jvi.03180-12
Kurth, R., & Bauer, H. (1972). Cell-surface antigens induced by avian RNA tumor viruses: Detection by a cytotoxic microassay. Virology, 47(2), 426-433. https://doi.org/https://doi.org/10.1016/0042-6822(72)90278-4
Leis, J., Baltimore, D., Bishop, J. M., Coffin, J., Fleissner, E., Goff, S. P., Oroszlan, S., Robinson, H., Skalka, A. M., & Temin, H. M. (1988). Standardized and simplified nomenclature for proteins common to all retroviruses. Journal of Virology, 62(5), 1808-1809. https://doi.org/10.1128/jvi.62.5.1808-1809.1988
Li, T., Xie, J., Lv, L., Sun, S., Dong, X., Xie, Q., Liang, G., Xia, C., Shao, H., Qin, A., & Ye, J. (2018). A chicken liver cell line efficiently supports the replication of ALV-J possibly through its high level viral receptor and efficient protein expression system. Veterinary Research, 49(1), 41. https://doi.org/10.1186/s13567-018-0537-7
Li, X., Chen, W., Zhang, H., Li, A., Shu, D., Li, H., Dai, Z., Yan, Y., Zhang, X., Lin, W., Ma, J., & Xie, Q. (2018). Naturally Occurring Frameshift Mutations in the tvb Receptor Gene Are Responsible for Decreased Susceptibility of Chicken to Infection with Avian Leukosis Virus Subgroups B, D, and E. Journal of Virology, 92(8), 10.1128/jvi.01770-01717. https://doi.org/10.1128/jvi.01770-17
Li, X., Lin, W., Chang, S., Zhao, P., Zhang, X., Liu, Y., Chen, W., Li, B., Shu, D., Zhang, H., Chen, F., & Xie, Q. (2016). Isolation, identification and evolution analysis of a novel subgroup of avian leukosis virus isolated from a local Chinese yellow broiler in South China. Arch Virol, 161(10), 2717-2725. https://doi.org/10.1007/s00705-016-2965-x
Li, Y., Cui, S., Li, W., Wang, Y., Cui, Z., Zhao, P., & Chang, S. (2017). Vertical transmission of avian leukosis virus subgroup J (ALV-J) from hens infected through artificial insemination with ALV-J infected semen. BMC Veterinary Research, 13(1), 204. https://doi.org/10.1186/s12917-017-1122-4
Li, Y., Fu, J., Cui, S., Meng, F., Cui, Z., Fan, J., Chang, S., & Zhao, P. (2017). Gp85 genetic diversity of avian leukosis virus subgroup J among different individual chickens from a native flock. Poult Sci, 96(5), 1100-1107. https://doi.org/10.3382/ps/pew407
Liang, X., Gu, Y., Chen, X., Li, T., Gao, Y., Wang, X., Fang, C., Fang, S., & Yang, Y. (2019). Identification and characterization of a novel natural recombinant avian leucosis virus from Chinese indigenous chicken flock. Virus Genes, 55(5), 726-733. https://doi.org/10.1007/s11262-019-01695-7
Lupiani, B., Hunt, H., Silva, R., & Fadly, A. (2000). Identification and characterization of recombinant subgroup J avian leukosis viruses (ALV) expressing subgroup A ALV envelope. Virology, 276(1), 37-43. https://doi.org/10.1006/viro.2000.0539
Maas, R., van Zoelen, D., Oei, H., & Claassen, I. (2006). Replacement of primary chicken embryonic fibroblasts (CEF) by the DF-1 cell line for detection of avian leucosis viruses. Biologicals, 34(3), 177-181. https://doi.org/10.1016/j.biologicals.2005.09.002
Malkinson, M., Banet-noach, C., Davidson, I., Fadly, A. M., & Witter, R. L. (2004). Comparison of serological and virological findings from subgroup J avian leukosis virus-infected neoplastic and non-neoplastic flocks in Israel. Avian Pathology, 33(3), 281-287. https://doi.org/10.1080/0307945042000203380
Meeker, N., Hutchinson, S., Ho, L., & Trede, N. (2007). Method for Isolation of PCR-Ready Genomic DNA from Zebrafish Tissues. BioTechniques, 43, 610, 612, 614. https://doi.org/10.2144/000112619
Mei, M., Ye, J., Qin, A., Wang, L., Hu, X., Qian, K., & Shao, H. (2015). Identification of novel viral receptors with cell line expressing viral receptor-binding protein. Sci Rep, 5, 7935. https://doi.org/10.1038/srep07935
Meng, F., Li, Q., Han, R., Xu, G., Gao, X., Luo, F., Shen, G., Liu, X., Zhang, Z., Zhao, P., & Zhang, G. (2022). A study on the infection status and transmission of avian leukosis virus subgroup J in Hy-line brown roosters. Arch Virol, 167(7), 1521-1527. https://doi.org/10.1007/s00705-022-05452-4
Mo, G., Wei, P., Hu, B., Nie, Q., & Zhang, X. (2022). Advances on genetic and genomic studies of ALV resistance. Journal of Animal Science and Biotechnology, 13(1), 123. https://doi.org/10.1186/s40104-022-00769-1
Motta, J. V., Crittenden, L. B., Purchase, H. G., Stone, H. A., & Witter, R. L. (1975). Low oncogenic potential of avian endogenous RNA tumor virus infection or expression. J Natl Cancer Inst, 55(3), 685-689. https://doi.org/10.1093/jnci/55.3.685
Murata, S., Chang, K. S., Lee, S. I., Konnai, S., Onuma, M., & Ohashi, K. (2007). Development of a nested polymerase chain reaction method to detect oncogenic Marek's disease virus from feather tips. J Vet Diagn Invest, 19(5), 471-478. https://doi.org/10.1177/104063870701900503
Murray, J. M., Kelleher, A. D., & Cooper, D. A. (2011). Timing of the Components of the HIV Life Cycle in Productively Infected CD4<sup>+</sup> T Cells in a Population of HIV-Infected Individuals. Journal of Virology, 85(20), 10798-10805. https://doi.org/doi:10.1128/jvi.05095-11
Nikiforov, M. A., & Gudkov, A. V. (1994). ART-CH: a VL30 in chickens? J Virol, 68(2), 846-853. https://doi.org/10.1128/jvi.68.2.846-853.1994
Nisole, S., & Saïb, A. (2004). Early steps of retrovirus replicative cycle. Retrovirology, 1(1), 9. https://doi.org/10.1186/1742-4690-1-9
Ochi, A., Ochiai, K., Kobara, A., Nakamura, S., Hatai, H., Handharyani, E., Tiemann, I., Tanaka, I. B., 3rd, Toyoda, T., Abe, A., Seok, S. H., Sunden, Y., Torralba, N. C., Park, J. H., Hafez, H. M., & Umemura, T. (2012). Epidemiological study of fowl glioma-inducing virus in chickens in Asia and Germany. Avian Pathol, 41(3), 299-309. https://doi.org/10.1080/03079457.2012.684373
Ogert, R. A., Lee, L. H., & Beemon, K. L. (1996a). Avian retroviral RNA element promotes unspliced RNA accumulation in the cytoplasm. Journal of Virology, 70(6), 3834-3843. https://doi.org/10.1128/jvi.70.6.3834-3843.1996
Ogert, R. A., Lee, L. H., & Beemon, K. L. (1996b). Avian retroviral RNA element promotes unspliced RNA accumulation in the cytoplasm. J Virol, 70(6), 3834-3843. https://doi.org/10.1128/jvi.70.6.3834-3843.1996
Orlowski, J., & Grinstein, S. (2004). Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch, 447(5), 549-565. https://doi.org/10.1007/s00424-003-1110-3
Payne, L. N. (1987). Epizootiology of Avian Leukosis Virus Infections. In G. F. De Boer (Ed.), Avian Leukosis (pp. 47-75). Springer US. https://doi.org/10.1007/978-1-4613-2059-3_3
Payne, L. N. (1998). HPRS‐103: A retro virus strikes back. The emergence of subgroup J avian leukosis virus. Avian Pathology, 27(sup1), S36-S45. https://doi.org/10.1080/03079459808419291
Payne, L. N., & Bumstead, N. (1982). Theoretical considerations on the relative importance of vertical and horizontal transmission for the maintenance of infection by exogenous avian lymphoid leukosis virus. Avian Pathol, 11(4), 547-553. https://doi.org/10.1080/03079458208436129
Payne, L. N., Gillespie, A. M., & Howes, K. (1993). Unsuitability of chicken sera for detection of exogenous ALV by the group-specific antigen ELISA. Vet Rec, 132(22), 555-557. https://doi.org/10.1136/vr.132.22.555
Payne, L. N., & Howes, K. (1991). Eradication of exogenous avian leukosis virus from commercial layer breeder lines. Vet Rec, 128(1), 8-11. https://doi.org/10.1136/vr.128.1.8
Payne, L. N., Howes, K., Gillespie, A. M., & Smith, L. M. (1992). Host range of Rous sarcoma virus pseudotype RSV(HPRS-103) in 12 avian species: support for a new avian retrovirus envelope subgroup, designated J. Journal of General Virology, 73(11), 2995-2997. https://doi.org/https://doi.org/10.1099/0022-1317-73-11-2995
Payne, L. N., & Nair, V. (2012). The long view: 40 years of avian leukosis research. Avian Pathol, 41(1), 11-19. https://doi.org/10.1080/03079457.2011.646237
Petropoulos, C. J., & Hughes, S. H. (1991). Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. Journal of Virology, 65(7), 3728-3737. https://doi.org/10.1128/jvi.65.7.3728-3737.1991
Pham, T. D., Spencer, J. L., & Johnson, E. S. (1999). Detection of avian leukosis virus in albumen of chicken eggs using reverse transcription polymerase chain reaction. J Virol Methods, 78(1-2), 1-11. https://doi.org/10.1016/s0166-0934(98)00157-8
Přikryl, D., Plachý, J., Kučerová, D., Koslová, A., Reinišová, M., Šenigl, F., & Hejnar, J. (2019). The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A. J Virol, 93(17). https://doi.org/10.1128/jvi.00580-19
Reinišová, M., Plachý, J., Kučerová, D., Šenigl, F., Vinkler, M., & Hejnar, J. (2016). Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species. PLoS One, 11(3), e0150589. https://doi.org/10.1371/journal.pone.0150589
Reinišová, M., Šenigl, F., Yin, X., Plachý, J., Geryk, J., Elleder, D., Svoboda, J., Federspiel Mark, J., & Hejnar, J. (2008). A Single-Amino-Acid Substitution in the TvbS1 Receptor Results in Decreased Susceptibility to Infection by Avian Sarcoma and Leukosis Virus Subgroups B and D and Resistance to Infection by Subgroup E In Vitro and In Vivo. Journal of Virology, 82(5), 2097-2105. https://doi.org/10.1128/jvi.02206-07
Resnick, R. M., Boyce-Jacino, M. T., Fu, Q., & Faras, A. J. (1990). Phylogenetic distribution of the novel avian endogenous provirus family EAV-0. Journal of Virology, 64(10), 4640-4653. https://doi.org/10.1128/jvi.64.10.4640-4653.1990
Rong, J. (2001). Co-infection Detection of the Chicken Infectious Anemia Virus and Reticuloendotheliosis Virus in the Immunodepression Flock. Chinese Journal of Veterinary Drug.
Rous, P. (1910). A TRANSMISSIBLE AVIAN NEOPLASM. (SARCOMA OF THE COMMON FOWL.). J Exp Med, 12(5), 696-705. https://doi.org/10.1084/jem.12.5.696
Rous, P. (1911). A SARCOMA OF THE FOWL TRANSMISSIBLE BY AN AGENT SEPARABLE FROM THE TUMOR CELLS. J Exp Med, 13(4), 397-411. https://doi.org/10.1084/jem.13.4.397
Rovigatti, U. G., & Astrin, S. M. (1983). Avian endogenous viral genes. Curr Top Microbiol Immunol, 103, 1-21. https://doi.org/10.1007/978-3-642-68943-7_1
Rubin, H., Cornelius, A., & Fanshier, L. (1961). THE PATTERN OF CONGENITAL TRANSMISSION OF AN AVIAN LEUKOSIS VIRUS<sup>*</sup>. Proceedings of the National Academy of Sciences, 47(7), 1058-1069. https://doi.org/doi:10.1073/pnas.47.7.1058
Rubin, H., Fanshier, L., Cornelius, A., & Hughes, W. F. (1962). Tolerance and immunity in chickens after congenital and contact infection with an avian leukosis virus. Virology, 17, 143-156. https://doi.org/10.1016/0042-6822(62)90091-0
Rubin, H., & Vogt, P. K. (1962). An avian leukosis virus associated with stocks of rous sarcoma virus. Virology, 17(1), 184-194. https://doi.org/https://doi.org/10.1016/0042-6822(62)90096-X
Ruddell, A. (1995). Transcription regulatory elements of the avian retroviral long terminal repeat. Virology, 206(1), 1-7. https://doi.org/https://doi.org/10.1016/S0042-6822(95)80013-1
Ruis, B. L., Benson, S. J., & Conklin, K. F. (1999). Genome structure and expression of the ev/J family of avian endogenous viruses. J Virol, 73(7), 5345-5355. https://doi.org/10.1128/jvi.73.7.5345-5355.1999
Sacco, M. A., Flannery, D. M., Howes, K., & Venugopal, K. (2000). Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J Virol, 74(3), 1296-1306. https://doi.org/10.1128/jvi.74.3.1296-1306.2000
Schaefer-Klein, J., Givol, I., Barsov, E. V., Whitcomb, J. M., VanBrocklin, M., Foster, D. N., Federspiel, M. J., & Hughes, S. H. (1998). The EV-O-derived cell line DF-1 supports the efficient replication of avian leukosis-sarcoma viruses and vectors. Virology, 248(2), 305-311. https://doi.org/10.1006/viro.1998.9291
Schaefer-Klein, J., Givol, I., Barsov, E. V., Whitcomb, J. M., VanBrocklin, M., Foster, D. N., Federspiel, M. J., & Hughes, S. H. (1998). The EV-O-Derived Cell Line DF-1 Supports the Efficient Replication of Avian Leukosis-Sarcoma Viruses and Vectors. Virology, 248(2), 305-311. https://doi.org/https://doi.org/10.1006/viro.1998.9291
Smith, E. J., Williams, S. M., & Fadly, A. M. (1998). Detection of avian leukosis virus subgroup J using the polymerase chain reaction. Avian Dis, 42(2), 375-380.
Strauss, J., & Strauss, E. (2008). Viruses Whose Life Cycle Uses Reverse Transcriptase. In (pp. 211-259). https://doi.org/10.1016/B978-0-12-373741-0.50009-X
Suerth, J. D., Labenski, V., & Schambach, A. (2014). Alpharetroviral vectors: from a cancer-causing agent to a useful tool for human gene therapy. Viruses, 6(12), 4811-4838. https://doi.org/10.3390/v6124811
Swanstrom, R., Graham, W. D., & Zhou, S. (2017). Sequencing the Biology of Entry: The Retroviral env Gene. In E. Hunter & K. Bister (Eds.), Viruses, Genes, and Cancer (pp. 65-82). Springer International Publishing. https://doi.org/10.1007/82_2017_35
Swanstrom, R., Parker, R. C., Varmus, H. E., & Bishop, J. M. (1983). Transduction of a cellular oncogene: the genesis of Rous sarcoma virus. Proc Natl Acad Sci U S A, 80(9), 2519-2523. https://doi.org/10.1073/pnas.80.9.2519
Swayne, D. E., & Boulianne, M. (2020). Diseases of poultry (14th edition ed.). Wiley Blackwell. http://dx.doi.org/10.1002/9781119371199
Swayne, D. E., Boulianne, M., Logue, C. M., McDougald, L. R., Nair, V., Suarez, D. L., Wit, S. d., Grimes, T., Johnson, D., Kromm, M., Prajitno, T. Y., Rubinoff, I., & Zavala, G. (2019). In Diseases of poultry (14th ed., Vol. Leukosis/Sarcoma Group, pp. 587-625). Wiley Blackwell.
Tam, W., Hughes Stephen, H., Hayward William, S., & Besmer, P. (2002). Avian bic, a Gene Isolated from a Common Retroviral Site in Avian Leukosis Virus-Induced Lymphomas That Encodes a Noncoding RNA, Cooperates with c-myc in Lymphomagenesis and Erythroleukemogenesis. Journal of Virology, 76(9), 4275-4286. https://doi.org/10.1128/jvi.76.9.4275-4286.2002
Telesnitsky, A., & Goff, S. P. (1997). Reverse Transcriptase and the Generation of Retroviral DNA. In J. M. Coffin, S. H. Hughes, & H. E. Varmus (Eds.), Retroviruses. Cold Spring Harbor Laboratory Press Copyright © 1997, Cold Spring Harbor Laboratory Press.
Thu, W. L., & Wang, C. H. (2003). Phylogenetic analysis of subgroup J avian leucosis virus from broiler and native chickens in Taiwan during 2000-2002. J Vet Med Sci, 65(3), 325-328. https://doi.org/10.1292/jvms.65.325
Vandergon, T. L., & Reitman, M. (1994). Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors. Molecular Biology and Evolution, 11(6), 886-898. https://doi.org/10.1093/oxfordjournals.molbev.a040171
Venugopal, K., Howes, K., Barron, G. S., & Payne, L. N. (1997). Recombinant env-gp85 of HPRS-103 (subgroup J) avian leukosis virus: antigenic characteristics and usefulness as a diagnostic reagent. Avian Dis, 41(2), 283-288.
Wang, C. H., & Juan, Y. W. (2002). Occurrence of subgroup J avian leukosis virus in Taiwan. Avian Pathology, 31(5), 435-439. https://doi.org/10.1080/0307945021000005806
Wang CH, L. C., Liu YF, Kou TF. (1995). High mortality in broiler flock with myelocytomatosis. J Chin Soc Vet Sci 21: 128-133.
Wang, H., Li, W., & Zheng, S. J. (2022). Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses [Review]. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.901913
Wang, Q., Gao, Y., Wang, Y., Qin, L., Qi, X., Qu, Y., Gao, H., & Wang, X. (2012). A 205-nucleotide deletion in the 3' untranslated region of avian leukosis virus subgroup J, currently emergent in China, contributes to its pathogenicity. J Virol, 86(23), 12849-12860. https://doi.org/10.1128/jvi.01113-12
Wang, X., Zhao, P., & Cui, Z. Z. (2012). [Identification of a new subgroup of avian leukosis virus isolated from Chinese indigenous chicken breeds]. Bing Du Xue Bao, 28(6), 609-614.
Weiss, R. (1967). Spontaneous virus production from "non-virus producing" Rous sarcoma cells. Virology, 32(4), 719-723. https://doi.org/10.1016/0042-6822(67)90049-9
Weiss , R. A., & Vogt , P. K. (2011). 100 years of Rous sarcoma virus. Journal of Experimental Medicine, 208(12), 2351-2355. https://doi.org/10.1084/jem.20112160
Weyl, K. G., & Dougherty, R. M. (1977). Contact Transmission of Avian Leukosis Virus2. JNCI: Journal of the National Cancer Institute, 58(4), 1019-1025. https://doi.org/10.1093/jnci/58.4.1019
Williams, S., Fitzgerald, S., Reed, W., Lee, L., & Fadly, A. (2005). Tissue Tropism and Bursal Transformation Ability of Subgroup J Avian Leukosis Virus in White Leghorn Chickens. Avian Diseases, 48, 921-927. https://doi.org/10.1637/7196-041904R
Williams, S. M., & American Association of Avian, P. (2016). A laboratory manual for the isolation, identification and characterization of avian pathogens (Sixth edition ed.). American Association of Avian Pathologists.
Witter, R. L., & Fadly, A. M. (2001). Reduction of horizontal transmission of avian leukosis virus subgroup J in broiler breeder chickens hatched and reared in small groups. Avian Pathology, 30(6), 641-654. https://doi.org/10.1080/03079450120092134
Wu, L., Li, Y., Chen, X., Yang, Y., Fang, C., Gu, Y., Liu, J., Liang, X., & Yang, Y. (2022). Isolation and characterization of avian leukosis virus subgroup J associated with hemangioma and myelocytoma in layer chickens in China. Front Vet Sci, 9, 970818. https://doi.org/10.3389/fvets.2022.970818
Xu, M., Qian, K., Shao, H., Yao, Y., Nair, V., Ye, J., & Qin, A. (2023). 3'UTR of ALV-J can affect viral replication through promoting transcription and mRNA nuclear export. J Virol, 97(11), e0115223. https://doi.org/10.1128/jvi.01152-23
Zhang, H. M., Bacon, L. D., Cheng, H. H., & Hunt, H. D. (2005). Development and validation of a PCR-RFLP assay to evaluate TVB haplotypes coding receptors for subgroup B and subgroup E avian leukosis viruses in White Leghorns. Avian Pathol, 34(4), 324-331. https://doi.org/10.1080/03079450500179491
Zhang, L., Yan, L., Jiang, J., Wang, Y., Jiang, Y., Yan, T., & Cao, Y. (2014). The structure and retrotransposition mechanism of LTR-retrotransposons in the asexual yeast Candida albicans. Virulence, 5(6), 655-664. https://doi.org/10.4161/viru.32180
Zhao, Z., Rao, M., Liao, M., & Cao, W. (2018). Phylogenetic Analysis and Pathogenicity Assessment of the Emerging Recombinant Subgroup K of Avian Leukosis Virus in South China. Viruses, 10(4). https://doi.org/10.3390/v10040194
Zhou, X., Wang, L., Shen, A., Shen, X., Xu, M., Qian, K., Shao, H., Yao, Y., Nair, V., Ye, J., & Qin, A. (2019). Detection of ALV p27 in cloacal swabs and virus isolation medium by sELISA. BMC Veterinary Research, 15(1), 383. https://doi.org/10.1186/s12917-019-2150-z
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96212-
dc.description.abstract目前影響全世界家禽的反轉錄病毒主要為家禽白血病病毒(avian leukosis virus, ALV)和網狀內皮增生病毒(reticuloendotheliosis virus, REV),其中ALV會引起淋巴球性白血病(lymphoid leukosis, LL)和骨髓球性白血病(myeloid leukosis, ML)等腫瘤性疾病,造成重大經濟損失。根據其膜蛋白之gp85,ALV被分為A到K亞群,其中ALV-J最為盛行,尤其是在中國等地。由於內源性ALV的存在、ALV的高突變率以及家禽複雜的產業生態等因素,要從雞群中消除ALV是一件非常艱鉅的任務。而RCAS(replication competent ALV LTR with a splice acceptor)載體系統,源自同時也是一種ALV的Rous sarcoma virus(RSV),對研究ALV病毒與宿主相互作用至關重要。RCAS載體能將GFP或mCherry等基因導入生物體中,有助於觀察ALV的感染路徑和複製狀況。本研究希望能瞭解目前ALV在台灣雞場中的感染情況,並使用本地的ALV分離株建立一個RCAS重組病毒,應用於實驗中研究ALV的傳播途徑。在2021-2023年間,ALV在8個雞場中被檢測陽性,其中ALV-J最為普遍(8/8),其次是ALV-K(3/8)和ALV-A(1/8),其中也在3個雞場中觀察到了不同ALV亞群的共同感染。由gp85的序列分析顯示,台灣以往和近期的ALV病毒株在親緣樹上分佈在多個分支上。本研究使用DF-1細胞分離出了5種ALV-J病毒株Av21-01、Av23-03、Av23-25(J)、Av23-30(J)、Av23-33(J)和1種ALV-K病毒株Av23-30(K),經由分析gp85和3UTR的序列,彌補了台灣對ALV-J和ALV-K調查超過十年的空窗期。同時,利用Av21-01 env替換了RCAS的env,創建了一種能在DF-1細胞中複製並表現綠色螢光訊號的重組病毒,並進一步探討了其潛在的致病性、感染路徑以及其在小雞的分佈途徑。當替換的序列不同時,也對重組病毒在DF-1細胞中的複製能力產生了影響。此次研究結果證實了ALV在台灣雞場中仍持續存在且流行,並建立了含本土病毒株基因序列的重組RCAS病毒,此重組病毒未來將應用於研究病毒傳播途徑及入侵機制,以期望能幫助台灣家禽產業控制ALV-J。zh_TW
dc.description.abstractAvian leukosis virus (ALV) and reticuloendotheliosis virus (REV) are the major retroviruses impacting poultry globally, causing neoplastic diseases like lymphoid leukosis (LL) and myeloid leukosis (ML), leading to significant economic losses. ALVs are categorized into subgroups A to K based on their envelope glycoprotein (gp85), with ALV-J being the most prevalent worldwide, especially in regions such as China. Eliminating ALV from flocks is challenging due to factors such as endogenous viruses, high mutation rates, and diverse poultry-producing types. The RCAS vector system, derived from Rous sarcoma virus (RSV), which also belongs to ALV, has been crucial in studying ALV virus-host interactions. RCAS (replication competent ALV LTR with a splice acceptor) vectors enable the introduction of genes like GFP or mCherry into organisms, aiding in observing ALV infection routes and replication status. This study aimed to assess ALV infection in chicken farms in Taiwan and establish a reporter system using a local ALV isolate. ALV was detected in 8 chicken farms between 2021 and 2023, with ALV-J being the most prevalent (8/8), followed by ALV-K (3/8) and ALV-A (1/8). Co-infections of different ALV subgroups were also observed in three farms. Sequence analysis of gp85 showed that previous and recent ALV strains in Taiwan were distributed in multiple clusters on the phylogenetic tree. Notably, five ALV-J strains Av21-01, Av23-03, Av23-25(J), Av23-30(J), Av23-33(J) and one ALV-K strain Av23-30(K) were isolated using DF-1 cells. Analysis of the gp85 and 3UTR sequences of these virus strains filled the gap in the investigation of ALV-J and ALV-K in Taiwan for over a decade. Meanwhile, by substituting the RCAS env with the Av21-01 env, a recombinant virus was created that replicates in DF-1 cells and expresses green fluorescent signals. Further experiments were conducted on its potential pathogenicity, infection routes, and distribution in chicks. It was observed that substituting sequences beyond just the envelope gene affected the replication ability of the recombinant virus in DF-1 cells. This study elucidated the ongoing prevalence and persistence of ALV in chicken farms in Taiwan and established a recombinant RCAS virus containing the gene sequences of a local strain. This recombinant virus will be used in future studies to explore virus transmission pathways and invasion mechanisms, aiming to help the Taiwanese poultry industry control ALV-J.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:13:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:13:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
第一章 緒論 1
第一節 家禽白血病之簡介與歷史 1
第二節 病原學 2
1-2.1 病毒結構 2
1-2.1.1 病毒基因體 2
1-2.1.2 病毒蛋白質 3
1-2.2病毒複製過程 4
1-2.3病毒分類方式 6
1-2.3.1 病毒env 6
1-2.3.2 病毒致病性 6
1-2.3.2.1 腫瘤類型 6
1-2.3.2.2 急性/慢性致癌基因 7
第三節 流行病學 8
1-3.1病毒傳播 8
1-3.1.1 外源性病毒 8
1-3.1.2 內源性病毒 9
1-3.2 宿主與細胞受器 10
1-3.3 臨床症狀 11
1-3.4 免疫 12
1-3.4.1 先天性免疫 12
1-3.4.2 後天性免疫 12
第四節 實驗室診斷 13
第五節 疾病防治與世界現況 14
1-5.1 家禽白血病之防治 14
1-5.2 家禽白血病之世界現況 15
第六節 RCAS載體系統 16
1-6.1 簡介 16
1-6.2 RCAS載體之pol/ LTR 17
1-6.3 RCAS載體之env 17
1-6.4 RCAS載體之應用 18
第二章 材料與方法 20
第一節 腫瘤病例檢測 20
2-1.1 臟器處理 20
2-1.2 血液處理 20
2-1.3 DNA萃取 20
2-1.4 RNA萃取 21
2-1.5 反轉錄(Reverse transcription) 21
2-1.6 聚合酶鏈鎖反應(Polymerase chain reaction, PCR) 21
第二節 ALV病毒分離 22
2-2.1 DF-1細胞培養 22
2-2.2 病毒分離 23
2-2.3 檢測上清液 23
2-2.4 病毒保存 23
第三節 序列分析與比對 24
2-3.1 病毒基因體定序 24
2-3.1.1 引子(Primer) 24
2-3.1.2 TA cloning 24
2-3.1.2.1 env基因增幅與質體(Plasmid)合成 24
2-3.1.2.2 轉型(Transformation) 24
2-3.1.2.3 Colony PCR 25
2-3.2 序列分析與製圖 25
2-3.2.1 序列比對 25
2-3.2.2 親緣樹繪製 25
第四節 RCAS重組 25
2-4.1 RCAS(A)-EGFP質體增殖與定序 26
2-4.2 RCAS(J) 21-01-EGFP之重組 26
2-4.2.1 載體(Vector)增幅 26
2-4.2.1.1 質體限制酶酵素切割 26
2-4.2.1.2 Vector PCR 26
2-4.2.2 嵌入基因(Insert)增幅 27
2-4.2.2.1 限制酶酵素切割 27
2-4.2.2.2 Av21-01 env PCR 27
2-4.2.3 以NEBuilder® HiFi DNA Assembly重組質體 28
2-4.2.4 轉型(Transformation) 28
2-4.2.5 質體萃取 28
2-4.2.6 DF-1轉染(Transfection) 28
2-4.2.7病毒增殖 29
第五節 RCAS(J) 21-01-EGFP 感染試驗 29
2-5.1 胚胎蛋接種 29
2-5.1.1 卵黃囊接種 29
2-5.1.2 絨毛尿囊膜(chorioallantoic membrane, CAM)接種 30
2-5.2 感染氣液介面培養系統(Air-liquid interface culture, ALI culture) 30
第六節 ALV單株抗體(MONOCLONAL ANTIBODY, MAB)測試 31
2-6.1 ALV mAbs 31
2-6.2 病毒 31
2-6.3 免疫螢光染色(Immunofluorescence assay, IFA) 31
第三章 結果 33
第一節 腫瘤病例檢測 33
第二節 ALV病毒分離 33
第三節 序列分析與比對 34
3-3.1 病毒env基因定序 34
3-3.1.1 引子(Primer) 34
3-3.1.2 TA cloning 34
3-3.2 序列分析與製圖 34
3-3.2.1 序列分析與比對 34
3-3.2.1.1 env序列比對 34
3-3.2.1.2 ALV-J 3UTR核苷酸序列比對 35
3-3.2.2 親緣樹繪製 36
3-3.2.2.1 gp85核苷酸 36
3-3.2.2.2 gp85胺基酸 37
第四節 RCAS重組 38
3-4.1 RCAS(A)-EGFP 質體增殖與定序 38
3-4.2 RCAS(J) 21-01-EGFP之重組 38
第五節 RCAS(J) 21-01-EGFP感染試驗 39
3-5.1 胚胎蛋接種 39
3-5.1.1 絨毛尿囊膜(chorioallantoic membrane, CAM)接種 39
3-5.1.2卵黃囊接種 39
3-5.2 感染氣液介面培養系統(Air-liquid interface culture, ALI culture) 39
第六節 ALV單株抗體測試MABS 39
第四章 討論 41
第五章 參考文獻 51
第六章 圖表 66
-
dc.language.isozh_TW-
dc.subject重組病毒zh_TW
dc.subject序列分析zh_TW
dc.subject家禽白血病病毒zh_TW
dc.subject家禽疾病zh_TW
dc.subjectrecombinant virusen
dc.subjectpoultry diseasesen
dc.subjectavian leukosis virusen
dc.subjectsequence analysisen
dc.title2021-2023年間台灣家禽白血病病毒的分離與序列分析及利用RCAS重組本土病毒株研究傳播特性zh_TW
dc.titleIsolation and Sequence Analysis of Avian Leukosis Virus in Taiwan (2021-2023) and Construction of RCAS Recombinant Virus Using a Local Strain to Study Viral Transmissibilityen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝明昆;王金和;鄭益謙zh_TW
dc.contributor.oralexamcommitteeMing-Kun Hsieh;Ching-Ho Wang;Ivan-Chen Chengen
dc.subject.keyword家禽疾病,家禽白血病病毒,序列分析,重組病毒,zh_TW
dc.subject.keywordpoultry diseases,avian leukosis virus,sequence analysis,recombinant virus,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202404415-
dc.rights.note未授權-
dc.date.accepted2024-09-30-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
4.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved