請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96208完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯嘉洪 | zh_TW |
| dc.contributor.advisor | Chia-Hung Hou | en |
| dc.contributor.author | 吳偵慈 | zh_TW |
| dc.contributor.author | Jhen-Cih Wu | en |
| dc.date.accessioned | 2024-11-28T16:11:48Z | - |
| dc.date.available | 2024-11-29 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-06 | - |
| dc.identifier.citation | Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian journal of chemistry, 4(4), 361-377.
Bayon, L. L. E., Ballesteros Jr, F. C., Choi, A. E. S., Garcia-Segura, S., & Lu, M. C. (2021). Remediation of cobalt from semiconductor wastewater in the frame of fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(5), 105936. Benkoula, S., Sublemontier, O., Patanen, M., Nicolas, C., Sirotti, F., Naitabdi, A., Gaie-Levrel, F., Antonsson, E., Aureau, D., Ouf, F.-X., Wada, S.-I., Etcheberry, A., Ueda, K., & Miron, C. (2015). Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles. Scientific reports, 5(1), 15088. Brazhnyk, D. V., Zaitsev, Y. P., Bacherikova, I. V., Zazhigalov, V. A., Stoch, J., & Kowal, A. (2007). Oxidation of H2S on activated carbon KAU and influence of the surface state. Applied Catalysis B: Environmental, 70(1-4), 557-566. Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166, 603-643. Brooks, S. C., Taylor, D. L., & Jardine, P. M. (1996). Reactive transport of EDTA-complexed cobalt in the presence of ferrihydrite. Geochimica et Cosmochimica Acta, 60(11), 1899-1908. Casella, I. G., & Guascito, M. R. (1999). Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. Journal of Electroanalytical Chemistry, 476(1), 54-63. Chang, L., Li, J., Duan, X., & Liu, W., (2015). Porous carbon derived from metal-organic framework (MOF) for capacitive deionization electrode. Electrochimica Acta, 176, 956–964. Chaplin, B. P. (2019). The prospect of electrochemical technologies advancing worldwide water treatment. Accounts of chemical research, 52(3), 596-604. Chen, X., Oh, W. D., Zhang, P. H., Webster, R. D., & Lim, T. T. (2020). Surface construction of nitrogen-doped chitosan-derived carbon nanosheets with hierarchically porous structure for enhanced sulfacetamide degradation via peroxymonosulfate activation: Maneuverable porosity and active sites. Chemical Engineering Journal, 382, 122908. Chen, T.H., Yeh, K.H., Lin, C.F., Lee, M., & Hou, C.H., (2022). Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: from tap water purification to wastewater reclamation for water sustainability. Resour. Conserv. Recycl. 177, 106012. Cheng, X., Guo, H., Zhang, Y., Wu, X., & Liu, Y. (2017). Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water research, 113, 80-88. Choi, S. W., Tang, J., Pol, V. G., & Lee, K. B. (2019). Pollen-derived porous carbon by KOH activation: effect of physicochemical structure on CO2 adsorption. Journal of CO2 Utilization, 29, 146-155. Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta, 39(11-12), 1857-1862. Cuong, D.V., Wu, P.-C., Liu, N.-L., & Hou, C.-H., (2020). Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions. Separation and Purification Technology, 242, 116813. de Castro, C. S., Viau, L. N., Andrade, J. T., Mendonça, T. A. P., & Gonçalves, M. (2018). Mesoporous activated carbon from polyethyleneterephthalate (PET) waste: pollutant adsorption in aqueous solution. New Journal of Chemistry, 42(17), 14612-14619. Deng, J., Li, M., & Wang, Y. (2016). Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green chemistry, 18(18), 4824-4854. Ding, D., Yang, S., Qian, X., Chen, L., & Cai, T. (2020). Nitrogen-doping positively while sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant. Applied Catalysis B: Environmental, 263, 118348. Dominish, E., Florin, N., & Teske, S. (2019). Responsible minerals sourcing for renewable energy. Report prepared for Earthworks by the Institute for Sustainable Futures, University of Technology Sydney, 54. Du, J., Waite, T. D., Biesheuvel, P. M., & Tang, W. (2023). Recent advances and prospects in electrochemical coupling technologies for metal recovery from water. Journal of Hazardous Materials, 442, 130023. Faccini, M., Borja, G., Boerrigter, M., Morillo Martín, D., Martìnez Crespiera, S., Vázquez-Campos, S., Aubouy, L., & Amantia, D. (2015). Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. Journal of Nanomaterials, 2015(1), 247471. Fang, X., Yin, Z., Wang, H., Li, J., Liang, X., Kang, J., & He, B. (2015). Controllable oxidation of cyclohexane to cyclohexanol and cyclohexanone by a nano-MnOx/Ti electrocatalytic membrane reactor. Journal of Catalysis, 329, 187-194. Fu, S., Fang, Q., Li, A., Li, Z., Han, J., Dang, X., & Han, W. (2021). Accurate characterization of full pore size distribution of tight sandstones by low‐temperature nitrogen gas adsorption and high‐pressure mercury intrusion combination method. Energy Science & Engineering, 9(1), 80-100. Ganzenko, O., Sistat, P., Trellu, C., Bonniol, V., Rivallin, M., & Cretin, M. (2021). Reactive electrochemical membrane for the elimination of carbamazepine in secondary effluent from wastewater treatment plant. Chemical Engineering Journal, 419, 129467. Gao, G., Zhang, Q., & Vecitis, C. D. (2014). CNT–PVDF composite flow-through electrode for single-pass sequential reduction–oxidation. Journal of Materials Chemistry A, 2(17), 6185-6190. Gao, Y., Li, T., Zhu, Y., Chen, Z., Liang, J., Zeng, Q., Lyu, L., & Hu, C. (2020). Highly nitrogen-doped porous carbon transformed from graphitic carbon nitride for efficient metal-free catalysis. Journal of hazardous materials, 393, 121280. Garcia-Segura, S., Qu, X., Alvarez, P. J., Chaplin, B. P., Chen, W., Crittenden, J. C., Feng, Y., Gao, G., He, Z., Hou, C.-H., Hu, X., Jiang, G., Kim, J.-H., Li, J., Li, Q., Ma, J., Ma, J., Nienhauser, A. B., Niu, J., Pan, B., Quan, X., Ronzani, F., Villagran, Waite, T. D., Walker, W. S., Wang, C., Wong, M. S., & Westerhoff, P. (2020). Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater–a perspective. Environmental Science: Nano, 7(8), 2178-2194. Gayen, P., Spataro, J., Avasarala, S., Ali, A. M., Cerrato, J. M., & Chaplin, B. P. (2018). Electrocatalytic reduction of nitrate using magnéli phase TiO2 reactive electrochemical membranes doped with Pd-based catalysts. Environmental science & technology, 52(16), 9370-9379. Ghanbari, F., Yaghoot-Nezhad, A., Wacławek, S., Lin, K. Y. A., Rodríguez-Chueca, J., & Mehdipour, F. (2021). Comparative investigation of acetaminophen degradation in aqueous solution by UV/Chlorine and UV/H2O2 processes: kinetics and toxicity assessment, process feasibility and products identification. Chemosphere, 285, 131455. Ghosh, A., Ghosh Dastidar, M., & Sreekrishnan, T. R. (2016). Recent advances in bioremediation of heavy metals and metal complex dyes. Journal of Environmental Engineering, 142(9), C4015003. Gu, J., Gu, H., Cao, J., Chen, S., Li, N., & Xiong, J. (2018). Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application. Applied Surface Science, 439, 589-597. Guan, W., Zhang, B., Tian, S., & Zhao, X. (2018). The synergism between electro-Fenton and electrocoagulation process to remove Cu-EDTA. Applied Catalysis B: Environmental, 227, 252-257. Guan, G., Li, P., Shi, X., Lu, L., Fan, Y., Xu, J., Shang, Y., Zhang, Y., Wei, J., & Guo, F. (2022). Electrode based on porous MXene nanosheets for high-performance supercapacitor. Journal of Alloys and Compounds, 924, 166647. Halali, M. A., Larocque, M., & de Lannoy, C. F. (2021). Investigating the stability of electrically conductive membranes. Journal of Membrane Science, 119181. Han, L., Su, B., Liu, G., Ma, Z., & An, X. (2018). Synthesis of oxygen vacancy-rich black TiO2 nanoparticles and the visible light photocatalytic performance. Molecular catalysis, 456, 96-101. Hou, S. P., Liao, M. D., Peng, C., Min, D., Li, X. Y., Chen, J., Yu G.-T., & Lin, J.-H. (2021). Honeycomb-like hierarchical porous activated carbons from biomass waste with ultrahigh specific surface area for high-rate electrochemical capacitors. Energy & Fuels, 35(20), 16860-16869. Hu, M., Lou, H., Yan, X., Hu, X., Feng, R., & Zhou, M. (2018). In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue. Microporous and Mesoporous Materials, 271, 68-72. Humayun, S., Hayyan, M., Alias, Y., & Hayyan, A. (2021). Oxidative degradation of acetaminophen using superoxide ion generated in ionic liquid/aprotic solvent binary system. Separation and Purification Technology, 270, 118730. Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. nature, 363(6430), 603-605. Jakóbczyk, P., Skowierzak, G., Kaczmarzyk, I., Nadolska, M., Wcisło, A., Lota, K., Bogdanowicz, R., Ossowski, T., Rostkowski, P., Lota, G., & Ryl, J. (2022). Electrocatalytic performance of oxygen-activated carbon fiber felt anodes mediating degradation mechanism of acetaminophen in aqueous environments. Chemosphere, 304, 135381. Ji, H., Wang, M., Liu, S., Sun, H., Liu, J., Qian, T., & Yan, C. (2020). Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries. Electrochimica Acta, 334, 135562. Jiménez-Bambague, E. M., Madera-Parra, C. A., Rangel-Delgado, M. F., Quintero-Martinez, I., Miranda-Mosquera, D., Aristizabal-Apolinar, J. S., & Machuca-Martínez, F. (2023). Photo-Fenton and Electro-Fenton performance for the removal of pharmaceutical compounds in real urban wastewater. Electrochimica Acta, 442, 141905. Jo, K., Baek, Y., Lee, C., & Yoon, J., (2019). Effect of hydrophilicity of activated carbon electrodes on desalination performance in membrane capacitive deionization. Applied Sciences, 9(23), 5055. Ju, F., & Hu, Y. (2011). Removal of EDTA-chelated copper from aqueous solution by interior microelectrolysis. Separation and Purification Technology, 78(1), 33-41. Kang, X., Chatzitakis, A., Aarholt, T., Sun, X., Negri, C., & Norby, T. (2022). Facet-engineered TiO2 nanomaterials reveal the role of water–oxide interactions in surface protonic conduction. Journal of Materials Chemistry A, 10(1), 218-227. Kang, J. K., Lee, H., Kim, S. B., Oh, J. E., & Bae, H. (2024). Differentiated adsorption of acetaminophen and diclofenac via alkyl chain-modified quaternized SBA-15: insights from molecular simulation. Chemosphere, 143404. Kaur, B., Singh, J., Gupta, R. K., & Bhunia, H. (2019). Porous carbons derived from polyethylene terephthalate (PET) waste for CO2 capture studies. Journal of environmental management, 242, 68-80. Killey, R. D., McHugh, J. O., Champ, D. R., Cooper, E. L., & Young, J. L. (1984). Subsurface cobalt-60 migration from a low-level waste disposal site. Environmental science & technology, 18(3), 148-157. Krüner, B., Srimuk, P., Fleischmann, S., Zeiger, M., Schreiber, A., Aslan, M., Quade, A., & Presser, V., (2017). Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability. Carbon, 117, 46–54. Krishnamoorthy, M., & Jha, N., (2019). Oxygen-rich hierarchical porous graphene as an excellent electrode for supercapacitors, aqueous al-ion battery, and capacitive deionization. ACS Sustainable Chemistry & Engineering, 7, 8475–8489. Kwon, O., Bae, K., Byun, J., Lim, T., & Kim, J. J. (2020). Study on effect of complexing agents on Co oxidation/dissolution for chemical-mechanical polishing and cleaning process. Microelectronic Engineering, 227, 111308. Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., Gong, H., Shen, Z., Lin, J., & Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936-7942. Laszlo, K., & Szűcs, A., (2001). Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2, 3,4-trichlorophenol solutions. Carbon, 39 (13), 1945–1953. Lalitha, K., Reddy, J. K., Sharma, M. V. P., Kumari, V. D., & Subrahmanyam, M. (2010). Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: water mixtures under solar irradiation: a structure–activity correlation. International Journal of hydrogen energy, 35(9), 3991-4001. Lee, J., Singh, B. K., Hafeez, M. A., Oh, K., & Um, W. (2022). Comparative study of PMS oxidation with Fenton oxidation as an advanced oxidation process for Co-EDTA decomplexation. Chemosphere, 300, 134494. Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel?. Advanced materials, 16(14), 1151-1170. Li, J., Li, J., Wang, H., Cheng, B., He, B., Yan, F., Yang, Y., Guo, W., & Ngo, H. H. (2013). Electrocatalytic oxidation of n-propanol to produce propionic acid using an electrocatalytic membrane reactor. Chemical Communications, 49(40), 4501-4503. Li, D., Tang, J., Zhou, X., Li, J., Sun, X., Shen, J., Wang, L., & Han, W. (2016a). Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode. Chemosphere, 149, 49-56. Li, C., Song, C., Tao, P., Sun, M., Pan, Z., Wang, T., & Shao, M. (2016b). Enhanced separation performance of coal-based carbon membranes coupled with an electric field for oily wastewater treatment. Separation and Purification Technology, 168, 47-56. Li, X., Xu, H., & Yan, W. (2017). Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode. Journal of Alloys and Compounds, 718, 386-395. Li, J., Ji, B., Jiang, R., Zhang, P., Chen, N., Zhang, G., & Qu, L., (2018). Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. Carbon, 129, 95–103. Li, X., Shao, S., Yang, Y., Mei, Y., Qing, W., Guo, H., Peng, L. E., Wang, P., &Tang, C. Y. (2020a). Engineering Interface with a One-Dimensional RuO2/TiO2 Heteronanostructure in an Electrocatalytic Membrane Electrode: Toward Highly Efficient Micropollutant Decomposition. ACS applied materials & interfaces, 12(19), 21596-21604. Li, J., Ma, J., Dai, R., Wang, X., Chen, M., Waite, T. D., & Wang, Z. (2020b). Self-enhanced decomplexation of Cu-organic complexes and Cu recovery from wastewaters using an electrochemical membrane filtration system. Environmental Science & Technology, 55(1), 655-664. Li, B., Ma, X., Deng, J., Li, Q., Chen, W., Li, G., Chen, G., & Wang, J. (2020c). Comparison of acetaminophen degradation in UV-LED-based advance oxidation processes: Reaction kinetics, radicals contribution, degradation pathways and acute toxicity assessment. Science of the Total Environment, 723, 137993. Li, C., Feng, G., Sun, M., Pan, Z., Yan, X., Fan, X., Song, C., & Wang, T. (2022). Preparation and application of high-performance and acid-tolerant TiO2/carbon electrocatalytic membrane for organic wastewater treatment. Chemosphere, 296, 134017. Lian, P., Qin, A., Liao, L., & Zhang, K. (2021). Progress on the nanoscale spherical TiO2 photocatalysts: Mechanisms, synthesis and degradation applications. Nano Select, 2(3), 447-467. Liu, H., Vajpayee, A., & Vecitis, C. D. (2013). Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation. ACS applied materials & interfaces, 5(20), 10054-10066. Liu, Z., Zhu, M., Wang, Z., Wang, H., Deng, C., & Li, K. (2016). Effective degradation of aqueous tetracycline using a nano-TiO2/carbon electrocatalytic membrane. Materials, 9(5), 364. Liu, F., Shan, C., Zhang, X., Zhang, Y., Zhang, W., & Pan, B. (2017a). Enhanced removal of EDTA-chelated Cu (II) by polymeric anion-exchanger supported nanoscale zero-valent iron. Journal of hazardous materials, 321, 290-298. Liu, S., Wang, Y., Zhou, X., Han, W., Li, J., Sun, X., Shen, J., & Wang, L. (2017b). Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane. Electrochimica Acta, 253, 357-367. Liu, Z., Zhu, M., Zhao, L., Deng, C., Ma, J., Wang, Z., Liu, H., & Wang, H. (2017c). Aqueous tetracycline degradation by coal-based carbon electrocatalytic filtration membrane: effect of nano antimony-doped tin dioxide coating. Chemical Engineering Journal, 314, 59-68. Liu, L., Ou, Y., Gao, D., Yang, L., Dong, H., Xiao, P., & Zhang, Y. (2018). Surface engineering by a novel electrochemical activation method for the synthesis of Co3+ enriched Co(OH)2/CoOOH heterostructure for water oxidation. Journal of Power Sources, 396, 395-403. Liu, Y., Liu, F., Ding, N., Shen, C., Li, F., Dong, L., Huang, M., Yang, B., Wang, Z., & Sand, W. (2019). Boosting Cr (VI) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline: performance and mechanism. Science of The Total Environment, 695, 133926. Liu, N.-L., Chen, L.-I., Tsai, S.-W., & Hou, C.-H., (2020). Enhanced desalination of electrospun activated carbon fibers with controlled pore structures in the electrosorption process. Environmental Science: Water Research & Technology, 6(2), 312–320. Liu, Y., Wang, D., Xue, M., Song, R., Zhang, Y., Qu, G., & Wang, T. (2021). High-efficient decomplexation of Cu-EDTA and Cu removal by high-frequency nonthermal plasma oxidation/alkaline precipitation. Separation and Purification Technology, 257, 117885. Lo, C. P., Wang, G., Kumar, A., & Ramani, V. (2013). TiO2–RuO2 electrocatalyst supports exhibit exceptional electrochemical stability. Applied Catalysis B: Environmental, 140, 133-140. Lorphensri, O., Intravijit, J., Sabatini, D. A., Kibbey, T. C., Osathaphan, K., & Saiwan, C. (2006). Sorption of acetaminophen, 17α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium. Water research, 40(7), 1481-1491. Lua, A. C., & Yang, T. (2004). Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of colloid and interface science, 274(2), 594-601. Luan, C., Corva, M., Hagemann, U., Wang, H., Heidelmann, M., Tschulik, K., & Li, T. (2023). Atomic-scale insights into morphological, structural, and compositional evolution of CoOOH during oxygen evolution reaction. ACS Catalysis, 13(2), 1400-1411. Ma, J., Trellu, C., Oturan, N., Raffy, S., & Oturan, M. A. (2022). Development of Ti/TiOx foams for removal of organic pollutants from water: Influence of porous structure of Ti substrate. Applied Catalysis B: Environmental, 317, 121736. Madden, T. H., Datye, A. K., Fulton, M., Prairie, M. R., Majumdar, S. A., & Stange, B. M. (1997). Oxidation of metal− EDTA complexes by TiO2 photocatalysis. Environmental science & technology, 31(12), 3475-3481. Majumder, A., Gupta, B., & Gupta, A. K. (2019). Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. Environmental research, 176, 108542. Manthiram, A. V. M. A., Murugan, A. V., Sarkar, A., & Muraliganth, T. (2008). Nanostructured electrode materials for electrochemical energy storage and conversion. Energy & Environmental Science, 1(6), 621-638. Maruthamuthu, P., & Neta, P. (1978). Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds. The Journal of Physical Chemistry, 82(6), 710-713. Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chemical reviews, 115(24), 13362-13407. Means, J. L., Crerar, D. A., & Duguid, J. O. (1978). Migration of radioactive wastes: radionuclide mobilization by complexing agents. Science, 200(4349), 1477-1481. Mendoza-Carrasco, R., Cuerda-Correa, E. M., Alexandre-Franco, M. F., Fernández-González, C., & Gómez-Serrano, V. (2016). Preparation of high-quality activated carbon from polyethyleneterephthalate (PET) bottle waste. Its use in the removal of pollutants in aqueous solution. Journal of environmental management, 181, 522-535. Meng, Y. J., Chen, S. S., Luo, C. B., Song, Y. J., Xiong, Z. W., Li, J., & Li, D. Q. (2022). Competitive coordination strategy for preparing TiO2/C nanocomposite with adsorption-photocatalytic synergistic effect. Applied Surface Science, 603, 154395. Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review. Water research, 139, 118-131. Montenegro-Ayo, R., Morales-Gomero, J. C., Alarcon, H., Cotillas, S., Westerhoff, P., & Garcia-Segura, S. (2019). Scaling up photoelectrocatalytic reactors: a TiO2 nanotube-coated disc compound reactor effectively degrades acetaminophen. Water, 11(12), 2522. Moreira, F. C., Boaventura, R. A., Brillas, E., & Vilar, V. J. (2017). Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. Muniandy, L., Adam, F., Mohamed, A. R., & Ng, E. P. (2014). The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials, 197, 316-323. Narayanan, M., El-Sheekh, M., Ma, Y., Pugazhendhi, A., Natarajan, D., Kandasamy, G., Raja, R., Kumar, R. M. S., Kandasamy, S., Sathiyan, G., Geetha, R., Paulraj, B., Liu, G., & Kandasamy, S. (2022). Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem. Environmental Pollution, 118922. Nath, N. C. D., Debnath, T., Kim, E. K., Shaikh, M. A. A., & Lee, J. J. (2018). Nanostructured copper–cobalt based spinel for the electrocatalytic H2O2 reduction reaction. Electrochimica Acta, 273, 474-482. Nayak, S., & Chaplin, B. P. (2018). Fabrication and characterization of porous, conductive, monolithic Ti4O7 electrodes. Electrochimica Acta, 263, 299-310. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics, 81(1), 109. Palamarchuk, M., Voit, A., Papynov, E., Marinin, D., Bratskaya, S., & Avramenko, V. (2019). Quantum chemistry and experimental studies of hydrothermal destruction of Co-EDTA complexes. Journal of hazardous materials, 363, 233-241. Pan, Z., Xin, H., Xu, R., Wang, P., Fan, X., Song, Y., Song, C., & Wang, T. (2023). Carbon electrochemical membrane functionalized with flower cluster-like FeOOH catalyst for organic pollutants decontamination. Journal of Colloid and Interface Science, 640, 588-599. Panagopoulos, A., & Giannika, V. (2022). Decarbonized and circular brine management/valorization for water & valuable resource recovery via minimal/zero liquid discharge (MLD/ZLD) strategies. Journal of Environmental Management, 324, 116239. Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chemical reviews, 109(12), 6541-6569. Park, G. S., Lee, J. S., Kim, S. T., Park, S., & Cho, J. (2013). Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn–air batteries. Journal of power sources, 243, 267-273. Peng, S., Jin, G., Li, L., Li, K., Srinivasan, M., Ramakrishna, S., & Chen, J. (2016). Multifunctional electrospun nanofibers for advances in tissue regeneration, energy conversion & storage, and water treatment. Chemical Society Reviews, 45(5), 1225-1241. Peng, W., Liu, J., Liu, X., Wang, L., Yin, L., Tan, H., Hou, F., & Liang, J. (2023). Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production. Nature Communications, 14(1), 4430. Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in materials science, 58(8), 1388-1442. Qian, J., Gao, X., & Pan, B. (2020). Nanoconfinement-mediated water treatment: from fundamental to application. Environmental Science & Technology, 54(14), 8509-8526. Qin, D., Liu, Z., Zhao, Y., Xu, G., Zhang, F., & Zhang, X. (2018). A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon, 130, 664-671. Qin, M., Deshmukh, A., Epsztein, R., Patel, S. K., Owoseni, O. M., Walker, W. S., & Elimelech, M. (2019). Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 455, 100-114. Radjenovic, J., & Sedlak, D. L. (2015). Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environmental science & technology, 49(19), 11292-11302. Rekab, K., Lepeytre, C., Goettmann, F., Dunand, M., Guillard, C., & Herrmann, J. M. (2015). Degradation of a cobalt (II)–EDTA complex by photocatalysis and H2O2/UV-C. Application to nuclear wastes containing 60Co. Journal of Radioanalytical and Nuclear Chemistry, 303, 131-137. Rogov, A. B. (2015). Plasma electrolytic oxidation of A1050 aluminium alloy in homogeneous silicate-alkaline electrolytes with EDTA4− complexes of Fe, Co, Ni, Cu, La and Ba under alternating polarization conditions. Materials Chemistry and Physics, 167, 136-144. Sashkina, K. A., Polukhin, A. V., Labko, V. S., Ayupov, A. B., Lysikov, A. I., & Parkhomchuk, E. V. (2016). Fe-silicalites as heterogeneous Fenton-type catalysts for radiocobalt removal from EDTA chelates. Applied Catalysis B: Environmental, 185, 353-361. Shekargoftar, M., Krumpolec, R., & Homola, T. (2018). Enhancement of electrical properties of flexible ITO/PET by atmospheric pressure roll-to-roll plasma. Materials Science in Semiconductor Processing, 75, 95-102. Shen, Y.-Y., Sun, S.-H., Tsai, S.-W., Chen, T.-H., Hou, C.-H., (2021). Development of a membrane capacitive deionization stack for domestic wastewater reclamation: a pilot-scale feasibility study. Desalination, 500, 114851. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y., & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4), 105688. Shvedova, A., Castranova, V., Kisin, E., Schwegler-Berry, D., Murray, A., Gandelsman, V., Maynard, A., & Baron, P. (2003). Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of toxicology and environmental health Part A, 66(20), 1909-1926. Sillanpaa, M., & Pirkanniemi, K. (2001). Recent developments in chelate degradation. Environmental technology, 22(7), 791-801. Sudaryanto, Y., Hartono, S. Á., Irawaty, W., Hindarso, H., & Ismadji, S. (2006). High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource technology, 97(5), 734-739. Sun, N., Li, Z., Zhang, X., Qin, W., Zhao, C., Zhang, H., Ng, D.H., Kang, S., Zhao, H., Wang, G., (2019). Hierarchical porous carbon materials derived from kelp for superior capacitive applications. ACS Sustainable Chemistry & Engineering, 7, 8735–8743. Sun, Y., Cheng, S., Mao, Z., Lin, Z., Ren, X., & Yu, Z. (2020). High electrochemical activity of a Ti/SnO2–Sb electrode electrodeposited using deep eutectic solvent. Chemosphere, 239, 124715. Sun, X., Ma, T., Yin, D., Tan, B., Yang, F., Liu, M., Gao, P., Zhang, S., Wang, Y., & He, Y. (2021a). Adsorption mechanism of potassium oleate on cobalt surface based on cobalt interconnection CMP: a combined experimental and DFT investigation. ECS Journal of Solid State Science and Technology, 10(2), 024003. Sun, M., Wang, X., Winter, L. R., Zhao, Y., Ma, W., Hedtke, T., Kim, J.-H., & Elimelech, M. (2021b). Electrified Membranes for Water Treatment Applications. ACS ES&T Engineering. 1(4), 725-752. Ta, X. M. C., Daiyan, R., Nguyen, T. K. A., Amal, R., Tran‐Phu, T., & Tricoli, A. (2022). Alternatives to Water Photooxidation for Photoelectrochemical Solar Energy Conversion and Green H2 Production. Advanced Energy Materials, 12(42), 2201358. Tan, C., Jian, X., Su, L., Lu, X., Huang, J., Deng, J., & Chu, W. (2021). Kinetic removal of acetaminophen and phenacetin during LED-UV365 photolysis of persulfate system: Reactive oxygen species generation. Chemosphere, 269, 129337. Trellu, C., Chaplin, B. P., Coetsier, C., Esmilaire, R., Cerneaux, S., Causserand, C., & Cretin, M. (2018a). Electro-oxidation of organic pollutants by reactive electrochemical membranes. Chemosphere, 208, 159-175. Trellu, C., Coetsier, C., Rouch, J. C., Esmilaire, R., Rivallin, M., Cretin, M., & Causserand, C. (2018b). Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2. Water research, 131, 310-319. Vecitis, C. D., Gao, G., & Liu, H. (2011). Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions. The Journal of Physical Chemistry C, 115(9), 3621-3629. Vo, H. N. P., Le, G. K., Nguyen, T. M. H., Bui, X. T., Nguyen, K. H., Rene, E. R., Vo, T. D. H., Cao, N-D. T., & Mohan, R. (2019). Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere, 236, 124391. Walsh, F., & Reade, G. (1994). Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 2. Typical reactors and their performance. Analyst, 119(5), 797-803. Walsh, F. C. (2001). Electrochemical technology for environmental treatment and clean energy conversion. Pure and applied chemistry, 73(12), 1819-1837. Wan, Z., Xu, Z., Sun, Y., He, M., Hou, D., Cao, X., & Tsang, D. C. (2021). Critical impact of nitrogen vacancies in nonradical carbocatalysis on nitrogen-doped graphitic biochar. Environmental Science & Technology, 55(10), 7004-7014. Wang, J., & Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of materials chemistry, 22(45), 23710-23725. Wang, H., Guan, Q., Li, J., & Wang, T. (2014). Phenolic wastewater treatment by an electrocatalytic membrane reactor. Catalysis Today, 236, 121-126. Wang, X., Li, Y., Liu, X., Gao, S., Huang, B., & Dai, Y. (2015). Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity. Chinese Journal of Catalysis, 36(3), 389-399. Wang, S. D., Ma, Q., Wang, K., & Chen, H. W. (2018). Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide. ACS omega, 3(1), 406-413. Wang, P., Deng, Y., Hao, L., Zhao, L., Zhang, X., Deng, C., Liu, H., & Zhu, M. (2019). Continuous efficient removal and inactivation mechanism of E. coli by bismuth-doped SnO2/C electrocatalytic membrane. Environmental Science and Pollution Research, 26, 11399-11409. Wang, J., & Wang, S. (2020). Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal, 401, 126158. Wang, L., Nie, Y., Zhang, X., Zhang, G., Lu, Q., & Duan, H. (2021). Pomegranate-inspired Zn2Ti3O8/TiO2@C nanospheres with pseudocapacitive effect for ultra-stable lithium-ion batteries. Chemical Engineering Journal, 418, 129227. Wei, G., Chen, S., Fan, X., Quan, X., & Yu, H. (2015). Carbon nanotube hollow fiber membranes: High-throughput fabrication, structural control and electrochemically improved selectivity. Journal of Membrane Science, 493, 97-105. World Water Assessment Programme (Nations Unies), The United Nations World Water Development Report 2018 (United Nations Educational, Scientific and Cultural Organization, New York, United States) www.unwater.org/publications/world-water-development-report-2018/. (2018). Wu, C. Y., Tu, K. J., Deng, J. P., Lo, Y. S., & Wu, C. H. (2017). Markedly enhanced surface hydroxyl groups of TiO2 nanoparticles with superior water-dispersibility for photocatalysis. Materials, 10(5), 566. Wu, J. C. (2019). 功能性二氧化鈦-碳複合纖維應用於水中污染物之電催化降解 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU201902299 Wu, Q., He, J., Wang, F., Yang, X., & Zhu, J. (2020). Comparative study on effects of covalent-covalent, covalent-ionic and ionic-ionic bonding of carbon fibers with polyether amine/GO on the interfacial adhesion of epoxy composites. Applied Surface Science, 532, 147359. Wu, J. C., Chuang, Y. H., Liou, S. Y. H., Li, Q., & Hou, C. H. (2022). In situ engineering of highly conductive TiO2/carbon heterostructure fibers for enhanced electrocatalytic degradation of water pollutants. Journal of hazardous materials, 429, 128328. Xu, X., Tan, H., Wang, Z., Wang, C., Pan, L., Kaneti, Y.V., Yang, T., Yamauchi, Y., (2019). Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination. Environ. Sci.: Nano, 6, 981–989. Xu, Y., Wang, R., Wang, J., Li, J., Jiao, T., & Liu, Z. (2021a). Facile fabrication of molybdenum compounds (Mo2C, MoP and MoS2) nanoclusters supported on N-doped reduced graphene oxide for highly efficient hydrogen evolution reaction over broad pH range. Chemical Engineering Journal, 417, 129233. Xu, M., Wang, A., Xiang, Y., & Niu, J. (2021b). Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance supercapacitor. Journal of Cleaner Production, 315, 128110. Xu, Z., Zhang, Q., Li, X., & Huang, X. (2022). A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods. Chemical Engineering Journal, 429, 131688. Xue, Y., & Traina, S. J. (1996). Oxidation Kinetics of Co (II)−EDTA in Aqueous and Semi-Aqueous Goethite Suspensions. Environmental science & technology, 30(6), 1975-1981. Yaghmaeian, K., Moussavi, G., Mashayekh-Salehi, A., Mohseni-Bandpei, A., & Satari, M. (2017). Oxidation of acetaminophen in the ozonation process catalyzed with modified MgO nanoparticles: effect of operational variables and cytotoxicity assessment. Process Safety and Environmental Protection, 109, 520-528. Yahya, M.A., Al-Qodah, Z., Ngah, C.W.Z., (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renewable and Sustainable Energy Reviews, 46, 218–235. Yang, Y., Li, J., Wang, H., Song, X., Wang, T., He, B., Liang, X., & Ngo, H. H. (2011). An electrocatalytic membrane reactor with self‐cleaning function for industrial wastewater treatment. Angewandte Chemie, 123(9), 2196-2198. Yang, K., Liu, Y., & Qiao, J. (2017). Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water. Separation and Purification Technology, 189, 459-466. Yang, Z., Wang, Y., Chen, X., Wu, H., & Zhang, Y. (2019). Mg2+ and Ti4+ co–doped spinel LiMn2O4 as lithium‐ion battery cathode. ChemistrySelect, 4(33), 9583-9589. Yang, Y. (2020). Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control. Frontiers of Environmental Science & Engineering, 14, 1-12. Yang, K., Lin, H., Feng, X., Jiang, J., Ma, J., & Yang, Z. (2022). Energy-efficient removal of trace antibiotics from low-conductivity water using a Ti4O7 reactive electrochemical ceramic membrane: Matrix effects and implications for byproduct formation. Water Research, 224, 119047. Yeh, C.-L., Hsi, H.-C., Li, K.-C., Hou, C.-H., (2015). Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination. 367, 60–68. Yi, G., Chen, S., Quan, X., Wei, G., Fan, X., & Yu, H. (2018). Enhanced separation performance of carbon nanotube–polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance. Separation and Purification Technology, 197, 107-115. Yu, T.H., Shiu, H.Y., Lee, M., Chiueh, P.T., Hou, C.H., (2016). Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology. Desalination, 399, 53–60. Yu, K., Zhu, H., Qi, H., & Liang, C. (2018). High surface area carbon materials derived from corn stalk core as electrode for supercapacitor. Diamond and Related Materials, 88, 18-22. Yu, S., Gao, Y., Khan, R., Liang, P., Zhang, X., & Huang, X. (2020). Electrospun PAN-based graphene/SnO2 carbon nanofibers as anodic electrocatalysis microfiltration membrane for sulfamethoxazole degradation. Journal of Membrane Science, 614, 118368. Yu, Y. B., Zhang, Q., Wu, L. Y., Zhou, Y. L., Wang, B. X., Chen, B. Y., & Hong, J. M. (2021a). Reaction mechanism of N-(4-hydroxyphenyl) ethanamide electrodegradation via phosphorus-graphene prepared from triphenylphosphine: Generation and destruction of the reactive species. Chemical Engineering Journal, 403, 126322. Yu, F., Tao, L., Yang, Y., & Wang, S. (2021b). Electrochemical catalytic mechanism of N-doped electrode for in-situ generation of OH in metal-free EAOPs to degrade organic pollutants. Separation and Purification Technology, 277, 119432. Yuan, X., Lee, J.G., Yun, H., Deng, S., Kim, Y.J., Lee, J.E., Kwak, S.K., Lee, K.B., (2020). Solving two environmental issues simultaneously: waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2. Chemical Engineering Journal, 397, 125350. Yuan, X., Wang, J., Deng, S., Suvarna, M., Wang, X., Zhang, W., Hamilton, S.T., Alahmed, A., Jamal, A., Park, A.-H.A., Bi, X., Ok, Y.S., (2022a). Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture. Renewable and Sustainable Energy Reviews, 162, 112413. Zaky, A. M., & Chaplin, B. P. (2013). Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment. Environmental science & technology, 47(12), 6554-6563. Zeng, H., Liu, S., Chai, B., Cao, D., Wang, Y., & Zhao, X. (2016). Enhanced photoelectrocatalytic decomplexation of Cu–EDTA and Cu recovery by persulfate activated by UV and cathodic reduction. Environmental Science & Technology, 50(12), 6459-6466. Zhang, Y., Wu, B., Xu, H., Liu, H., Wang, M., He, Y., & Pan, B. (2016). Nanomaterials-enabled water and wastewater treatment. NanoImpact, 3, 22-39. Zhang, B., Wang, H., Zuo, Z., Wang, H., & Zhang, J. (2018). Tunable CoFe-based active sites on 3D heteroatom doped graphene aerogel electrocatalysts via annealing gas regulation for efficient water splitting. Journal of Materials Chemistry A, 6(32), 15728-15737. Zhang, Y., Wang, H., Li, Y., Wang, B., Huang, J., Deng, S., Yu, G., & Wang, Y. (2020). Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. Water Research, 183, 116115. Zhang, S., Hedtke, T., Zhou, X., Elimelech, M., & Kim, J. H. (2021). Environmental applications of engineered materials with nanoconfinement. ACS ES&T Engineering, 1(4), 706-724. Zhang, Q., Chen, S., Huang, Z., Liu, Y., & Hong, J. M. (2022a). Designable graphitic N composite of N doped graphene oxide via low temperature O3-annealing for bisphenol A electrocatalytic degradation. Applied Surface Science, 600, 154089. Zhang, Q., Chen, S., Yu, Y. B., & Hong, J. M. (2022b). Paracetamol Degradation and Disinfection Via Electrocatalytic Oxidation by Using N-doped Graphene as Anode. Catalysis Letters, 1-18. Zhang, S., Huang, J., Wu, X., Leng, W., Lu, H., Xu, X., & Wu, D. (2023). Enhanced PPCP electrooxidation in pharmaceutical wastewater by cocatalyst modification over Ti-doped α-Fe2O3 electrodes. Chemical Engineering Journal, 474, 145523. Zhao, Y., Sun, M., Wang, X., Wang, C., Lu, D., Ma, W., Kube, S.A., Ma, J. & Elimelech, M. (2020). Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nature communications, 11(1), 6228. Zhou, Y. L., Zhang, Q., Yu, Y. B., Wang, B. X., & Hong, J. M. (2021). Active precursor-induced high-content graphitic-N-doped graphene oxide for the electrocatalytic degradation of paracetamol. Applied Surface Science, 542, 148753. Zhu, Y., Fan, W., Zhou, T., & Li, X. (2019). Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of the Total Environment, 678, 253-266. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96208 | - |
| dc.description.abstract | 隨著產業的持續創新和升級,用水需求急劇增加,對水質的要求也日益提高,突顯廢水處理和循環再利用的重要性。工業廢水中常含有重金屬,對人體健康和環境構成嚴重威脅,特別是當這些金屬以穩定的金屬有機螯合物形式存在時。由於螯合物結構複雜,傳統水處理方法難以有效去除,因此,有效的解螯合 (Decomplexation) 技術對於處理這些螯合重金屬並促進金屬資源回收至關重要。
本研究通過開發新穎電化學膜(Electrochemical membrane)和使用廢塑料衍生的活性碳電極,實現對鈷金屬螯合物的有效破壞及釋放鈷自由離子的捕捉。這些功能化電化學膜旨在增強導電性,並提供豐富的反應位點來分解破壞有機污染物。透過產生反應性氧物種,如羥基自由基(•OH)、超氧陰離子(O2•–)和單線氧(1O2),並藉由二氧化鈦(TiO2)的引入顯著增強•OH的生成與貢獻,從而優化了反應動力學並為降解機理提供了新見解。此外,TiO2碳複合電化學膜在光電化學程序中表現出優異的降解及解螯合性能,在20分鐘內去除了超過90%的EDTA-Na2,並在180分鐘內分解了約50%的Co-EDTA,強調了氫氧自由基在提升解螯合效率中的關鍵作用。此外,通過光電化學程序亦成功於陰極回收鈷,並驗證該膜在處理半導體實場含鈷螯合廢水的有效性。 此外,本研究提出了一種高效且可持續的離子捕捉方法,利用廢PET塑料瓶製成活性碳電極,並應用於電容去離子技術(Capacitive deionization)中。經1000°C製備的PET衍生電極展現出1443 m2/g的高比表面積、顯著的中孔率(Vmeso/Vtot為41.3%)和良好的導電性,從而實現了卓越的離子捕捉性能和高效節能的脫鹽效果。此方法不僅通過回收廢PET有效解決塑料廢棄物污染問題,還提供一種可持續的離子捕捉和水質淨化解決方案。 總體而言,本研究引入新穎功能性電化學膜於電化水處理技術中,提升鈷金屬螯合物的破壞與回收過程,並展示廢料衍生材料在提供可持續水淨化解決方案中的巨大潛力。 | zh_TW |
| dc.description.abstract | Industrial wastewater frequently contains heavy metals, posing serious risks to both human health and the environment, particularly when these metals exist in the form of stable metal-organic chelates. These chelates are difficult to remove using traditional water treatment methods due to their complex structures, emphasizing the need for advanced technologies that can break down these compounds and recover valuable metals.
This study advances electrochemical water treatment by developing innovative electrochemical membranes and utilizing waste-derived activated carbon electrodes. The functionalized electrochemical membranes are designed to enhance conductivity and provide abundant reactive sites for decomposing organic pollutants. These membranes generate reactive oxygen species (ROS) such as •OH, O2•–, and 1O2, with TiO2 integration significantly boosting •OH generation. This observation deepens our understanding of degradation mechanisms and optimizes reaction kinetics. In a photo-assisted electrochemical reactor, the TiO2 decorated electrified membrane demonstrated over 90% EDTA-Na2 removal in 20 minutes and approximately 50% Co-EDTA decomposition within 180 minutes. These results demonstrated its ability to decomplex EDTA-chelated cobalt and successful cobalt recovery through a photo-electrochemical process. The membrane's performance was further validated in the treatment of real semiconductor wastewater containing cobalt complexes. Furthermore, the study proposes a promising and efficient method for capturing liberated ions released from heavy metal complexes. Activated carbons derived from waste PET bottles were developed for ion capture using capacitive deionization (CDI) technology. The PET-derived electrode prepared at 1000°C exhibited a high surface area of 1443 m2/g, significant mesoporosity (Vmeso/Vtot of 41.3%), and good conductivity. These properties of PET-based electrodes enabled outstanding ion capture performance and energy-efficient desalination using CDI. This approach not only addresses the issue of plastic pollution by recycling waste PET but also offers an eco-friendly solution for ion capture. Overall, the research presents key innovations in electrochemical membrane technology, demonstrates the effective degradation and recovery of cobalt from metal-organic complexes, and showcases the potential of waste-derived electrodes in CDI as a sustainable solution for advanced water treatment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:11:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:11:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGMENT i
中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix DECLARATION OF PUBLICATIONS xv SYMBOLS AND ABBREVIATIONS xvii CHAPTER 1 INTRODUCTION 1 1.1 Background/Problem statement 1 1.2 Research objectives 3 1.3 Organization of thesis 5 CHAPTER 2 LITERATURE REVIEW 7 2.1 Advances in the decontamination of heavy metal complexes (HMC) 7 2.1.1 Occurrence and concerns of HMCs 7 2.1.2 Cobalt complexes 9 2.1.3 Current treatment technologies for HMCs 9 2.2 Opportunities in electrified water treatment processes 11 2.2.1 Electrochemical oxidation for organic decomposition 13 2.2.2 Capacitive deionization (CDI) for ion capture 14 2.2.3 Recent advances in electrochemical coupling process 16 2.3 Progress in electrochemical membranes: Design and applications 17 2.3.1 Introduction to electrochemical membranes 17 2.3.2 Design and preparation of electrochemical membranes 18 2.3.3 Fabrication techniques: Electrospinning technology 22 2.3.4 Application in water treatment 23 2.4 Knowledge gaps 27 CHAPTER 3 EXPERIMENTAL METHODS 28 3.1 Materials and chemicals 28 3.2 Characterization and analytical instruments 29 3.3 Fabrication of electrochemical membranes 30 3.4 Fabrication of porous PET-derived activated carbon electrodes 31 3.5 Experimental setup and methods 32 3.5.1 Evaluation of electrochemical characteristics 32 3.5.2 Investigation of destruction mechanisms using tailored electrochemical membranes 34 3.5.3 Photo-electrochemical experiments for cobalt complexes destruction 35 3.5.4 Electrochemical capture of liberated ions 36 3.6 Analytical Methods 37 3.6.1 Quantifying organic compound and kinetic studies 37 3.6.2 Determination of Co-EDTA complexes and cobalt species 39 CHAPTER 4 EXPLORING DESTRUCTION PATHWAYS WITH TAILORED ELECTROCHEMICAL MEMBRANES 43 4.1 Surficial structure and chemical characteristics of electrochemical membranes 44 4.2 Electrochemical and optical features 48 4.3 Degradation and kinetic studies of the target organic pollutant 51 4.4 Mechanistic insights into dominant reactive oxygen species 56 4.5 Evaluation of energy consumption and practical perspectives 60 4.6 Summary of findings 62 CHAPTER 5 EVALUATION OF PHOTO-ELECTROCHEMICAL DECOMPLEXATION PERFORMANCE OF COBALT CHELATES 63 5.1 Destruction of EDTA and Co-EDTA via electrochemical (EC) and photo-electrochemical (PEC) pathways 64 5.2 Effect of the applied voltage in the PEC system 67 5.3 Effect of electrolyte concentration 69 5.4 Application of the PEC system for real wastewater matrices 71 5.5 Characterization of recovered cobalt 75 5.6 Mechanistic insights into photo-electrochemical decomplexation using a TiO2 decorated electrified carbon membrane 77 5.7 Summary of findings 80 CHAPTER 6 ELECTROCHEMICAL CAPTURE OF LIBERATED IONS BY CAPACITIVE DEIONIZATION 81 6.1 Morphological and structural characterizations 82 6.2 Electrochemical properties 88 6.3 Evaluation of electrochemical ion capture performance 91 6.4 Application for cobalt ion capture 97 6.6 Summary of findings 98 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 99 7.1 Conclusions 99 7.2 Recommendations 101 REFERENCE 103 LIST OF PUBLICATION 127 | - |
| dc.language.iso | en | - |
| dc.subject | 電化水處理技術 | zh_TW |
| dc.subject | 活性氧物種 | zh_TW |
| dc.subject | 二氧化鈦複合碳膜 | zh_TW |
| dc.subject | 鈷螯合物破壞 | zh_TW |
| dc.subject | 鈷回收 | zh_TW |
| dc.subject | 廢塑膠瓶衍生活性碳 | zh_TW |
| dc.subject | 電化學膜 | zh_TW |
| dc.subject | Waste PET-derived activated carbon | en |
| dc.subject | Electrochemical membranes | en |
| dc.subject | Electrified water treatment technologies | en |
| dc.subject | Reactive oxygen species | en |
| dc.subject | Co-EDTA decomplexation | en |
| dc.subject | TiO2 decorated electrified carbon membranes | en |
| dc.subject | Cobalt recovery | en |
| dc.title | 開發功能性電化學膜於高效鈷金屬螯合物破壞及鈷自由離子捕捉之研析 | zh_TW |
| dc.title | Tailoring functional electrochemical membranes for efficient decomplexation of cobalt complexes and subsequent capture of liberated cobalt ion | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李公哲;林逸彬;陳威翔;陳佳吟;林進榮;莊易學 | zh_TW |
| dc.contributor.oralexamcommittee | Kung-Cheh Li;Yi-Pin Lin;Wei-Hsiang Chen;Chia-Ying Chen;Chin-Jung Lin;Yi-Hsueh Chuang | en |
| dc.subject.keyword | 電化學膜,電化水處理技術,活性氧物種,二氧化鈦複合碳膜,鈷螯合物破壞,鈷回收,廢塑膠瓶衍生活性碳, | zh_TW |
| dc.subject.keyword | Electrochemical membranes,Electrified water treatment technologies,Reactive oxygen species,Co-EDTA decomplexation,TiO2 decorated electrified carbon membranes,Cobalt recovery,Waste PET-derived activated carbon, | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU202404450 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-10-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2029-10-06 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 8.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
