請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96197完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信銘 | zh_TW |
| dc.contributor.advisor | Hsin-Min Lu | en |
| dc.contributor.author | 江岳憫 | zh_TW |
| dc.contributor.author | Yueh-Min Chiang | en |
| dc.date.accessioned | 2024-11-28T16:08:35Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2024-11-28 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-11 | - |
| dc.identifier.citation | Cheng, X., Chen, Y., Cheng, B., Li, S., and Zhou, G. (2017). An emotion cause corpus for chinese microblogs with multiple-user structures. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 17(1):1–19.
Dang, N. C., Moreno-Garc ́ıa, M. N., and De la Prieta, F. (2020). Sentiment analysis based on deep learning: A comparative study. Electronics, 9(3):483. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics. Ding, J. and Kejriwal, M. (2020). An experimental study of the effects of position bias on emotion cause extraction. arXiv preprint arXiv:2007.15066. Ding, Z., Xia, R., and Yu, J. (2020a). Ecpe-2d: Emotion-cause pair extraction based on joint two-dimensional representation, interaction and prediction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3161–3170. Ding, Z., Xia, R., and Yu, J. (2020b). End-to-end emotion-cause pair extraction based on sliding window multi-label learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3574–3583. Ekman, P. (1984). Expression and the nature of emotion. Approaches to Emotion, 3(19):344. Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-4):169–200. Fan, C., Yuan, C., Du, J., Gui, L., Yang, M., and Xu, R. (2020). Transition-based directed graph construction for emotion-cause pair extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3707–3717. Gaind, B., Syal, V., and Padgalwar, S. (2019). Emotion detection and analysis on social media. arXiv preprint arXiv:1901.08458. Gao, K., Xu, H., and Wang, J. (2015). A rule-based approach to emotion cause detection for chinese micro-blogs. Expert Systems with Applications, 42(9):4517–4528. Gui, L., Hu, J., He, Y., Xu, R., Lu, Q., and Du, J. (2017). A question answering approach for emotion cause extraction. In Palmer, M., Hwa, R., and Riedel, S., editors, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1593–1602, Copenhagen, Denmark. Association for Computational Linguistics. Gui, L., Xu, R., Wu, D., Lu, Q., and Zhou, Y. (2018). Event-driven emotion cause extraction with corpus construction. In Social Media Content Analysis: Natural Language Processing and Beyond, pages 145–160. World Scientific. Gui, L., Yuan, L., Xu, R., Liu, B., Lu, Q., and Zhou, Y. (2014). Emotion cause detection with linguistic construction in chinese weibo text. In Natural Language Processing and Chinese Computing: Third CCF Conference, NLPCC 2014, Shenzhen, China, December 5-9, 2014. Proceedings 3, pages 457–464. Springer. Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021a). Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685. Hu, G., Lu, G., and Zhao, Y. (2021b). Bidirectional hierarchical attention networks based on document-level context for emotion cause extraction. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 558–568. Krebs, F., Lubascher, B., Moers, T., Schaap, P., and Spanakis, G. (2017). Social emotion mining techniques for facebook posts reaction prediction. arXiv preprint arXiv:1712.03249. Lee, S. Y. M., Chen, Y., and Huang, C.-R. (2010). A text-driven rule-based system for emotion cause detection. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pages 45–53. Lialin, V., Deshpande, V., and Rumshisky, A. (2023). Scaling down to scale up: A guide to parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647. Luengo,I.,Navas,E.,andHerna ́ez,I.(2010). Featureanalysisandevaluationfor automatic emotion identification in speech. IEEE Transactions on Multimedia, 12(6):490–501. Nasukawa, T. and Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. In Proceedings of the 2nd International Conference on Knowledge Capture, pages 70–77. Nguyen, H.-H. and Nguyen, M.-T. (2023). Emotion-cause pair extraction as question answering. arXiv preprint arXiv:2301.01982. Oberla ̈nder, L. A. M., Kim, E., and Klinger, R. (2020). Goodnewseveryone: A corpus of news headlines annotated with emotions, semantic roles, and reader perception. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 1554–1566. Oberla ̈nder, L. A. M. and Klinger, R. (2020). Token sequence labeling vs. clause classification for English emotion stimulus detection. In Gurevych, I., Apidianaki, M., and Faruqui, M., editors, Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics, pages 58–70, Barcelona, Spain (Online). Association for Computational Linguistics. Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32. Plutchik, R. (1980). Emotion: A psychoevolutionary synthesis, harper and row. New York. Plutchik, R. (2001). The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. American Scientist, 89(4):344–350. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67. Ruths, D. and Pfeffer, J. (2014). Social media for large studies of behavior. Science, 346(6213):1063–1064. Stieglitz, S. and Dang-Xuan, L. (2013). Emotions and information diffusion in social media—sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4):217–248. Tanna, D., Dudhane, M., Sardar, A., Deshpande, K., and Deshmukh, N. (2020). Sentiment analysis on social media for emotion classification. In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pages 911–915. IEEE. Turner, J. (2000). On the Origins of Human Emotions: A Sociological Inquiry Into the Evolution of Human Affect. Stanford University Press. Wei, P., Zhao, J., and Mao, W. (2020). Effective inter-clause modeling for end-to-end emotion-cause pair extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3171–3181. Xia, R. and Ding, Z. (2019). Emotion-cause pair extraction: A new task to emotion analysis in texts. In Korhonen, A., Traum, D., and Ma`rquez, L., editors, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1003–1012, Florence, Italy. Association for Computational Linguistics. Xu, H., Yang, W., and Wang, J. (2015). Hierarchical emotion classification and emotion component analysis on chinese micro-blog posts. Expert Systems with Applications, 42(22):8745–8752. Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua, A., and Raffel, C. (2021). mT5: A massively multilingual pre-trained text-to-text transformer. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 483–498, Online. Association for Computational Linguistics. Yang, D. and Lee, W.-S. (2009). Music emotion identification from lyrics. In 2009 11th IEEE International Symposium on Multimedia, pages 624–629. IEEE. Zhang, S., Wei, Z., Wang, Y., and Liao, T. (2018). Sentiment analysis of chinese micro-blog text based on extended sentiment dictionary. Future Generation Computer Systems, 81:395–403. Zheng, X., Liu, Z., Zhang, Z., Wang, Z., and Wang, J. (2022). Ueca-prompt: Universal prompt for emotion cause analysis. In Proceedings of the 29th International Conference on Computational Linguistics, pages 7031–7041. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96197 | - |
| dc.description.abstract | 人類的行為,通常與其情緒息息相關,深深地影響著人們生活中 的種種決策,關於情緒的分析,多年以來一直是學者們非常注重的領 域,而近年來,除了對於情緒本身的發現與分析,挖掘產生情緒的原 因,也成為能夠更深入了解使用者行為的重要因素。目前與情緒原因 分析相關的研究,主要致力於提高模型的精準度。然而,過去研究中 所使用的資料集,多半使用以新聞為來源的文章,主要皆使用情緒較 中立且重複性較高的詞彙,忽略了較主觀的表達,同時也限縮了模型 應用的可能性。
了可以使情緒原因擷取擁有更廣泛的應用,本研究建立一個全新的 情緒原因對擷取之資料集,資料來源基於使用者可以自由發表的社群 媒體平台 Dcard,使得資料集包含更多元的字彙及情緒強度更強烈的 表達,也配合更多與時俱進的現代用語,使得任務能夠更貼近現實社 會上的應用。因應資料集多元化可能降低模型的表現能力,不同於過 去傳統的預測流程,我們也提出了新的預測框架,應用大型語言模型 以及輕量化學習的方式來進行模型的訓練,不僅保留大型語言模型的 文字理解能力,同時也讓模型能夠符合任務的需求。 最終的實驗結果顯示我們在過去研究所使用的資料集中擁有相當的 表現,也在我們建立的資料集中達到最好的表現,說明了我們所提出 的模型框架能夠有效地理解文章中包含的情緒及對應原因,且更能配 適于多元的資料來源,除此之外,透過實驗的結果與模型的應用,我 們也能夠分析模型的錯誤來修正未來研究的方向以及社群媒體文章的 傾向來探討使用者行為。 | zh_TW |
| dc.description.abstract | Human behavior is often closely linked to emotions, significantly influencing various life decisions. Emotion analysis has long been a critical focus for scholars. In recent years, beyond discovering and analyzing emotions, identifying the causes of emotions has become vital for understanding user behavior more deeply. Current research related to emotion cause analysis primarily aims to enhance model accuracy. However, most of the datasets used in previous studies consist of news articles, which generally employ neutral and repetitive vocabulary, neglecting more subjective expressions and limiting the models’ applicability.
To broaden the application of emotion cause extraction, this study introduces a novel dataset about Emotion Cause Pair Extraction sourced from the social media platform Dcard, where users can freely post content. This dataset includes a more diverse vocabulary and more intense emotional expressions, incorporating modern terminology to align the task more closely with real-world applications. To address the potential performance decline due to dataset diversity, we propose a new predictive framework. This framework leverages Large Language Models and Parameter-Efficient Fine-Tuning techniques for training, retaining the language comprehension capabilities of large models while meeting task-specific requirements. The final experimental results demonstrate that our approach performs comparably on traditional datasets and achieves superior performance on our proposed dataset. This confirms that our model framework can effectively understand the emotions and corresponding causes within texts and better adapt to diverse data sources. Furthermore, through experimental outcomes and model applications, we can analyze errors to refine future research directions and explore user behavior tendencies in social media posts. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:08:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-28T16:08:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Background 1 1.2 ResearchMotivation 3 1.3 ResearchObjective 4 Chapter 2 Literature Review 6 2.1 EmotionsinSocialMedia 6 2.2 EmotionCauseAnalysis 7 2.2.1 EmotionCasueExtraction 8 2.2.2 EmotionCausePairExtraction 9 2.3 LargeLanguageModel 12 2.3.1 Multilingual Text-To-Text Transfer Transformer (mT5) 13 2.4 Parameter-EfficientFine-tuning 14 2.4.1 Low-RankAdaptation 15 Chapter 3 Research Gaps and Research Questions 17 3.1 ResearchGaps 17 3.2 ResearchQuestions 18 Chapter 4 Dataset 19 4.1 AboutDcardPlatform 19 4.2 DataCollectionandPreprocessing 21 4.2.1 ArticleSelection 21 4.2.2 DataPreprocessing 22 4.3 DataAnnotation 23 4.3.1 AnnotationGuidelines 23 4.3.2 ExampleofAnnotation 25 4.4 ComparisonBetweenDatasets 26 Chapter 5 Methodology 31 5.1 TaskFormulation 31 5.2 OverviewofOurProposedMethod 32 5.3 Pre-trainedLargeLanguageModel 34 5.4 Parameter-EfficientFine-Tuning 34 5.5 Question-AnsweringParadigm 35 5.5.1 Prompting 35 5.5.2 AnswerTransformation 36 5.6 Multi-Question 40 Chapter 6 Performance Evaluation 43 6.1 ExperimentalDesign 43 6.1.1 Baselines 43 6.1.2 ChatGPT 44 6.2 EvaluationProcedureandMetrics 46 6.3 ExperimentalSettings 47 6.4 ResultsandDiscussion 48 6.5 AdditionalResults 51 6.6 ApplicationShowcase 53 Chapter 7 Error Analysis 59 7.1 ErrorClassification 59 7.2 ECPE-LPonDcarddataset 61 7.3 ECPE-LPonBenchmarkDataset 66 7.4 ErrorsinChatGPT 69 Chapter 8 Conclusions and Future Directions 72 8.1 Conclusions 72 8.2 FutureDirections 73 References 74 | - |
| dc.language.iso | en | - |
| dc.subject | 輕量化學習 | zh_TW |
| dc.subject | 社群媒體平台 | zh_TW |
| dc.subject | 大型語言模型 | zh_TW |
| dc.subject | 情緒與原因組合擷取 | zh_TW |
| dc.subject | 情緒原因分析 | zh_TW |
| dc.subject | Social Media Platform | en |
| dc.subject | Emotion Cause Analysis | en |
| dc.subject | Emotion Cause Pair Extraction | en |
| dc.subject | Large Language Model | en |
| dc.subject | Parameter-Efficient Fine-tuning | en |
| dc.title | 基於中文社群平台的情緒原因對擷取 | zh_TW |
| dc.title | Emotion Cause Pair Extraction for Chinese Social Media Platform | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 柯士文;簡宇泰 | zh_TW |
| dc.contributor.oralexamcommittee | Shi-Wen Ke;Yu-Tai Chien | en |
| dc.subject.keyword | 情緒原因分析,情緒與原因組合擷取,大型語言模型,輕量化學習,社群媒體平台, | zh_TW |
| dc.subject.keyword | Emotion Cause Analysis,Emotion Cause Pair Extraction,Large Language Model,Parameter-Efficient Fine-tuning,Social Media Platform, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202404363 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-09-12 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 7.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
