請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐海仁 | zh_TW |
| dc.contributor.advisor | Hiran A. Ariyawansa | en |
| dc.contributor.author | 林祐楨 | zh_TW |
| dc.contributor.author | Yu-Chen Lin | en |
| dc.date.accessioned | 2024-11-19T16:09:45Z | - |
| dc.date.available | 2024-11-20 | - |
| dc.date.copyright | 2024-11-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-11-13 | - |
| dc.identifier.citation | Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H., & Weber, T. (2023). antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Research, 51(W1), W46–W50. https://doi.org/10.1093/nar/gkad344
Bonsch, B., Belt, V., Bartel, C., Duensing, N., Koziol, M., Lazarus, C. M., Bailey, A. M., Simpson, T. J., & Cox, R. J. (2016). Identification of genes encoding squalestatin S1 biosynthesis and in vitro production of new squalestatin analogues. Chemical Communications, 52(41), 6777–6780. https://doi.org/10.1039/C6CC02130A Brakhage, A. A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11(1), 21–32. https://doi.org/10.1038/nrmicro2916 Caplins, L., & Halvorson, S. J. (2017). Collecting Ophiocordyceps sinensis: An emerging livelihood strategy in the Garhwal, Indian Himalaya. Journal of Mountain Science, 14, 390–402. https://doi.org/10.1007/s11629-016-3892-8 Chai, L., Li, J., Guo, L., Zhang, S., Chen, F., Zhu, W., & Li, Y. (2024). Genomic and transcriptome analysis reveals the biosynthesis network of cordycepin in Cordyceps militaris. Genes, 15(5), Article 5. https://doi.org/10.3390/genes15050626 Chang, H.-S., Cheng, M.-J., Wu, M.-D., Chan, H.-Y., Hsieh, S.-Y., Lin, C.-H., Yech, Y.-J., & Chen, I.-S. (2017). Secondary metabolites produced by an endophytic fungus Cordyceps ninchukispora from the seeds of Beilschmiedia erythrophloia Hayata. Phytochemistry Letters, 22, 179–184. https://doi.org/10.1016/j.phytol.2017.08.005 Chen, L., Liu, Y., Guo, Q., Zheng, Q., & Zhang, W. (2018). Metabolomic comparison between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris. Biomedical Chromatography, 32, e4279. https://doi.org/10.1002/bmc.4279 Chiriví, J., Danies, G., Sierra, R., Schauer, N., Trenkamp, S., Restrepo, S., & Sanjuan, T. (2017). Metabolomic profile and nucleoside composition of Cordyceps nidus sp. nov. (Cordycipitaceae): A new source of active compounds. PLoS One, 12(6), e0179428. https://doi.org/10.1371/journal.pone.0179428 Chuang, W.-Y. (2020). Phylogeny of Cordyceps species and their bioactive compounds study in Taiwan [National Taiwan University]. https://www.airitilibrary.com/Article/Detail/U0001-1308202013235100 Chuang, W.-Y., Lin, Y.-C., Bhushan, S., Luangsa-ard, J. J., Marc, S., Tzean, S.-S., Wu, M.-L., Ko, C.-C., Hsieh, S.-Y., Wang, S.-C., Shen, T.-L., & Ariyawansa, H. A. (2024). Phylogenetic diversity and morphologicl characterization of cordycipitaceous species in Taiwan. Studies in Mycology, 109, 1–56. Das, G., Shin, H.-S., Leyva-Gómez, G., Prado-Audelo, M. L. D., Cortes, H., Singh, Y. D., Panda, M. K., Mishra, A. P., Nigam, M., Saklani, S., Chaturi, P. K., Martorell, M., Cruz-Martins, N., Sharma, V., Garg, N., Sharma, R., & Patra, J. K. (2021). Cordyceps spp.: A review on its immune-stimulatory and other biological potentials. Frontiers in Pharmacology, 11, 602364. https://doi.org/10.3389/fphar.2020.602364 De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666–2669. https://doi.org/10.1093/bioinformatics/bty149 Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78. https://doi.org/10.1002/mas.20108 Dong, C.-H., & Yao, Y.-J. (2008). In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. LWT - Food Science and Technology, 41(4), 669–677. https://doi.org/10.1016/j.lwt.2007.05.002 Doyle, J. J., & Doyle, J. L. (Eds.). (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15. Eleutherakis-Papaiakovou, V., Bamias, A., & Dimopoulos, M. A. (2004). Thalidomide in cancer medicine. Annals of Oncology, 15, 1151–1160. https://doi.org/10.1093/annonc/mdh300 Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1), 238. https://doi.org/10.1186/s13059-019-1832-y Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117(17), 9451–9457. https://doi.org/10.1073/pnas.1921046117 Folin, O., & Denis, W. (1915). A colorimetric method for the determination of phenols (and phenol derivatives) in urine. Journal of Biological Chemistry, 22(2), 305–308. https://doi.org/10.1016/S0021-9258(18)87648-7 Fukumoto, L. R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry, 48(8), 3597–3604. https://doi.org/10.1021/jf000220w Gabriel, L., Brůna, T., Hoff, K. J., Ebel, M., Lomsadze, A., Borodovsky, M., & Stanke, M. (2024). BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Research. https://doi.org/10.1101/gr.278090.123 Gao, Y.-L., Yu, C., & Li, L. (2022). Heterologous expression of a natural product biosynthetic gene cluster from Cordyceps militaris. The Journal of Antibiotics, 75(1), Article 1. https://doi.org/10.1038/s41429-021-00478-3 Gilchrist, C. L. M., & Chooi, Y.-H. (2021). clinker & clustermap.js: Automatic generation of gene cluster comparison figures. Bioinformatics, 37(16), 2473–2475. https://doi.org/10.1093/bioinformatics/btab007 Godio, R. P., Fouces, R., & Martín, J. F. (2007). A squalene epoxidase is involved in biosynthesis of both the antitumor compound clavaric acid and sterols in the basidiomycete H. sublateritium. Chemistry & Biology, 14(12), 1334–1346. https://doi.org/10.1016/j.chembiol.2007.10.018 Gotting, K., May, D. S., Sosa-Calvo, J., Khadempour, L., Francoeur, C. B., Berasategui, A., Thairu, M. W., Sandstrom, S., Carlson, C. M., Chevrette, M. G., Pupo, M. T., Bugni, T. S., Schultz, T. R., Johnston, J. S., Gerardo, N. M., & Currie, C. R. (2022). Genomic diversification of the specialized parasite of the fungus-growing ant symbiosis. Proceedings of the National Academy of Sciences, 119(51), e2213096119. https://doi.org/10.1073/pnas.2213096119 Grigoriev, I. V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., Smirnova, T., Nordberg, H., Dubchak, I., & Shabalov, I. (2014). MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Research, 42(D1), D699–D704. https://doi.org/10.1093/nar/gkt1183 Guo, F.-Q., Li, A., Huang, L.-F., Liang, Y.-Z., & Chen, B.-M. (2006). Identification and determination of nucleosides in Cordyceps sinensis and its substitutes by high performance liquid chromatography with mass spectrometric detection. Journal of Pharmaceutical and Biomedical Analysis, 40(3), 623–630. https://doi.org/10.1016/j.jpba.2005.07.034 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 Hai, Y., Huang, A. M., & Tang, Y. (2019). Structure-guided function discovery of an NRPS-like glycine betaine reductase for choline biosynthesis in fungi. Proceedings of the National Academy of Sciences, 116(21), 10348–10353. https://doi.org/10.1073/pnas.1903282116 He, Y., Zhang, W., Peng, F., Lu, R., Zhou, H., Bao, G., Wang, B., Huang, B., Li, Z., & Hu, F. (2019). Metabolomic variation in wild and cultured cordyceps and mycelia of Isaria cicadae. Biomedical Chromatography, 33(4), e4478. https://doi.org/10.1002/bmc.4478 Holbein, S., Wengi, A., Decourty, L., Freimoser, F. M., Jacquier, A., & Dichtl, B. (2009). Cordycepin interferes with 3′ end formation in yeast independently of its potential to terminate RNA chain elongation. RNA, 15(5), 837–849. https://doi.org/10.1261/rna.1458909 Hölzer, M. (2024). POCP-nf: An automatic Nextflow pipeline for calculating the percentage of conserved proteins in bacterial taxonomy. Bioinformatics, 40(4), btae175. https://doi.org/10.1093/bioinformatics/btae175 Hsieh, J.-C., Chuang, S.-T., Hsu, Y.-T., Ho, S.-T., Li, K.-Y., Chou, S.-H., & Chen, M.-J. (2023). In vitro ruminal fermentation and cow-to-mouse fecal transplantations verify the inter-relationship of microbiome and metabolome biomarkers: Potential to promote health in dairy cows. Frontiers in Veterinary Science, 10, 1228086. https://doi.org/10.3389/fvets.2023.1228086 Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 9(1), 5114. https://doi.org/10.1038/s41467-018-07641-9 Jędrejko, K. J., Lazur, J., & Muszyńska, B. (2021). Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods, 10, Article 11. https://doi.org/10.3390/foods10112634 Jin, C.-Y., Kim, G.-Y., & Choi, Y.-H. (2008). Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 cells. Journal of Microbiology and Biotechnology, 18(12), 1997–2003. https://doi.org/10.4014/jmb.0800.272 Jo, W. S., Choi, Y. J., Kim, H. J., Lee, J. Y., Nam, B. H., Lee, J. D., Lee, S. W., Seo, S. Y., & Jeong, M. H. (2010). The anti-inflammatory effects of water extract from Cordyceps militaris in murine macrophage. Mycobiology, 38(1), 46–51. https://doi.org/10.4489/MYCO.2010.38.1.046 Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010 Kepler, R. M., Luangsa-ard, J. J., Hywel-Jones, N. L., Quandt, C. A., Sung, G.-H., Rehner, S. A., Aime, M. C., Henkel, T. W., Sanjuan, T., Zare, R., Chen, M., Li, Z., Rossman, A. Y., Spatafora, J. W., & Shrestha, B. (2017). A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus, 8(2), 335–353. https://doi.org/10.5598/imafungus.2017.08.02.08 Kjærbølling, I., Vesth, T., Frisvad, J. C., Nybo, J. L., Theobald, S., Kildgaard, S., Petersen, T. I., Kuo, A., Sato, A., Lyhne, E. K., Kogle, M. E., Wiebenga, A., Kun, R. S., Lubbers, R. J. M., Mäkelä, M. R., Barry, K., Chovatia, M., Clum, A., Daum, C., … Andersen, M. R. (2020). A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 11(1), 1106. https://doi.org/10.1038/s41467-019-14051-y Klassen, A., Faccio, A. T., Canuto, G. A. B., Cruz, P. L. R. da, Ribeiro, H. C., Tavares, M. F. M., & Sussulini, A. (2017). Metabolomics: Definitions and significance in systems biology. In Metabolomics: From Fundamentals to Clinical Applications (pp. 3–17). Springer International Publishing. https://doi.org/10.1007/978-3-319-47656-8_1 Klein, V. G., Bray, W. M., Wang, H.-Y., Edmondson, Q., Schwochert, J., Ono, S., Naylor, M. R., Turmon, A. C., Faris, J. H., Okada, O., Taunton, J., & Lokey, R. S. (2021). Identifying the cellular target of cordyheptapeptide A and synthetic derivatives. ACS Chemical Biology, 16, 1354–1364. https://doi.org/10.1021/acschembio.1c00094 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology, 37(5), 540–546. https://doi.org/10.1038/s41587-019-0072-8 Koulman, A., Lee, T. V., Fraser, K., Johnson, L., Arcus, V., Lott, J. S., Rasmussen, S., & Lane, G. (2012). Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne. Phytochemistry, 75, 128–139. https://doi.org/10.1016/j.phytochem.2011.11.020 Kramer, G. J., & Nodwell, J. R. (2017). Chromosome level assembly and secondary metabolite potential of the parasitic fungus Cordyceps militaris. BMC Genomics, 18(1), 912. https://doi.org/10.1186/s12864-017-4307-0 Kuhnert, E., Navarro-Muñoz, J. C., Becker, K., Stadler, M., Collemare, J., & Cox, R. J. (2021). Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Studies in Mycology, 99(1), 100118–100118. https://doi.org/10.1016/j.simyco.2021.100118 Lan, Y.-H., Lu, Y.-S., Wu, J.-Y., Lee, H.-T., Srinophakun, P., Canko, G. N., Chiu, C.-C., & Wang, H.-M. D. (2022). Cordyceps militaris reduces oxidative stress and regulates immune T Cells to inhibit metastatic melanoma invasion. Antioxidants, 11, Article 8. https://doi.org/10.3390/antiox11081502 Letunic, I., & Bork, P. (2024). Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52(W1), W78–W82. https://doi.org/10.1093/nar/gkae268 Li, S. P., Yang, F. Q., & Tsim, K. W. K. (2006). Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1571–1584. https://doi.org/10.1016/j.jpba.2006.01.046 Li, Y., Wang, X.-L., Jiao, L., Jiang, Y., Li, H., Jiang, S.-P., Lhosumtseiring, N., Fu, S.-Z., Dong, C.-H., Zhan, Y., & Yao, Y.-J. (2011). A survey of the geographic distribution of Ophiocordyceps sinensis. The Journal of Microbiology, 49(6), 913–919. https://doi.org/10.1007/s12275-011-1193-z Lin, L.-T., Lai, Y.-J., Wu, S.-C., Hsu, W.-H., & Tai, C.-J. (2018). Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer. Journal of Food and Drug Analysis, 26, 135–144. https://doi.org/10.1016/j.jfda.2016.11.021 Liu, F., Hu, Z.-D., Zhao, X.-M., Zhao, W.-N., Feng, Z.-X., Yurkov, A., Alwasel, S., Boekhout, T., Bensch, K., Hui, F.-L., Bai, F.-Y., & Wang, Q.-M. (2023). Phylogenomic analysis of the Candida auris-Candida haemuli clade and related taxa in the Metschnikowiaceae, and proposal of thirteen new genera, fifty-five new combinations and nine new species. Persoonia - Molecular Phylogeny and Evolution of Fungi. https://doi.org/10.3767/persoonia.2024.52.02 Liu, H.-H., Wang, J., Wu, P.-H., Lu, M.-Y. J., Li, J.-Y., Shen, Y.-M., Tzeng, M.-N., Kuo, C.-H., Lin, Y.-H., & Chang, H.-X. (2021). Whole-genome sequence resource of Calonectria ilicicola, the casual pathogen of soybean red crown rot. Molecular Plant-Microbe Interactions, 34(7), 848–851. https://doi.org/10.1094/MPMI-11-20-0315-A Liu, L., Zhang, J., Chen, C., Teng, J., Wang, C., & Luo, D. (2015). Structure and biosynthesis of fumosorinone, a new protein tyrosine phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea. Fungal Genetics and Biology: FG & B, 81, 191–200. https://doi.org/10.1016/j.fgb.2015.03.009 Liu, W., Dun, M., Liu, X., Zhang, G., & Ling, J. (2022). Effects on total phenolic and flavonoid content, antioxidant properties, and angiotensin I-converting enzyme inhibitory activity of beans by solid-state fermentation with Cordyceps militaris. International Journal of Food Properties, 25(1), 477–491. https://doi.org/10.1080/10942912.2022.2048009 Lu, Y., Luo, F., Cen, K., Xiao, G., Yin, Y., Li, C., Li, Z., Zhan, S., Zhang, H., & Wang, C. (2017). Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae. BMC Genomics, 18(1), 668. https://doi.org/10.1186/s12864-017-4060-4 Lu, Y., Wang, Y., Yuan, X., Huang, O., Dong, Q., Li, D., Ding, S., Ma, F., & Yu, H. (2022). Genomic Comparative analysis of Cordyceps pseudotenuipes with other species from Cordyceps. Metabolites, 12(9), 844. https://doi.org/10.3390/metabo12090844 Lu, Y., Wang, Z., Wang, Y., Chen, Y., Tang, D., & Yu, H. (2023). Genomic comparison of two species of Samsoniella with other genera in the family Cordycipitaceae. Journal of Fungi, 9(12), Article 12. https://doi.org/10.3390/jof9121146 Luangsa-ard, J. J., Berkaew, P., Ridkaew, R., Hywel-Jones, N. L., & Isaka, M. (2009). A beauvericin hot spot in the genus Isaria. Mycological Research, 113, 1389–1395. https://doi.org/10.1016/j.mycres.2009.08.017 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/molbev/msaa015 Mongkolsamrit, S., Noisripoom, W., Thanakitpipattana, D., Wutikhun, T., Spatafora, J. W., & Luangsa-ard, J. (2018). Disentangling cryptic species with isaria-like morphs in Cordycipitaceae. Mycologia, 110(1), 230–257. https://doi.org/10.1080/00275514.2018.1446651 Navarro-Muñoz, J. C., Selem-Mojica, N., Mullowney, M. W., Kautsar, S. A., Tryon, J. H., Parkinson, E. I., De Los Santos, E. L. C., Yeong, M., Cruz-Morales, P., Abubucker, S., Roeters, A., Lokhorst, W., Fernandez-Guerra, A., Cappelini, L. T. D., Goering, A. W., Thomson, R. J., Metcalf, W. W., Kelleher, N. L., Barona-Gomez, F., & Medema, M. H. (2020). A computational framework to explore large-scale biosynthetic diversity. Nature Chemical Biology, 16(1), 60–68. https://doi.org/10.1038/s41589-019-0400-9 Oh, J., Yoon, D.-H., Shrestha, B., Choi, H.-K., & Sung, G.-H. (2019). Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. Journal of Microbiology, 57(1), 54–63. https://doi.org/10.1007/s12275-019-8486-z Olatunji, O. J., Tang, J., Tola, A., Auberon, F., Oluwaniyi, O., & Ouyang, Z. (2018). The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia, 129, 293–316. https://doi.org/10.1016/j.fitote.2018.05.010 Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82, 513–523. https://doi.org/10.1016/j.fitote.2011.01.018 Purev, E., Kondo, T., Takemoto, D., Niones, J. T., & Ojika, M. (2020). Identification of ε-Poly-L-lysine as an antimicrobial product from an Epichloë endophyte and isolation of fungal ε-PL synthetase gene. Molecules, 25(5), Article 5. https://doi.org/10.3390/molecules25051032 Qian, G., Pan, G.-F., & Guo, J.-Y. (2012). Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Natural Product Research, 26(24), 2358–2362. https://doi.org/10.1080/14786419.2012.658800 Qin, P., Li, X., Yang, H., Wang, Z.-Y., & Lu, D. (2019). Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules, 24, Article 12. https://doi.org/10.3390/molecules24122231 Qin, Q.-L., Xie, B.-B., Zhang, X.-Y., Chen, X.-L., Zhou, B.-C., Zhou, J., Oren, A., & Zhang, Y.-Z. (2014). A proposed genus boundary for the prokaryotes based on genomic insights. Journal of Bacteriology, 196(12), 2210–2215. https://doi.org/10.1128/jb.01688-14 Qu, S.-L., Xie, J., Wang, J.-T., Li, G.-H., Pan, X.-R., & Zhao, P.-J. (2023). Activities and metabolomics of Cordyceps gunnii under different culture conditions. Frontiers in Microbiology, 13, 1076577. Radhi, M., Ashraf, S., Lawrence, S., Tranholm, A. A., Wellham, P. A. D., Hafeez, A., Khamis, A. S., Thomas, R., McWilliams, D., & de Moor, C. H. (2021). A systematic review of the biological effects of cordycepin. Molecules, 26, Article 19. https://doi.org/10.3390/molecules26195886 Rao, Y. K., Fang, S.-H., Wu, W.-S., & Tzeng, Y.-M. (2010). Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. Journal of Ethnopharmacology, 131(2), 363–367. https://doi.org/10.1016/j.jep.2010.07.020 Reis, F. S., Barros, L., Calhelha, R. C., Ćirić, A., van Griensven, L. J. L. D., Soković, M., & Ferreira, I. C. F. R. (2013). The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food and Chemical Toxicology, 62, 91–98. https://doi.org/10.1016/j.fct.2013.08.033 Rukachaisirikul, V., Chantaruk, S., Tansakul, C., Saithong, S., Chaicharernwimonkoon, L., Pakawatchai, C., Isaka, M., & Intereya, K. (2006). A cyclopeptide from the insect pathogenic fungus Cordyceps sp. BCC 1788. Journal of Natural Products, 69, 305–307. https://doi.org/10.1021/np050433l Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. (2016). Untargeted metabolomics strategies—challenges and emerging directions. Journal of the American Society for Mass Spectrometry, 27, 1897–1905. https://doi.org/10.1007/s13361-016-1469-y Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303 Siddik, Z. H. (2003). cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265–7279. https://doi.org/10.1038/sj.onc.1206933 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 Singh, M., Tulsawani, R., Koganti, P., Chauhan, A., Manickam, M., & Misra, K. (2013). Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells. BioMed Research International, 2013, e569206. https://doi.org/10.1155/2013/569206 Singhal, S., & Mehta, J. (2002). Thalidomide in cancer. Biomedicine & Pharmacotherapy, 56, 4–12. https://doi.org/10.1016/S0753-3322(01)00146-9 Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787. https://doi.org/10.1021/ac051437y Song, J., Wang, Y., Teng, M., Zhang, S., Yin, M., Lu, J., Liu, Y., Lee, R. J., Wang, D., & Teng, L. (2016). Cordyceps militaris induces tumor cell death via the caspase‑dependent mitochondrial pathway in HepG2 and MCF‑7 cells. Molecular Medicine Reports, 13, 5132–5140. https://doi.org/10.3892/mmr.2016.5175 Tang, C., Li, X., Wang, T., Wang, J., Xiao, M., He, M., Chang, X., Fan, Y., & Li, Y. (2023). Characterization of metabolite landscape distinguishes medicinal fungus Cordyceps sinensis and other Cordyceps by UHPLC-Q exactive HF-X untargeted metabolomics. Molecules, 28, Article 23. https://doi.org/10.3390/molecules28237745 Tao, X., Ning, Y., Zhao, X., & Pan, T. (2016). The effects of cordycepin on the cell proliferation, migration and apoptosis in human lung cancer cell lines A549 and NCI-H460. Journal of Pharmacy and Pharmacology, 68(7), 901–911. https://doi.org/10.1111/jphp.12544 Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 25(1), 4.10.1-4.10.14. https://doi.org/10.1002/0471250953.bi0410s25 Terlouw, B. R., Blin, K., Navarro-Muñoz, J. C., Avalon, N. E., Chevrette, M. G., Egbert, S., Lee, S., Meijer, D., Recchia, M. J. J., Reitz, Z. L., van Santen, J. A., Selem-Mojica, N., Tørring, T., Zaroubi, L., Alanjary, M., Aleti, G., Aguilar, C., Al-Salihi, S. A. A., Augustijn, H. E., … Medema, M. H. (2023). MIBiG 3.0: A community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Research, 51(D1), D603–D610. https://doi.org/10.1093/nar/gkac1049 Tian, X., Li, Y., Shen, Y., Li, Q., Wang, Q., & Feng, L. (2015). Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncology Letters, 10(2), 595–599. https://doi.org/10.3892/ol.2015.3273 Van, N. T. T., Lam, D. T., Minh, P. T. H., Le, V. T. T., Hoan, B. V., & Duong, M. L. (2021). Biological activities of extracts and beauvericin from Cordyceps cateniannulata CPA14V. Vu, T. X., Tran, T. B., Vu, H.-H., Le, Y. T. H., Nguyen, P. H., Do, T. T., Nguyen, T.-H., & Tran, V.-T. (2024). Ethanolic extract from fruiting bodies of Cordyceps militaris HL8 exhibits cytotoxic activities against cancer cells, skin pathogenic yeasts, and postharvest pathogen Penicillium digitatum. Archives of Microbiology, 206(3), 97. https://doi.org/10.1007/s00203-024-03833-8 Wang, J., Kan, L., Nie, S., Chen, H., Cui, S. W., Phillips, A. O., Phillips, G. O., Li, Y., & Xie, M. (2015). A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT - Food Science and Technology, 63, 2–7. https://doi.org/10.1016/j.lwt.2015.03.109 Wang, X., Gao, Y.-L., Zhang, M.-L., Zhang, H.-D., Huang, J.-Z., & Li, L. (2020). Genome mining and biosynthesis of the Acyl-CoA:cholesterol acyltransferase inhibitor beauveriolide I and III in Cordyceps militaris. Journal of Biotechnology, 309, 85–91. https://doi.org/10.1016/j.jbiotec.2020.01.002 Wang, Y., Guo, Y., Zhang, L., & Wu, J. (2012). Characterizations of a new Cordyceps cicadae isolate and production of adenosine and cordycepin. Brazilian Journal of Microbiology, 449–455. https://doi.org/10.1590/S1517-83822012000200004 Wang, Y., Tong, L., Yang, L., Ren, B., & Guo, D. (2023). Metabolite profiling and antioxidant capacity of natural Ophiocordyceps gracilis and its cultures using LC-MS/MS-based metabolomics: Comparison with Ophiocordyceps sinensis. Phytochemical Analysis, 35(2), 1–13. https://doi.org/10.1002/pca.3289 Wang, Y., Zhao, Y., Bollas, A., Wang, Y., & Au, K. F. (2021). Nanopore sequencing technology, bioinformatics and applications. Nature Biotechnology, 39(11), 1348–1365. https://doi.org/10.1038/s41587-021-01108-x Wang, Y.-W., Hong, T.-W., Tai, Y.-L., Wang, Y.-J., Tsai, S.-H., Lien, P. T. K., Chou, T.-H., Lai, J.-Y., Chu, R., Ding, S.-T., Irie, K., Li, T.-K., Tzean, S.-S., & Shen, T.-L. (2015). Evaluation of an epitypified Ophiocordyceps formosana (Cordyceps s.l.) for its pharmacological potential. Evid. Based Complement. Alternat. Med., 2015, e189891. https://doi.org/10.1155/2015/189891 Wawruszak, A., Luszczki, J. J., Grabarska, A., Gumbarewicz, E., Dmoszynska-Graniczka, M., Polberg, K., & Stepulak, A. (2015). Assessment of interactions between cisplatin and two histone deacetylase inhibitors in MCF7, T47D and MDA-MB-231 human breast cancer cell lines – An isobolographic analysis. PLoS One, 10(11), e0143013. https://doi.org/10.1371/journal.pone.0143013 Wibberg, D., Stadler, M., Lambert, C., Bunk, B., Spröer, C., Rückert, C., Kalinowski, J., Cox, R. J., & Kuhnert, E. (2021). High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Diversity, 106(1), 7–28. https://doi.org/10.1007/s13225-020-00447-5 Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Completing bacterial genome assemblies with multiplex MinION sequencing. Microbial Genomics, 3(10), e000132. https://doi.org/10.1099/mgen.0.000132 Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., … Gautam, V. (2022). HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Research, 50(D1), D622–D631. https://doi.org/10.1093/nar/gkab1062 Wizaza, C., Mujchariyakul, W., Vongsangnak, W., Patumcharoenpol, P., & Kittichotirat, W. (2018). Comparative gene clusters analysis of Cordyceps militaris and related entomopathogenic fungi. Proceedings of the 9th International Conference on Computational Systems-Biology and Bioinformatics, 1–6. https://doi.org/10.1145/3291757.3291759 Wong, Y. Y., Moon, A., Duffin, R., Barthet-Barateig, A., Meijer, H. A., Clemens, M. J., & Moor, C. H. de. (2010). Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. Journal of Biological Chemistry, 285(4), 2610–2621. https://doi.org/10.1074/jbc.M109.071159 Wu, J. Y., Zhang, Q. X., & Leung, P. H. (2007). Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine, 14, 43–49. https://doi.org/10.1016/j.phymed.2005.11.005 Wu, S.-J., & Ng, L.-T. (2008). Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. Var. Abbreviata Ser.) in Taiwan. LWT - Food Science and Technology, 41, 323–330. https://doi.org/10.1016/j.lwt.2007.03.003 Xia, Y., Luo, F., Shang, Y., Chen, P., Lu, Y., & Wang, C. (2017). Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chemical Biology, 24(12), 1479-1489.e4. https://doi.org/10.1016/j.chembiol.2017.09.001 Xu, Y., Orozco, R., Wijeratne, E. M. K., Gunatilaka, A. A. L., Stock, S. P., & Molnár, I. (2008). Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chemistry & Biology, 15(9), 898–907. https://doi.org/10.1016/j.chembiol.2008.07.011 Yamaguchi, Y., Kagota, S., Nakamura, K., Shinozuka, K., & Kunitomo, M. (2000). Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytotherapy Research, 14(8), 647–649. https://doi.org/10.1002/1099-1573(200012)14:8<647::AID-PTR670>3.0.CO;2-W Yang, M., Teng, W., Qu, Y., Wang, H., & Yuan, Q. (2016a). Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1. Breast Cancer Research and Treatment, 158(2), 277–286. https://doi.org/10.1007/s10549-016-3888-7 Yang, M., Wang, H., Zhou, M., Liu, W., Kuang, P., Liang, H., & Yuan, Q. (2016b). The natural compound sulforaphene, as a novel anticancer reagent, targeting PI3K-AKT signaling pathway in lung cancer. Oncotarget, 7(47), 76656–76666. https://doi.org/10.18632/oncotarget.12307 Yang, M.-L., Kuo, P.-C., Hwang, T.-L., & Wu, T.-S. (2011). Anti-inflammatory principles from Cordyceps sinensis. Journal of Natural Products, 74, 1996–2000. https://doi.org/10.1021/np100902f Yasui, K., Kobayashi, N., Yamazaki, T., & Agematsu, K. (2005). Thalidomide as an immunotherapeutic agent: The effects on neutrophil-mediated inflammation. Current Pharmaceutical Design, 11(3), 395–401. Yin, Y., Chen, B., Song, S., Li, B., Yang, X., & Wang, C. (2020). Production of diverse beauveriolide analogs in closely related fungi: A rare case of fungal chemodiversity. mSphere, 5(5), 10.1128/msphere.00667-20. https://doi.org/10.1128/msphere.00667-20 Yoon, S. Y., Park, S. J., & Park, Y. J. (2018). The anticancer properties of cordycepin and their underlying mechanisms. International Journal of Molecular Sciences, 19, Article 10. https://doi.org/10.3390/ijms19103027 Yu, J., Sun, M., Wang, X., Qi, D., & Han, C. (2023). Poly-pathways metabolomics for high-yielding cordycepin of Cordyceps militaris. Biomedical Chromatography, 37, e5551. https://doi.org/10.1002/bmc.5551 Zhang, J., Zhang, P., Zeng, G., Wu, G., Qi, L., Chen, G., Fang, W., & Yin, W.-B. (2021). Transcriptional differences guided discovery and genetic identification of coprogen and dimerumic acid siderophores in Metarhizium robertsii. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.783609 Zhang, J., Zhong, X., Li, S., Zhang, G., & Liu, X. (2015). Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 115, 395–401. https://doi.org/10.1016/j.jpba.2015.07.035 Zhang, X., Hu, Q., & Weng, Q. (2019). Secondary metabolites (SMs) of Isaria cicadae and Isaria tenuipes. RSC Advances, 9(1), 172–184. https://doi.org/10.1039/C8RA09039D Zhang, Y., Li, E., Wang, C., Li, Y., & Liu, X. (2012). Ophiocordyceps sinensis, the flagship fungus of China: Terminology, life strategy and ecology. Mycology, 3(1), 2–10. https://doi.org/10.1080/21501203.2011.654354 Zheng, P., Xia, Y., Xiao, G., Xiong, C., Hu, X., Zhang, S., Zheng, H., Huang, Y., Zhou, Y., Wang, S., Zhao, G.-P., Liu, X., St Leger, R. J., & Wang, C. (2011). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biology, 12(11), R116. https://doi.org/10.1186/gb-2011-12-11-r116 Zhou, J., Hou, D., Zou, W., Wang, J., Luo, R., Wang, M., & Yu, H. (2022). Comparison of widely targeted metabolomics and untargeted metabolomics of wild Ophiocordyceps sinensis. Molecules, 27, Article 11. https://doi.org/10.3390/molecules27113645 Zhou, X., Gong, Z., Su, Y., Lin, J., & Tang, K. (2009). Cordyceps fungi: Natural products, pharmacological functions and developmental products. Journal of Pharmacy and Pharmacology, 61, 279–291. https://doi.org/10.1211/jpp.61.03.0002 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96173 | - |
| dc.description.abstract | 蟲草屬類群主要由昆蟲病原菌組成,其中多個物種在東亞被視為傳統藥材。近期研究中,Chuang 等人(2024)描述了來自臺灣的五個新種蟲草(Cordyceps hehuanensis、C. locastrae、C. malleiformis、C. pseudorosea 和 C. siangyangensis)。本研究初步探討了這五個新種與兩株 C. militaris 菌株的基因體多樣性,並進行全新的生物合成基因簇(BGCs)預測。本研究選取的蟲草屬物種以 Nanopore 長讀序列技術進行高品質基因體定序,並分析整個屬內的基因體特徵。從5098個直系同源基因 (single-copy orthologous) 獲得的基因體親緣演化樹所代表的演化關係,與從 ITS、nrLSU、tef1-α、rpb1和rpb2 片段獲得的多基因親緣演化樹具有相同的樹型結構。此外,average nucleotide identity (ANI)、average amino acid identity (AAI) 與percentage of conserved proteins (POCP) 的結果建議一致的蟲草屬物種界定。Biosynthetic gene cluster (BGC) 預測結果揭示了蟲草屬內代謝物的多樣性,其中如 beauvericin、beauverolide 和蟲草素等代謝物多樣性內演化存在一定的相關性。另外,Chuang(2020)對這七隻蟲草菌株的生物活性潛力進行了評估,特別探討了其蟲草素的生成能力。蟲草素為蟲草屬類群大量研究之生物活性物質,而該研究結果顯示僅有 C. militaris 和 C. hehuanensis 能夠生成蟲草素。然而近期研究指出,不產生蟲草素的蟲草屬物種同樣具有生物活性,這指出這些生物活性可能來源於其他代謝物。本研究假設臺灣新發現的蟲草屬物種中的生物活性可能來源於蟲草素以外的代謝物,並通過測定總酚含量、總黃酮含量、抗發炎活性和抗癌活性進行評估。在這些物種中,不產生蟲草素的 C. pseudorosea 顯示出與或超過產生蟲草素物種(C. militaris 和 C. hehuanensis)相當的抗癌潛力,而 C. locastrae、C. malleiformis 和 C. siangyangensis 則未顯示顯著的生物活性。
為了進一步了解這些物種間生物活性的差異,本研究使用 UHPLC-MS/MS 進行 untargeted 代謝體學分析,針對具細胞毒性和無細胞毒性物種(C. pseudorosea、C. locastrae 和 C. militaris)進行代謝物分析。主成分分析(PCA)和正交最小二偏差判別分析(OPLS-DA)揭示這三個物種間的明顯分群。在鑑定出的 208 種代謝物中,C. pseudorosea 顯著產生更多的 4-acetamidobutanoic acid、thalidomide、clozapine、biotin、salicylamide 和 (R)-(E)-sulforaphene,這些化合物可能作為潛在的生物標記物。值得注意的是,其中部分代謝物從未在真菌中報導過,故需要進一步分析或驗證以釐清預測結果。本研究鑑定了臺灣具生物活性的蟲草屬物種,並提供了其基因體和代謝體的全面見解。 | zh_TW |
| dc.description.abstract | The cordyceps-like species mainly consist of entomopathogenic fungi, with several species traditionally used in Eastern medicine. In a recent study, Chuang et al. (2024) described five new Cordyceps species (Cordyceps hehuanensis, C. locastrae, C. malleiformis, C. pseudorosea, and C. siangyangensis) from Taiwan. The present study initially explored the genomic diversity of these five new Cordyceps species together with two C. militaris strains and predicted their Biosynthetic gene clusters (BGCs) de novo. Selected Cordyceps species were sequenced using Nanopore long reads to provide high-quality genomes and analyze the general genomic features across the whole genus. The evolutionary relationship represented in the phylogenomic tree obtained from 5098 single-copy orthologous genes showed identical topology with the multi-locus phylogenetic tree obtained from ITS, nrLSU, tef1-α, rpb1, and rpb2 regions. Additionally, pairwise genome comparisons, including average nucleotide identity (ANI), average amino acid identity (AAI), and the percentage of conserved proteins (POCP), suggested a consistent pattern in their species delineation. Furthermore, BGCs were predicted to elucidate the metabolic diversity among Cordyceps species. The annotated BGCs, such as beauvericin, beauverolide, and cordycepin, exhibit a loss-based correlation with the evolutionary relationships within the genus.
The bioactivity potential of these seven Cordyceps strains was assessed by Chuang (2020) by evaluating their cordycepin-production, a compound with significant medicinal potential. The results demonstrated that only C. militaris and C. hehuanensis were capable of producing cordycepin. However, recent findings suggested that non-cordycepin-producing Cordyceps species also exhibit bioactivities, indicating other metabolites may contribute to the observed bioactivities. The current study hypothesizes that metabolites other than cordycepin may contribute to the bioactivity observed in the Cordyceps species introduced in Taiwan. The bioactivities were evaluated by assessing total phenolic content, total flavonoid content, anti-inflammatory activity, and anti-cancer activity. Among these species, the non-cordycepin producing species, C. pseudorosea exhibited anti-cancer potential comparable to or exceeding that of cordycepin-producing species (C. militaris and C. hehuanensis), while other non-cordycepin species such as C. locastrae, C. malleiformis, and C. siangyangensis did not show significant bioactivities. To understand the bioactivity variation among these species, the present study, further conducted untargeted metabolomics using UHPLC-MS/MS to analyze the metabolomic profiles of cytotoxic and non-cytotoxic species, namely C. pseudorosea, C. locastrae, and C. militaris. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) revealed distinct groupings among the three species. Among the 208 identified metabolites, C. pseudorosea produced significantly more 4-acetamidobutanoic acid, thalidomide, clozapine, biotin, salicylamide, and (R)-(E)-sulforaphene compared to C. locastrae, suggesting these compounds as potential biomarkers. Notably, some of the identified metabolites have never been reported from fungal materials, and further analysis or validation is required to clarify the current prediction. Overall, this study identified bioactive Cordyceps species in Taiwan and provided comprehensive insights into their genomic and metabolomic profiles. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-19T16:09:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-19T16:09:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
Acknowledgment iii 摘要 vi Abstract viii Table of Contents xi List of Tables xv List of Figures xvi Chapter One. Comparative genomics of Genus Cordyceps 1 Introduction 1 Materials and Methods 4 Strain selection for comparative genomic analysis 4 Fungal cultivation and genome extraction 6 Nanopore sequencing, genome assembly, prediction, and annotation 7 Phylogenomics and comparative genomics of Cordyceps 8 Biosynthetic gene clusters (BGCs) analysis 9 Results 10 Dataset preparation 10 General genomic features 11 Phylogenomic Analysis 12 Comparative genomics 13 Biosynthetic gene clusters (BGCs) prediction 14 Identification of BGCs for the metabolite diversity of Cordyceps 15 Discussion 16 Chapter Two. Biochemical and bioactivity screening of new Taiwanese Cordyceps 21 Introduction 21 General information and traditional use of cordyceps-like fungi 21 Chemical properties of cordyceps-like fungi 22 Bioactivities of cordyceps-like fungi 23 Previous studies on bioactivity screening of cordyceps-like fungi in Taiwan 24 Hypothesis and experimental design 26 Materials and Methods 27 Fungal cultivation and metabolite extraction 27 Chemical property screening 28 Anti-cancer screening 29 Anti-inflammation screening 30 Statistical analysis and visualization 31 Results 31 Fungal cultivation and extraction 31 Chemical properties of methanolic extract of 32 Anti-cancer potential of Cordyceps methanolic extract 33 Anti-inflammation potential of Cordyceps methanolic extract 34 Discussion 35 Biochemical properties and Anti-oxidation activit 35 Species with anti-cancer potential 36 Species with anti-inflammation potential 37 Strains selection for further analysis 39 Chapter Three. Comparative metabolomics of cytotoxic and non-cytotoxic Cordyceps (Preliminary Data) 40 Introduction 40 Metabolomic studies of cordyceps-like fungi 40 General information of metabolomic analysis 41 Hypothesis and experimental design 42 Materials and Methods 44 Fungal cultivation and extraction 44 UPLC-MS/MS analysis for untargeted metabolomics 44 Data acquisition and processing 45 Statistical analysis 45 Results 46 Quality control of untargeted metabolomic profiling 46 The metabolic variations among the three Cordyceps species 47 Screening and classification of the differential metabolites 47 KEGG Pathway analysis 49 Discussion 49 General Conclusion 52 References 55 Tables 80 Figures 100 Supplementary Materials 113 | - |
| dc.language.iso | en | - |
| dc.subject | 代謝體 | zh_TW |
| dc.subject | 演化 | zh_TW |
| dc.subject | 比較基因體學 | zh_TW |
| dc.subject | 生物活性 | zh_TW |
| dc.subject | metabolome | en |
| dc.subject | bioactivity | en |
| dc.subject | comparative genomics | en |
| dc.subject | evolution | en |
| dc.title | 利用比較基因體學與代謝體學研究臺灣新種蟲草的功能性基因及生物活性 | zh_TW |
| dc.title | Study of functional genomics and bioactivities of Taiwan novel Cordyceps species using comparative genomics and metabolomics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 沈湯龍;張皓巽;黃良得 | zh_TW |
| dc.contributor.oralexamcommittee | Tang-Long Shen;Hao-Xun Chang;Lean-Teik Ng | en |
| dc.subject.keyword | 生物活性,比較基因體學,演化,代謝體, | zh_TW |
| dc.subject.keyword | bioactivity,comparative genomics,evolution,metabolome, | en |
| dc.relation.page | 159 | - |
| dc.identifier.doi | 10.6342/NTU202404572 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-11-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 30.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
