請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96156
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李繼忠 | zh_TW |
dc.contributor.advisor | Jih-Jong Lee | en |
dc.contributor.author | 夏緣緣 | zh_TW |
dc.contributor.author | YUAN-YUAN XIA | en |
dc.date.accessioned | 2024-11-18T16:06:02Z | - |
dc.date.available | 2024-11-19 | - |
dc.date.copyright | 2024-11-18 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-10-23 | - |
dc.identifier.citation | 1. Arina A, Gutiontov SI, Weichselbaum RR. Radiotherapy and immunotherapy for Cancer: from "systemic" to "multisite". Clin Cancer Res. 2020; 26:2777–82.
2. Ascierto PA, Stroyakovskiy D, Gogas H, Robert C, Lewis K, Protsenko S, et al. Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncol. 2023; 24(1):33-44. 3. Atherton MJ, Rotolo A, Haran KP, Mason NJ. Case Report: Clinical and serological hallmarks of cytokine release syndrome in a canine B cell lymphoma patient treated with autologous CAR-T cells. Front. Vet. Sci. 2022; 9:824982. 4. Baja AJ, Kelsey KL, Ruslander DM, Gieger TL, Nolan MW. A retrospective study of 101 dogs with oral melanoma treated with a weekly or biweekly 6 Gy x 6 radiotherapy protocol. Vet Comp Oncol 2022; 20:623-631. 5. Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D, et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 2003; 9:1284-1290. 6. Bergman PJ, Selmic LE, Kent MS. 20 - Melanoma. In: Vail DM, Thamm DH, Liptak JM, editors. Withrow and MacEwen's Small Animal Clinical Oncology (Sixth Edition). St. Louis (MO): WB Saunders; 2020; 367-81. 7. Bird RC, Deinnocentes P, Church Bird AE, van Ginkel FW, Lindquist J, Smith BF. An autologous dendritic cell canine mammary tumor hybrid-cell fusion vaccine. Cancer Immunol Immunother. 2011; 60:87–97. 8. Bird RC, Deinnocentes P, Lenz S, Thacker EE, Curiel DT, Smith BF. An allogeneic hybrid-cell fusion vaccine against canine mammary cancer. Vet Immunol Immunopathol. 2008; 123:289–304. 9. Boss MK, Watts R, Harrison LG, Hopkins S, Chow L, Trageser E, et al. Immunologic effects of stereotactic body radiotherapy in dogs with spontaneous tumors and the impact of intratumoral OX40/TLR agonist immunotherapy. Int J Mol Sci. 2022; 23:826. 10. Boston SE, Lu X, Culp WT, Montinaro V, Romanelli G, Dudley RM, et al. Efficacy of systemic adjuvant therapies administered to dogs after excision of oral malignant melanomas: 151 cases (2001-2012). J Am Vet Med Assoc 2014; 245:401-407. 11. Brill SA, Thamm DH. There and back again: Translating adoptive cell therapy to canine cancer and improving human treatment. Vet. Comp. Oncol. 2021; 19, 420–427. 12. Brocca G, Poncina B, Sammarco A, Cavicchioli L, Castagnaro M. KIT Somatic Mutations and Immunohistochemical Expression in Canine Oral Melanoma. Animals (Basel). 2020; 10;10(12):2370. 13. Brockley LK, Cooper MA, Bennett PF. Malignant melanoma in 63 dogs (2001-2011): the effect of carboplatin chemotherapy on survival. N Z Vet J 2013; 61:25-31. 14. Bujak JK, Pingwara R, Nelson MH, Majchrzak K. Adoptive cell transfer: New perspective treatment in veterinary oncology. Acta Vet. Scand. 2018; 60, 60. 15. Burton JH, Mitchell L, Thamm DH, Dow SW, Biller BJ. Low-dose cyclophosphamide selectively decreases regulatory T cells and inhibits angiogenesis in dogs with soft tissue sarcoma. J Vet Intern Med 2011; 25:920-926. 16. Camerino M, Giacobino D, Manassero L, Iussich S, Riccardo F, Cavallo F, et al. Prognostic impact of bone invasion in canine oral malignant melanoma treated by surgery and anti-CSPG4 vaccination: A retrospective study on 68 cases (2010–2020). Vet. Comp. Oncol. 2022; 20:189–197. 17. Cancedda S, Rohrer Bley C, Aresu L, et al. Efficacy and side effects of radiation therapy in comparison with radiation therapy and temozolomide in the treatment of measurable canine malignant melanoma. Vet Comp Oncol 2016; 14:146-157. 18. Canter RJ, Grossenbacher SK, Foltz JA, Sturgill IR, Park JS, Luna JI, et al. Radiotherapy enhances natural killer cell cytotoxicity and localization in pre-clinical canine sarcomas and first-in-dog clinical trial. J Immunother Cancer. 2017; 5:98. 19. Chandran SS, Somerville RPT, Yang JC, Sherry RM, Klebanoff CA, Goff SL, et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: A single-center, two-stage, single-arm, phase 2 study. Lancet Oncol. 2017; 18:792–802. 20. Chesney JA, Ribas A, Long GV, Kirkwood JM, Dummer R, Puzanov I, et al. Randomized, Double-Blind, Placebo-Controlled, Global Phase III Trial of Talimogene Laherparepvec Combined With Pembrolizumab for Advanced Melanoma. J Clin Oncol. 2023; 41(3):528-540. 21. Choisunirachon N, Jaroensong T, Yoshida K, Saeki K, Mochizuki M, Nishimura R, et al. Effects of low-dose cyclophosphamide with piroxicam on tumour neovascularization in a canine oral malignant melanoma-xenografted mouse model. Vet Comp Oncol 2015; 13:424-432. 22. Chu PY, Pan SL, Liu CH, Lee J, Yeh LS, Liao AT. KIT gene exon 11 mutations in canine malignant melanoma. Vet J. 2013; 196(2):226-30. 23. Chuang T-F. Immunotherapy and imaging diagnosis of canine cancers. PhD Dissertation. Taipei: National Taiwan University. 2011. 24. Chung MJ, Park JY, Bang S, Park SW, Song SY. Phase II clinical trial of ex vivo-expanded cytokine-induced killer cells therapy in advanced pancreatic cancer. Cancer Immunol. Immunother. 2014; 63:939–946. 25. Coffee C, Roush JK, Higginbotham ML. Carboplatin-induced myelosuppression as related to body weight in dogs. Vet Comp Oncol 2020; 18:804-810. 26. Contel IJ, Fonseca-Alves CE, Ferrari HF, Laufer-Amorim R, Xavier-Júnior JCC. Review of the comparative pathological and immunohistochemical features of human and canine cutaneous melanocytic neoplasms. J Comp Pathol. 2024; 211:26-35. 27. Cunha SCdS, Corgozinho KB, Silva FBF, Silva KVGCd, Ferreira AMR. Radiation therapy for oral melanoma in dogs: A retrospective study. Ciência Rural 2018; 48:e20160396. 28. Dank G, Rassnick KM, Sokolovsky Y, Garrett LD, Post GS, Kitchell BE, et al. Use of adjuvant carboplatin for treatment of dogs with oral malignant melanoma following surgical excision. Vet Comp Oncol 2014; 12:78-84. 29. Darragh LB, Gadwa J, Pham TT, Van Court B, Neupert B, Olimpo NA, et al. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat Commun. 2022; 13:7015. 30. Deguchi T, Maekawa N, Konnai S, Owaki R, Hosoya K, Morishita K, et al. Enhanced systemic antitumour immunity by Hypofractionated radiotherapy and antiPD-L1 therapy in dogs with pulmonary metastatic Oral malignant melanoma. Cancers. 2023; 15:3013. 31. Elmslie RE, Glawe P, Dow SW. Metronomic therapy with cyclophosphamide and piroxicam effectively delays tumor recurrence in dogs with incompletely resected soft tissue sarcomas. J Vet Intern Med 2008; 22:1373-1379. 32. Esplin DG. Survival of dogs following surgical excision of histologically well-differentiated melanocytic neoplasms of the mucous membranes of the lips and oral cavity. Vet Pathol. 2008; 45(6):889-96. 33. Fabre JW. The allogeneic response and tumor immunity. Nat Med. 2001; 7:649–52. 34. Fajgenbaum DC, June CH. Cytokine Storm. N. Engl. J. Med. 2020; 383:2255–2273. 35. Flesner BK, Wood GW, Gayheart-Walsten P, Sonderegger FL, Henry CJ, et al. Autologous cancer cell vaccination, adoptive T-cell transfer, and interleukin-2 administration results in long-term survival for companion dogs with osteosarcoma. J. Vet. Intern. Med. 2020, 34, 2056–2067. 36. Freeman KP, Hahn KA, Harris FD, King GK. Treatment of dogs with oral melanoma by hypofractionated radiation therapy and platinum-based chemotherapy (1987-1997). J Vet Intern Med 2003; 17:96-101. 37. Funk J, Schmitz G, Failing K, Burkhardt E. Natural killer (NK) and lymphokine-activated killer (LAK) cell functions from healthy dogs and 29 dogs with a variety of spontaneous neoplasms. Cancer Immunol. Immunother. 2005; 54:87–92. 38. Gareau A, Ripoll AZ, Suter SE. A Retrospective Analysis: Autologous peripheral blood hematopoietic stem cell transplant combined with adoptive T-cell therapy for the treatment of high-grade B-cell lymphoma in ten dogs. Front. Vet. Sci. 2021; 8:787373. 39. Gaspar TB, Henriques J, Marconato L, Queiroga FL. The use of low-dose metronomic chemotherapy in dogs-insight into a modern cancer field. Vet Comp Oncol 2018; 16:2-11. 40. Giacobino D, Camerino M, Riccardo F, Cavallo F, Tarone L, Martano M, et al. Difference in outcome between curative intent vs marginal excision as a first treatment in dogs with oral malignant melanoma and the impact of adjuvant CSPG4-DNA electrovaccination: A retrospective study on 155 cases. Vet Comp Oncol 2021; 19:651-660. 41. Gingrich AA, Modiano JF, Canter RJ. Characterization and potential applications of dog natural killer cells in cancer immunotherapy. J. Clin. Med. 2019; 8:1802. 42. Gingrich AA, Reiter TE, Judge SJ, York D, Yanagisawa M, Razmara, A, et al. Comparative immunogenomics of canine natural killer cells as immunotherapy target. Front. Immunol. 2021; 12:670309. 43. Giuliano A, Dobson J. Prospective clinical trial of masitinib mesylate treatment for advanced stage III and IV canine malignant melanoma. J Small Anim Pract 2020; 61:190-194. 44. Grimes JA, Matz BM, Christopherson PW, Koehler JW, Cappelle KK, Hlusko KC, et al. Agreement between cytology and histopathology for regional lymph node metastasis in dogs with melanocytic neoplasms. Vet Pathol 2017; 54:579-587. 45. Grosenbaugh DA, Leard AT, Bergman PJ, Klein MK, Meleo K, Susaneck S, et al. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am J Vet Res 2011; 72:1631-1638. 46. Group VCOO. Veterinary cooperative oncology group - common terminology criteria for adverse events (VCOG-CTCAE) following chemotherapy or biological antineoplastic therapy in dogs and cats v1.1. Vet Comp Oncol. 2016; 14:417–46. 47. Guo Q, Zhu D, Bu X, Wei X, Li C, Gao D, et al. Efficient killing of radioresistant breast cancer cells by cytokine-induced killer cells. Tumor Biol. 2017; 39:1010428317695961. 48. Gyorffy S, Rodriguez-Lecompte JC, Woods JP, Foley R, Kruth S, Liaw PC, et al. Bone marrow-derived dendritic cell vaccination of dogs with naturally occurring melanoma by using human gp100 antigen. J Vet Intern Med. 2005; 19:56–63. 49. Henry CJ, Brewer WG Jr, Whitley EM, Tyler JW, Ogilvie GK, Norris A, et al. Canine digital tumors: a veterinary cooperative oncology group retrospective study of 64 dogs. J Vet Intern Med. 2005; 19(5):720-4. 50. Hernandez B, Adissu HA, Wei BR, Michael HT, Merlino G, Simpson RM. Naturally Occurring Canine Melanoma as a Predictive Comparative Oncology Model for Human Mucosal and Other Triple Wild-Type Melanomas. Int J Mol Sci. 2018; 19(2):394. 51. Hiniker SM, Reddy SA, Maecker HT, Subrahmanyam PB, Rosenberg-Hasson Y, Swetter SM, et al. A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma. Int J Radiat Oncol Biol Phys. 2016; 96:578–88. 52. Hoshino Y, Takagi S, Osaki T, Okumura M, Fujinaga T. Phenotypic analysis and effects of sequential administration of activated canine lymphocytes on healthy beagles. J. Vet. Med. Sci. 2008; 70:581–588. 53. Hume KR, Johnson JL, Williams LE. Adverse effects of concurrent carboplatin chemotherapy and radiation therapy in dogs. J Vet Intern Med. 2009; 23:24–30. 54. Igase M, Nemoto Y, Itamoto K, Tani K, Nakaichi M, Sakurai M, et al. A pilot clinical study of the therapeutic antibody against canine PD-1 for advanced spontaneous cancers in dogs. Sci Rep. 2020; 10:18311. 55. Jacocks K, Hoepp N, DeNicola DB. 4 - Round Cells. In: Valenciano AC, Cowell RL, editors. Cowell and Tyler's Diagnostic Cytology and Hematology of the Dog and Cat (Fifth Edition). St. Louis (MO): Mosby; 2020. p. 65-73. 56. Jeon MD, Leeper HJ, Cook MR, McMillan SK, Bennett T, Murray CA, et al. Multi-institutional retrospective study of canine foot pad malignant melanomas: 20 cases. Vet Comp Oncol. 2022; 20(4): 854-861. 57. Judge SJ, Yanagisawa M, Sturgill IR, Bateni SB, Gingrich AA, Foltz JA, et al. Blood and tissue biomarker analysis in dogs with osteosarcoma treated with palliative radiation and intra-tumoral autologous natural killer cell transfer. PLoS ONE 2020; 15:e0224775. 58. Kawabe M, Mori T, Ito Y, Murakami M, Sakai H, Yanai T, et al. Outcomes of dogs undergoing radiotherapy for treatment of oral malignant melanoma: 111 cases (2006-2012). J Am Vet Med Assoc. 2015; 15;247(10):1146-53. 59. Koido S. Dendritic-tumor fusion cell-based Cancer vaccines. Int J Mol Sci. 2016;17:828. 60. Kuryk L, Bertinato L, Staniszewska M, Pancer K, Wieczorek M, Salmaso S, et al. From Conventional Therapies to Immunotherapy: Melanoma Treatment in Review. Cancers (Basel). 2020; 12(10):3057. 61. Ladue T, Klein MK. Toxicity criteria of the veterinary radiation therapy oncology group. Vet Radiol Ultrasound. 2001; 42:475–6. 62. Laskowski TJ, Biederstadt A, Rezvani K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 2022; 22:557–575. 63. Laver T, Feldhaeusser BR, Robat CS, Baez JL, Cronin KL, Buracco P, et al. Post-surgical outcome and prognostic factors in canine malignant melanomas of the haired skin: 87 cases (2003-2015). Can Vet J. 2018; 59(9):981-987. 64. Leach TN, Childress MO, Greene SN, Mohamed AS, Moore GE, Schrempp DR, et al. Prospective trial of metronomic chlorambucil chemotherapy in dogs with naturally occurring cancer. Vet Comp Oncol 2012; 10:102-112. 65. LeBlanc AK, Atherton M, Bentley RT, Boudreau CE, Burton JH, Curran KM, et al. Veterinary cooperative oncology group-common terminology criteria for adverse events (VCOG-CTCAE v2) following investigational therapy in dogs and cats. Vet Comp Oncol. 2021; 19:311–52. 66. Li JJ, Gu MF, Pan K, Liu LZ, Zhang H, Shen WX, Xia JC. Autologous cytokine-induced killer cell transfusion in combination with gemcitabine plus cisplatin regimen chemotherapy for metastatic nasopharyngeal carcinoma. J. Immunother. 2012; 35:189–195. 67. Liptak JM. 23 - Cancer of the Gastrointestinal Tract - Section A Oral tumors. 20 - Melanoma. In: Vail DM, Thamm DH, Liptak JM, editors. Withrow and MacEwen's Small Animal Clinical Oncology (Sixth Edition). St. Louis (MO): WB Saunders; 2020; 367-81. 68. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017; 14(8):463-482. 69. Luo LY, O'Hara MH, Mitchell TC, Vonderheide RH, Wherry EJ, Minn AJ, et al. Combining radiation with immunotherapy: the University of Pennsylvania experience. Semin Radiat Oncol. 2020; 30:173–80. 70. Maekawa N, Konnai S, Nishimura M, Kagawa Y, Takagi S, Hosoya K, et al. PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral malignant melanoma. NPJ Precis Oncol 2021; 5:10. 71. Maekawa N, Konnai S, Takagi S, Kagawa Y, Okagawa T, Nishimori A, et al. A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci Rep 2017; 7:8951. 72. Maeta N, Tamura K, Takemitsu H, Miyabe M. Lymphokine-activated killer cell transplantation after anti-cancer treatment in two aged cats. Open Vet. J. 2019; 9:147–150. 73. Magee K, Marsh IR, Turek MM, Grudzinski J, Aluicio-Sarduy E, Engle JW, et al. Safety and feasibility of an in situ vaccination and immunomodulatory targeted radionuclide combination immuno-radiotherapy approach in a comparative (companion dog) setting. PLoS One. 2021; 16:e0255798. 74. Meng Y, Yu Z, Wu Y, Du T, Chen S, Meng F, et al. Cell-based immunotherapy with cytokine-induced killer (CIK) cells: From preparation and testing to clinical application. Hum. Vaccin. Immunother. 2017; 13:1379–1387. 75. Michael HT, Ito D, McCullar V, Zhang B, Miller J.S, Modiano J.F. Isolation and characterization of canine natural killer cells. Vet. Immunol. Immunopathol. 2013; 155:211–217. 76. Mie K, Shimada T, Akiyoshi H, Hayashi A, Ohashi F. Change in peripheral blood lymphocyte count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells combined with palliative tumor resection. Vet. Immunol. Immunopathol. 2016; 177:58–63. 77. Milevoj N, Nemec A, Tozon N. Metronomic chemotherapy for palliative treatment of malignant oral tumors in dogs. Front Vet Sci 2022; 9:856399. 78. Murphy S, Hayes AM, Blackwood L, Maglennon G, Pattinson H, Sparkes AH. Oral malignant melanoma - the effect of coarse fractionation radiotherapy alone or with adjuvant carboplatin therapy. Vet Comp Oncol 2005; 3:222-229. 79. Nahi H, Chrobok M, Meinke S, Gran C, Marquardt N, Afram G, et al. Autologous NK cells as consolidation therapy following stem cell transplantation in multiple myeloma. Cell Rep. Med. 2022; 3:100508. 80. Nguyen SM, Thamm DH, Vail DM, London CA. Response evaluation criteria for solid tumours in dogs (v1.0): a Veterinary Cooperative Oncology Group (VCOG) consensus document. Vet Comp Oncol 2015; 13:176-183 81. Nishiya AT, Massoco CO, Felizzola CR, Perlmann E, Batschinski K, Tedardi MV, et al. Comparative Aspects of Canine Melanoma. Vet Sci. 2016; 19;3(1):7. 82. Noguchi S, Yagi K, Okamoto N, Wada Y, Tanaka T. Prognostic factors for the efficiency of radiation therapy in dogs with oral melanoma: A pilot study of hypoxia in intraosseous lesions. Vet. Sci. 2022; 10:4. 83. O’Connor CM, Sheppard S, Hartline CA, Huls H, Johnson M, Palla SL, et al. Adoptive T-cell therapy improves treatment of canine non-Hodgkin lymphoma post chemotherapy. Sci. Rep. 2012; 2: 249. 84. Oh S, Lee JH, Kwack K, Choi SW. Natural killer cell therapy: A new treatment paradigm for solid tumors. Cancers 2019; 11:1534. 85. Ottnod JM, Smedley RC, Walshaw R, Hauptman JG, Kiupel M, Obradovich JE. A retrospective analysis of the efficacy of Oncept vaccine for the adjunct treatment of canine oral malignant melanoma. Vet Comp Oncol 2013; 11:219-229. 86. Pai CC, Kuo TF, Mao SJ, Chuang TF, Lin CS, Chu RM. Immunopathogenic behaviors of canine transmissible venereal tumor in dogs following an immunotherapy using dendritic/tumor cell hybrid. Vet Immunol Immunopathol. 2011; 139:187–99. 87. Palma SD, McConnell A, Verganti S, Starkey M. Review on Canine Oral Melanoma: An Undervalued Authentic Genetic Model of Human Oral Melanoma? Veterinary Pathology. 2021; 58(5):881-889. 88. Pan Y, Chiu YH, Chiu SC, Cho DY, Lee LM, Wen YC, et al. Cytokine-induced killer T cells enhance the cytotoxicity against carboplatin-resistant ovarian cancer cells. Anticancer. Res. 2020; 40:3865–3872. 89. Panjwani MK, Smith JB, Schutsky K, Gnanandarajah J, O’Connor CM, Powell DJ, et al. Feasibility and safety of RNA-transfected CD20-specific chimeric antigen receptor T cells in dogs with spontaneous B cell lymphoma. Mol. Ther. 2016; 24:1602–1614. 90. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22;12(4):252-64. 91. Pellin MA. The use of Oncept melanoma vaccine in veterinary patients: a review of the literature. Vet Sci. 2022; 9:597. 92. Proulx DR, Ruslander DM, Dodge RK, Hauck ML, Williams LE, Horn B, et al. A retrospective analysis of 140 dogs with oral melanoma treated with external beam radiation. Vet Radiol Ultrasound 2003; 44:352-359. 93. Proulx DR, Ruslander DM, Dodge RK, Hauck ML, Williams LE, Horn B, Price GS, Thrall DE. A retrospective analysis of 140 dogs with oral melanoma treated with external beam radiation. Vet Radiol Ultrasound. 2003; 44(3):352-9. 94. Qin R, Olson A, Singh B, Thomas S, Wolf S, Bhavsar NA, et al. Safety and efficacy of radiation therapy in advanced melanoma patients treated with Ipilimumab. Int J Radiat Oncol Biol Phys. (2016) 96:72–7. 95. Rassnick KM, Ruslander DM, Cotter SM, Al-Sarraf R, Bruyette DS, Gamblin RM, et al. Use of carboplatin for treatment of dogs with malignant melanoma: 27 cases (1989-2000). J Am Vet Med Assoc 2001; 218:1444-1448. 96. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 1985; 313:1485–1492. 97. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 1988; 319:1676–1680. 98. Rotte A, Frigault MJ, Ansari A, Gliner B, Heery C, Shah B. Dose-response correlation for CAR-T cells: A systematic review of clinical studies. J. Immunother. Cancer 2022; 10: e005678. 99. Saddawi-Konefka R, O'Farrell A, Faraji F, Clubb L, Allevato MM, Jensen SM, et al. Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. Nat Commun. 2022; 13:4298. 100. Seidel JA, Otsuka A and Kabashima K (2018) Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol.8:86. 101. Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 2015; 16:e498–509. 102. Shiozawa M, Chang CH, Huang YC, Chen YC, Chi MS, Hao HC, Chang YC, Takeda S, Chi KH, Wang YS. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells. BMC Immunol. 2018; 19:27. 103. Smedley RC, Bongiovanni L, Bacmeister C, Clifford CA, Christensen N, Dreyfus JM, et al. Diagnosis and histopathologic prognostication of canine melanocytic neoplasms: A consensus of the Oncology-Pathology Working Group. Vet Comp Oncol 2022; 20:739-751. 104. Stevenson VB, Klahn S, LeRoith T and Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front. Vet. Sci. 2023; 9:1046636 105. Tani H, Miyamoto R, Noguchi S, Kurita S, Nagashima T, Michishita M, et al. A canine case of malignant melanoma carrying a KIT c.1725_1733del mutation treated with toceranib: a case report and in vitro analysis. BMC Vet Res 2021; 17:147. 106. Treggiari E, Grant JP, North SM. A retrospective review of outcome and survival following surgery and adjuvant xenogeneic DNA vaccination in 32 dogs with oral malignant melanoma. J Vet Med Sci 2016; 78:845-850. 107. Tuohy JL, Selmic LE, Worley DR, Ehrhart NP, Withrow SJ. Outcome following curative-intent surgery for oral melanoma in dogs: 70 cases (1998-2011). J Am Vet Med Assoc 2014; 245:1266-1273. 108. Turek M, LaDue T, Looper J, Nagata K, Shiomitsu K, Keyerleber M, et al. Multimodality treatment including ONCEPT for canine oral melanoma: A retrospective analysis of 131 dogs. Vet Radiol Ultrasound 2020; 61:471-480. 109. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015; 520:373–7. 110. van der Weyden L, Brenn T, Patton EE, Wood GA, Adams DJ. Spontaneously occurring melanoma in animals and their relevance to human melanoma. J Pathol. 2020; 252(1):4-21. 111. Verganti S, Berlato D, Blackwood L, Amores-Fuster I, Polton GA, Elders R, et al. Use of Oncept melanoma vaccine in 69 canine oral malignant melanomas in the UK. J Small Anim Pract 2017; 58:10-16. 112. Veterinary cooperative oncology group - common terminology criteria for adverse events (VCOG-CTCAE) following chemotherapy or biological antineoplastic therapy in dogs and cats v1.1. Vet Comp Oncol 2016; 14:417-446. 113. Vinayak A, Frank CB, Gardiner DW, Thieman-Mankin KM, Worley DR. Malignant anal sac melanoma in dogs: eleven cases (2000 to 2015). J Small Anim Pract. 2017; 58(4):231-237. 114. Wang YS, Chi KH, Chu RM. Cytokine profiles of canine monocyte-derived dendritic cells as a function of lipopolysaccharide-or tumor necrosis factor-alpha induced maturation. Vet Immunol Immunopathol. 2007; 118:186–98. 115. Wang YS, Chi KH, Liao KW, Liu CC, Cheng CL, Lin YC, et al. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can J Vet Res. 2007; 71:165–74. 116. Weichselbaum RR, Liang H, Deng L, Fu YX. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol. 2017; 14:365–79. 117. Yoshimoto S, Chester N, Xiong A, Radaelli E, Wang H, Brillantes M, et al. Development and pharmacokinetic assessment of a fully canine anti-PD-1 monoclonal antibody for comparative translational research in dogs with spontaneous tumors. mAbs 2023; 15: 2287250. 118. Zhang Y, Schmidt-Wolf IGH. Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J. Cell. Physiol. 2020; 235:9291–9303. 119. Zhou Y, Husman T, Cen X, Tsao T, Brown J, Bajpai A, et al. Interleukin 15 in cell-based cancer immunotherapy. Int. J. Mol. Sci. 2022; 23:7311. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96156 | - |
dc.description.abstract | 黑色素瘤是犬口腔中最常見的惡性腫瘤,有極強的局部侵犯性和遠端轉移能力,使得臨床治療非常具有挑戰性。目前針對犬口腔惡性黑色素瘤最有效的治療方式仍是局部控制,包含大範圍手術和放射線治療。而傳統治療方式包含化學治療及標靶治療的臨床效果則較有限。免疫治療作為近年來的癌症治療第四支柱,在犬腫瘤中已經有所探索。然而目前在台灣仍存在一些困境,例如缺乏專為動物使用的放射治療、商品化的犬免疫治療如Oncept®和Gilvetmab®尚未進口,有時對於犬口腔黑色素瘤甚至局部大範圍切除都無法實現。因此,本論文整體目標為研究口腔惡性黑色素瘤患犬的可能的治療方式。
本研究包含三個部分,從傳統化療效果分析到新型免疫治療評估。首先第一個部分,為回溯性分析一組未接受大範圍手術切除和放射治療的黑色素瘤患犬,使用化學治療的效果,因目前對於此缺乏良好局部控制的群體,化療仍是僅剩的選項。第二個部分為一項自體免疫細胞回輸的初步研究。同樣收集口腔惡性黑色素瘤患犬,研究此治療的安全性,因此沒有腫瘤相關的排除標準。第三個部分為一項以樹狀細胞為基礎的臨床試驗,使用異體樹突狀細胞(DC)和自體腫瘤細胞製作融合疫苗,將口腔惡性黑色素瘤患犬分為疫苗單獨組(DC組)、與放射治療結合組(DCRT組),同時從第一項研究中提取一組接受carboplatin治療的犬隻作為對照組,探討融合疫苗單獨使用及與放療結合的安全性和初步臨床效果。 第一項研究共納入13隻口腔惡性黑色素瘤患犬,化療方案由臨床醫師決定,包含carboplatin(n=8)和鐘擺化療(n=5)。所有犬隻都未接受大範圍手術或放療,但有些狗接受了腫瘤減積手術。研究統計得到的中位無疾病進展時間(PFI)為42天(95% CI, 20-69),僅接受化療的犬隻的中位存活時間(OST)為181天(n = 11;95% CI,NA-350)。使用carboplatin的中位劑量為250 mg/m²。處於較早的臨床分期和化療期間腫瘤至少維持穩定,是顯著較好的預後因子。第二項研究共收集了10隻患犬接受自體免疫細胞回輸。回輸所用細胞為從患犬自體身上的周邊血液提取所得,通過細胞因子IL-15、IL-2和IL-21的組合刺激在體外擴增為non-B non-T細胞,再通過緩慢靜脈給於的方式回輸到患犬體內。臨床上,有三隻犬接受治療後未發生任何副作用;三隻犬出現了輕微的食慾改變;一隻犬出現肝指數輕微升高;而另外三隻犬出現了不同程度的疑似過敏反應。此研究統計所得的中位無疾病進展時間為49天。在治療期間發生腫瘤進展是顯著較差的預後因子。第三項研究同樣為前驅性免疫治療臨床試驗,以樹狀細胞融合疫苗為基礎。五隻患犬被納入DCRT組,十一隻納入DC組,控制組有八隻。DC疫苗每兩週施打一次,共四次。放射治療每週進行,共五次。結果顯示DC疫苗單獨使用或結合放療均耐受良好,僅有輕微的副作用發生,包含黏膜發炎、消化道不適和局部注射反應。DCRT、DC和控制組的中位無疾病進展時間分別為214天(95% CI,NA)、100天(95% CI,27-237)和42天(95% CI,NA-170),三組未有顯著差異,1年生存率分別為20%、54.5%和12.5%。DCRT組的犬隻和DC組相比,在整個治療過程中皆顯示出顯著更高的TGF-β濃度,意味著可能存在更高程度的免疫抑制。 這三項研究描述了在台大接受治療的口腔惡性黑色素瘤患犬從過去到現在的治療選項變化和發展。總體而言,化療能提供了中位6個月的生存時間,當局部控制無法實現時,化療仍是可考慮的選項。同時,兩項初步免疫治療研究,自體細胞回輸和樹狀細胞融合疫苗,在犬類癌症治療中具有創新性。自體細胞回輸的臨床效果相對有限且可能存在副作用,樹狀細胞融合疫苗相對安全。這兩項研究的初步結果支持未來針對這兩項治療,不論是單獨使用還是結合其他的治療方式,進行進一步的治療療程優化以及設計更嚴格的臨床試驗。同時,對免疫治療期間的免疫相關因子進行全面的研究也值得進行,以更好地理解免疫治療過程中的故事。 | zh_TW |
dc.description.abstract | Melanoma is the most common malignancy in the canine oral cavity. Its great propensity for local invasion and distant metastasis renders treatment challenging. Adequate local control with curative-intent surgery and radiation therapy provides the most effective tumor management, while conventional systemic treatments of chemotherapy and targeted therapy yield limited clinical benefit. Immunotherapy exhibits promising prospects in cancer treatment and has already been explored in canine species. However, some dilemmas exist in Taiwan, including the unavailability of exclusive animal-use radiation therapy and the commercialized canine immunotherapies Oncept® and Gilvetmab®, and sometimes wide-margin surgery cannot be achieved in the oral cavity. Therefore, this dissertation aims to explore possible treatment modalities in melanoma dogs in Taiwan.
Three sub-projects were carried out, from conventional chemotherapeutic effect analysis to novel immunotherapies evaluation. Firstly, a group of dogs lacking wide-margin surgery and radiotherapy who received MTD or metronomic chemotherapy was retrospectively enrolled, because for a population without adequate local control, we do not have other options except for chemotherapy. Secondly, a pilot study of adoptive autologous immune cell transfer was conducted in dogs with oral malignant melanoma. There were no tumor-related exclusion requirements in this sub-project and the primary aim was to investigate treatment safety. Thirdly, another clinical trial of using allogeneic dendritic cell and autologous tumor cell fusion vaccine, alone (DC group) or in combination with radiation therapy (DCRT group), was executed. A group of dogs (control group) who received carboplatin was extracted from the first project as a control group. This sub-project aims to investigate the treatment safety of the fusion vaccine alone and in combination with radiotherapy, and the treatments’ efficacy. Thirteen client-owned dogs were enrolled in the first sub-project. Chemotherapy protocols were determined by the attending clinician, including carboplatin (n = 8) and metronomic chemotherapy (n = 5). None of them received wide-margin surgery or RT, but some had tumors marginally excised. The median PFI was 42 days (95% CI, 20-69), and the median OST of dogs having chemotherapy as their only systemic treatment was 181 days (n = 11; 95% CI, NA-350). The median dosage of carboplatin was 250 mg/m2. Earlier clinical stages and achieving at least stable disease during chemotherapy were significant positive prognostic factors. As for the second sub-project of the pilot adoptive cell transfer, ten dogs were enrolled. The infusion cells were generated autologously from the tumor-bearing dogs and were expanded ex vivo into non-B non-T cells through cytokine cocktail stimulations of IL-15, IL-2, and IL-21. The expanded infusion cells were administered slowly intravenously. Clinically, three dogs did not report any adverse events; three had a mildly altered appetite; one had a mildly increased liver index; while the other three developed suspected anaphylaxis at different levels. The median PFI was 49 days. Dogs with progressive disease during treatment had a shorter survival. The third sub-project was also a pilot clinical trial evaluating dendritic cell-based treatment. Five dogs were included in the DCRT group, eleven in the DC group, and eight in the control group. DC vaccination was given once every two weeks for four doses. Radiotherapy was performed weekly for five fractions. Both DC and DCRT were well-tolerated, with only mild adverse events reported, including mucositis, gastrointestinal discomfort and injection site reactions. The median PFIs in the DCRT, DC and control groups were 214 (95% CI, NA), 100 (95% CI, 27-237), and 42 days (95% CI, NA-170), respectively, which were not significantly different, and the 1-year survival rates were 20%, 54.5%, and 12.5%. Dogs in the DCRT group exhibited significantly higher TGF-β signals throughout the treatment course, indicating a possible higher degree of immunosuppression. The results of the three sub-projects described the picture of systemic treatment options and developments in our department for canine oral melanomas. Generally, chemotherapy offered a median survival of 6 months and could still be considered when adequate local control is infeasible. Meanwhile, the two pilot immunotherapeutic studies, the adoptive cell transfer and the DC-based fusion vaccine, are innovative in canine cancer treatments. The adoptive cell transfer demonstrated possible adverse events and limited clinical benefit, while the DC fusion vaccine was safe and potentially effective. The preliminary findings of these two pilot studies support further protocol optimization and exploration, and necessitate more rigorously designed clinical trials of either using these treatments alone or in combination with other therapies. Investigation of a comprehensive immune parameter complex during immunotherapy is also worthwhile, to have a better understanding of immune modulations after immunotherapy. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-18T16:06:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-11-18T16:06:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
Acknowledgement i Contents iii Abstract v 中文摘要 viii List of figures x List of tables xi Abbreviations xiii Chapter 1. General introduction of canine melanoma - 1 - 1.1 Incidence, clinical behavior, diagnosis, and prognosis - 1 - 1.2 Conventional treatments of canine oral malignant melanoma - 3 - 1.3 Immunotherapies of canine oral malignant melanoma - 5 - 1.4 Comparative aspect of human melanoma - 7 - 1.5 Overall objectives of this dissertation - 10 - Chapter 2. Evaluation of the chemotherapeutic effect in dogs with oral melanoma lacking adequate local control - 11 - 2.1 Abstract - 11 - 2.2 Introduction - 12 - 2.3 Materials and Methods - 14 - 2.4 Results - 17 - 2.5 Discussion - 20 - 2.6 Conclusion - 26 - Chapter 3. Evaluation of the autologous adoptive cell transfer as an immunotherapy in dogs with oral malignant melanoma - 31 - 3.1 Abstract - 31 - 3.2 Introduction - 32 - 3.3 Materials and Methods - 35 - 3.4 Results - 40 - 3.5 Discussion - 45 - 3.6 Conclusion - 52 - Chapter 4. Immunotherapeutic allogeneic dendritic cell and autologous tumor cell fusion vaccine alone or combined with hypofractionated radiotherapy - 60 - 4.1 Abstract - 60 - 4.2 Introduction - 61 - 4.3 Materials and Methods - 65 - 4.4 Results - 74 - 4.5 Discussion - 82 - 4.6 Conclusion - 90 - Chapter 5. Conclusion - 103 - References - 108 - | - |
dc.language.iso | en | - |
dc.title | 不同治療方式於犬口腔惡性黑色素瘤之應用 | zh_TW |
dc.title | Application of different treatment modalities in canine oral malignant melanoma | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 廖泰慶;季匡華;林辰栖;詹昆衛 | zh_TW |
dc.contributor.oralexamcommittee | Albert Taiching Liao;Kwan-Hwa Chi;Chen-Si Lin;Kun-Wei Chan | en |
dc.subject.keyword | 犬口腔惡性黑色素瘤,化學治療,放射治療,免疫治療,自體殺手細胞回輸,樹狀細胞融合疫苗, | zh_TW |
dc.subject.keyword | canine oral malignant melanoma,chemotherapy,radiation therapy,immunotherapy,adoptive natural killer cell transfer,dendritic cell fusion vaccine, | en |
dc.relation.page | 123 | - |
dc.identifier.doi | 10.6342/NTU202404502 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-10-23 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 獸醫學系 | - |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。