請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96144完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃寶儀 | zh_TW |
| dc.contributor.advisor | Polly Huang | en |
| dc.contributor.author | 張銘軒 | zh_TW |
| dc.contributor.author | Ming-Hsuan Chang | en |
| dc.date.accessioned | 2024-11-15T16:09:21Z | - |
| dc.date.available | 2024-11-16 | - |
| dc.date.copyright | 2024-11-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-25 | - |
| dc.identifier.citation | Apple Developer. About the common media application format with http live streaming (hls). https://developer.apple.com/documentation/http-live-streaming/about-the-common-media-application-format-with-http-live-streaming-hls. (visited on 05/29/2024).
Apple Developer. HTTP live streaming. https://developer.apple.com/documentation/http-live-streaming. (visited on 05/29/2024). J. Deng, F. Cuadrado, G. Tyson, and S. Uhlig. Behind the game: exploring the twitch streaming platform. In Proceedings of the 2015 International Workshop on Network and Systems Support for Games, NetGames ’15. IEEE Press, 2015. Dexerto. South Korean Twitch streamers protest last day on platform with influx of adult content. https://www.dexerto.com/twitch/south-korean-twitch-streamers-protest-last-day-on-platform-with-influx-of-adult-content-2556197/. (visited on 05/29/2024). ESRB. Entertainment software rating board. https://www.esrb.org/search/. (visited on 05/29/2024). T.-Y. Fan-Chiang, H.-J. Hong, and C.-H. Hsu. Segment-of-interest driven live game streaming: saving bandwidth without degrading experience. In Proceedings of the 2015 International Workshop on Network and Systems Support for Games, NetGames ’15. IEEE Press, 2015. P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characterization: a view from the edge. In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC ’07, page 15–28, New York, NY, USA, 2007. Association for Computing Machinery. W. A. Hamilton, O. Garretson, and A. Kerne. Streaming on twitch: fostering participatory communities of play within live mixed media. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, page 1315–1324, New York, NY, USA, 2014. Association for Computing Machinery. B. Hu, B. Liu, N. Z. Gong, D. Kong, and H. Jin. Protecting Your Children from Inappropriate Content in Mobile Apps: An Automatic Maturity Rating Framework. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15, page 1111–1120, New York, NY, USA, 2015. Association for Computing Machinery. hy chou. Kukudy. https://github.com/hy-chou/kukudy. (visited on 05/29/2024). hyes92121. Jujuby. https://github.com/hyes92121/Jujuby. (visited on 05/29/2024). R. S. Kalan, R. Farahani, E. Karsli, C. Timmerer, and H. Hellwagner. Towards low latency live streaming: challenges in a real-world deployment. In Proceedings of the 13th ACM Multimedia Systems Conference, MMSys ’22, page 315–318, New York, NY, USA, 2022. Association for Computing Machinery. M. Kaytoue, A. Silva, L. Cerf, W. Meira, and C. Raïssi. Watch me playing, i am a professional: a first study on video game live streaming. In Proceedings of the 21st International Conference on World Wide Web, WWW ’12 Companion, page 1181–1188, New York, NY, USA, 2012. Association for Computing Machinery. D. Kim, J. Baek, and P. S. Fisher. Adaptive video streaming over HTTP. In Proceedings of the 2014 ACM Southeast Regional Conference, ACM SE ’14, New York, NY, USA, 2014. Association for Computing Machinery. N. LaMastra, J. Uttarapong, R. Gandhi, C. L. Cook, and D. Y. Wohn. How a Live Streamer’s Choice in Played Game Affects Mental Health Conversations. In Extended Abstracts of the 2020 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’20, page 297–300, New York, NY, USA, 2020. Association for Computing Machinery. N. Lykousas, V. Gómez, and C. Patsakis. Adult content in social live streaming services: characterizing deviant users and relationships. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM ’18, page 375–382. IEEE Press, 2020. Mozilla. Dash adaptive streaming for html 5 video. https://developer.mozilla.org/en-US/docs/Web/Media/DASH_Adaptive_Streaming_for_HTML_5_Video. (visited on 05/29/2024). K. Pires and G. Simon. DASH in Twitch: Adaptive Bitrate Streaming in Live Game Streaming Platforms. In Proceedings of the 2014 Workshop on Design, Quality and Deployment of Adaptive Video Streaming, VideoNext ’14, page 13–18, New York, NY, USA, 2014. Association for Computing Machinery. K. Pires and G. Simon. YouTube live and Twitch: a tour of user-generated live streaming systems. In Proceedings of the 6th ACM Multimedia Systems Conference, MMSys ’15, page 225–230, New York, NY, USA, 2015. Association for Computing Machinery. R. Shea, D. Fu, and J. Liu. Towards bridging online game playing and live broadcasting: design and optimization. In Proceedings of the 25th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, NOSSDAV’15, page 61–66, New York, NY, USA, 2015. Association for Computing Machinery. Statista. Games Live Streaming - Worldwide. https://www.statista.com/outlook/dmo/digital-media/video-games/games-live-streaming/worldwide. (visited on 05/29/2024). Statista. Twitch. https://www.statista.com/study/81657/twitch/. (visited on 05/29/2024). Streams Charts. All streaming data & analytics in one place. https://streamscharts.com/. (visited on 05/29/2024). SullyGnome. Twitch Statistics & Analysis. https://sullygnome.com/. (visited on 05/29/2024). Twitch. Children on Twitch. https://help.twitch.tv/s/article/children-on-twitch?language=en_US. (visited on 05/29/2024). Twitch. Ingesting live video streams at global scale. https://blog.twitch.tv/en/2022/04/26/ingesting-live-video-streams-at-global-scale/. (visited on 05/29/2024). Twitch. Twitch ingest endpoints. https://help.twitch.tv/s/twitch-ingest-recommendation. (visited on 05/29/2024). TwitchTracker. Twitch Channels, Games and Global Statistics. https://twitchtracker.com/. (visited on 05/29/2024). W.-S. Wung, G.-T. Ting, R.-T. Hsu, C. Hsu, Y.-C. Tsai, C. Wang, Y.-T. Liu, H. Chen, and P. Huang. Twitch’s CDN as an Open Population Ecosystem. In Proceedings of the 16th Asian Internet Engineering Conference, AINTEC ’21, page 56–63, New York, NY, USA, 2021. Association for Computing Machinery. Y. Zhou and R. Farzan. Designing to Stop Live Streaming Cyberbullying: A case study of Twitch Live Streaming Platform. In Proceedings of the 10th International Conference on Communities & Technologies - Wicked Problems in the Age of Tech, C&T ’21, page 138–150, New York, NY, USA, 2021. Association for Computing Machinery. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96144 | - |
| dc.description.abstract | Twitch是擁有13 億用戶數的知名遊戲直播平台,每天有著超過9.9萬個頻道在進行直播。本論文對 Twitch 的研究可分為兩個部分進行探討。
在第一部分中,我們關注Twitch於歐、亞、美三洲的伺服器每日所需面對的流量,並使用直播數和觀眾數作為估計上傳與下載流量的指標。我們說明此二項指標擁有易收集的特質,並且對於像韓語或日語此類主要使用區域較為集中的語言,它們的全球直播數與觀眾數非常接近其區域的直播與觀眾數。然而,對於較廣為使用的語言例如英語或西班牙語,我們便無法直接將其全球直播與觀眾數作為其區域的直播與觀眾數。我們發現,利用串流時各直播的主播放清單(Master Playlist)中的ORIGIN屬性,我們便可以成功地分離多區域語言的洲際直播數與觀眾數,進而對各語言的區域流量進行數據分析。 在第二部分,我們研究了Twitch平台的內容分級制度。我們列出了Twitch分級制度的沿革,並說明其舊制度並未達到預期的目的,這是由於直播主不願意將其直播的內容正確地進行分級所導致的。我們的研究更發現,隨著新分級系統的引入,Twitch開始主動積極的對直播內容進行分類,這項改動使其分類的準確性獲得了巨大的提升。 最後,我們透過研究Twitch於西元2024年2月退出韓國市場的案例,了解此事件如何影響Twitch在韓國直播平台的地位,以及此次退出如何意外的揭示了Twitch新分級制度仍舊不完善。 | zh_TW |
| dc.description.abstract | Twitch being the leading live game streaming platform, has over 1.3 billion users and more than 99,000 channels streaming daily. In this thesis, our study regarding Twitch consists two parts.
In the first part, we present our study of the daily traffic on continental servers, using streamer and viewer counts as representative metrics for the traffic of ingest and outgest servers, respectively. We show that obtaining the global counts for both streamers and viewers is simple and offers several benefits for certain languages. For uni-region languages such as Korean and Japanese, their global streamer and viewer counts closely match their regional counts. However, even at the continental scale, obtaining both counts remains challenging for multi-region languages like English and Spanish. By utilizing the language and ORIGIN attribute in the master playlist of a stream, we were able to successfully separate the continental results for multi-region languages, allowing us to display regional traffic statistics for each language. In the second part, we investigate how Twitch moderates its mature content. We present the changes of Twitch's mature label system, and show that the old system failed to serve its purpose, due to streamers being reluctant to label their stream content as mature-rated. However, since the introduction of the new system, Twitch started to automatically apply the unremovable mature label by the category currently streaming, leading to a huge increase in the rating accuracy. Lastly, we present a case study on Twitch's exit from the Korean market in February 2024, highlighting its impact on the Korean traffic load and how the exit unexpectedly exposed weaknesses in Twitch's new mature label system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-15T16:09:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-15T16:09:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Related Work 7 2.1 Traffic Load 7 2.1.1 Platform Usage 7 2.1.2 Traffic Measurements and CDN Structure 8 2.1.3 Twitch Statistics 10 2.2 Mature Content 11 Chapter 3 Methodology 15 3.1 Traffic Load 15 3.1.1 Estimating Traffic Load 15 3.1.2 Helix API 16 3.1.2.1 Endpoints 16 3.1.3 Uni-Region and Multi-Region Languages 17 3.1.4 Usher 18 3.1.5 Origin Data Centers 19 3.1.6 Crawler Design 21 3.1.6.1 Helix Crawler 21 3.1.6.2 Usher Crawler 22 3.1.7 Dataset 23 3.1.7.1 Helix Dataset 23 3.1.7.2 Usher Dataset 25 3.2 Mature Content 25 3.2.1 Rating Categories on Twitch 26 3.2.1.1 ESRB Ratings 26 3.2.1.2 Category Ratings 28 3.2.1.3 Twitch Moderating Mature Content 29 3.2.1.4 Identify Category Ratings Using Twitch’s Edit Stream Info Dashboard 30 3.2.2 Category Ratings Crawler 31 Chapter 4 Results 35 4.1 Traffic Load 35 4.1.1 Basic Statistics 35 4.1.1.1 Language 35 4.1.1.2 Origins 36 4.1.1.3 Continents 38 4.1.2 User Behavior Analysis 40 4.1.2.1 Uni-Region Languages 40 4.1.2.2 Multi-Region Languages 43 4.1.3 Limitations of (language, origin) as a Filter Condition 46 4.1.3.1 Origin Changes 46 4.2 Mature Content 52 4.2.1 Content Classification Labels Statistics 52 4.2.2 Mature Label Systems 53 4.2.2.1 is_mature Era 54 4.2.2.2 Content Classification Labels Era 55 4.3 Case Study - Twitch Exiting the Korean Market 56 Chapter 5 Discussions 59 5.1 Alternative Location Identification Methods 59 5.2 Mature Stream Detection 61 5.3 Traffic Flow Stress Testing Model 62 Chapter 6 Conclusion 65 References 67 | - |
| dc.language.iso | en | - |
| dc.subject | 內容審核 | zh_TW |
| dc.subject | 使用者行為 | zh_TW |
| dc.subject | 網路流量 | zh_TW |
| dc.subject | 遊戲直播 | zh_TW |
| dc.subject | Twitch | zh_TW |
| dc.subject | User Behavior | en |
| dc.subject | Twitch | en |
| dc.subject | Live Game Streaming | en |
| dc.subject | Traffic Load | en |
| dc.subject | Content Moderation | en |
| dc.title | Twitch使用者行為與分級審核制度之分析 | zh_TW |
| dc.title | Analysis of Twitch's User Behavior and Mature Content Moderation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳伶志;林靖茹 | zh_TW |
| dc.contributor.oralexamcommittee | Ling-Jyh Chen;Ching-Ju Lin | en |
| dc.subject.keyword | Twitch,遊戲直播,網路流量,內容審核,使用者行為, | zh_TW |
| dc.subject.keyword | Twitch,Live Game Streaming,Traffic Load,Content Moderation,User Behavior, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202404514 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-10-26 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 6.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
