請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96143完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柳玗珍 | zh_TW |
| dc.contributor.advisor | Woo-Jin Yoo | en |
| dc.contributor.author | 李詠琪 | zh_TW |
| dc.contributor.author | Yung-Chi Lee | en |
| dc.date.accessioned | 2024-11-15T16:09:03Z | - |
| dc.date.available | 2024-11-16 | - |
| dc.date.copyright | 2024-11-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-24 | - |
| dc.identifier.citation | 1. Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 2011, 54, 2529–2591.
2. Langmuir, I. Isomorphism, isosterism and covalence. J. Am. Chem. Soc. 1919, 41, 1543–1559. 3. Erlenmeyer, H.; Berger, E. Studies on the significance of structure of antigens for the production and the specificity of antibodies. Biochem. Z. 1932, 252, 22–36. 4. Erlenmeyer, H.; Berger, E.; Leo, M. Relationship between the structure of antigens and the specificity of antibodies. Helv. Chim. Acta. 1933, 16, 733–738. 5. Foye, W.O.; Lemke, T.L.; Williams, D.A. Foye’s Principles of Medicinal Chemistry, 6th ed, Lippincott Williams & Wilkins, 2007. 6. Friedman, H.L. Influence of Isosteric Replacements Upon Biological Activity, First Symposium on Chemical-Biological Correlation, The National Academies Press. 1951; pp. 295-358. 7. Thornber, C. W. Isosterism and molecular modification in drug design. Chem. Soc. Rev. 1979, 8, 563–580. 8. Nathan B. Bioisosterism in Medicinal Chemistry, Classical Bioisosteres. In Bioisosteres in Medicinal Chemistry, Wiley-VCH Verlag & Co. KGaA, 2012; pp.3-29. 9. Patani, G.A.; LaVoie, E.J. Bioisosterism: a rational approach in drug design. Chem. Rev. 1996, 96, 3147–3176. 10. Schann, S.; Bruban, V.; Pompermayer, K.; Feldman, J.; Pfeiffer, J.; Renard, P.; Scalbert, E.; Bousquet, P.; Ehrhardt, J.-D. Synthesis and biological evaluation of pyrrolinic isosteres of rilmenidine. Discovery of cis-/ trans-dicyclopropylmethyl-(4,5-dimethyl- 4,5-dihydro-3H-pyrrol-2-yl)-amine (LNP 509), an I1 imidazoline receptor selective ligand with hypotensive activity. J. Med. Chem. 2001, 44, 1588–1593. 11. Counsell, R.E.; Klimstra, P.D.; Nysted, L.N.; Ranney, R.E. Hypocholesterolemic agents. V. Isomeric azacholesterols. J. Med. Chem. 1965, 8, 45–48. 12. Barnes, M.J.; Conroy, R.; Miller., D.J.; Mills, J.S.; Montana, J.G.; Pooni, P.K.; Showell, G.A.; Walsh, L.M.; Warneck, J.B.H. Trimethylsilylpyrazoles as novel inhibitors of p38 MAP kinase: a new use of silicon bioisosteres in medicinal chemistry. Bioorg. Med. Chem. Lett. 2007, 17, 354–357. 13. Meanwell, N. A.; Krystal, M. Respiratory syncytial virus: the discovery and optimization of orally bioavailable fusion inhibitors. Drugs Future 2007, 32, 441–455. 14. Yu, K.-L.; Sin, N.; Civiello, R. L.; Wang, X. A.; Combrink, K. D.; Gulgeze, H. B.; Venables, B. L.; Wright, J. J. K.; Dalterio, R. A.; Zadjura, L.; Marino, A.; Dando, S.; D’Arienzo, C.; Kadow, K. F.; Cianci, C. W.; Li, Z.; Clarke, J.; Genovesi, E. V.; Medina, I.; Lamb, L.; Colonno, R. J.; Yang, Z.; Krystal, M.; Meanwell, N.A. Respiratory syncytial virus fusion inhibitors. Part 4: Optimization for oral bioavailability. Bioorg. Med. Chem. Lett. 2007, 17, 895–901. 15. Wang, T.; Yin, Z.; Zhang, Z.; Bender, J. A.; Yang, Z.; Johnson, G.; Yang, Z.; Zadjura, L. M.; D’Arienzo, C. J.; DiGiugno Parker, D.; Gesenberg, C.; Yamanaka, G. A.; Gong, Y.-F.; Ho, H.-T.; Fang, H.; Zhou, N.; McAuliffe, B. V.; Eggers, B. J.; Fan, L.; Nowicka-Sans, B.; Dicker, I. B.; Gao, Q.; Colonno, R. J.; Lin, P.-F.; Meanwell, N. A.; Kadow, J. F. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo- [2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects. J. Med. Chem. 2009, 52, 7778–7787. 16. Pavel K. Mykhailiuk. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem., 2019, 17, 2839–2849. 17. Richard D. T.; Malcolm M.; Alastair D. G. L. Rings in Drugs. J. Med. Chem., 2014, 57, 5845-5859. 18. Frank L.; Jack B.; Christine H. Escape from Flatland. J. Med. Chem., 2009, 52, 6752-6756. 19. Edwin G. T.; Sevan D. H.; Craig M. W.; G. Paul S.; Louis M. R.; Irene H.; Mark A.; Raman S.; Gregory S. W.; R. Scott O.; Matthew H. T. Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. J. Med. Chem. 2020, 63, 11585−11601. 20. Zhong M.; Peng E.; Huang N.; Huang Q.; Huq A.; Lau M.; Colonno R.; Li L. Discovery of functionalized bisimidazoles bearing cyclic aliphaticphenyl motifs as HCV NS5A inhibitors. Bioorg. Med. Chem. Lett., 2014, 24, 5731-5737. 21. Hui X.; Sevan D. H.; Xuejie C.; Sussan G.; Tyler F.; Andy K.; Cody-Ellen P. M.; Kyna-Anne C.; Kara N. J.; Da-Yun J.; Cielo P.; Paul V. B.; Jed M. B.; John T.; G. Paul S.; Glen M. B.; James J. D. V.; James M.; Gimme H. W.; Thomas H. J. B.; Maree T. S.; Jian-Ke T.; Craig M. W. Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere. Angew. Chem., Int. Ed., 2016, 55, 3580-3585. 22. Roberto P.; Mariarosa R.; Maura M.; Benedetto N.; Gabriele C.; Christian T. (S)-(+)-2-(3‘-Carboxybicyclo[1.1.1]pentyl)-glycine, a Structurally New Group I Metabotropic Glutamate Receptor Antagonist. J. Med. Chem., 1996, 39, 2874-2876. 23. Roberto P.; Gabriele C.; Emiliano G.; Luisa M; Isabelle B.; Jean-Philippe P. Synthesis and preliminary evaluation of (S)-2-(4’-carboxycubyl)glycine, a new selective mGluR1 antagonist. Bioorg. Med. Chem. Lett., 1998, 8, 1569-1574. 24. Antonia F. S.; Chakrapani S.; Ivan V. E.; Jason K. D.; Theresa J. O.; Kenneth J. D.; W. Scott M.; Annie W.; Peter H. D.; Charles E. N.; Stacey L. B.; Leslie R. P.; David R. R.; Gregory W. K.; Bethany L. K.; Liming Z.; Yasong L.; Steven H. C.; Michael E. G.; Kapil K.; Evelyn S.; Kevin P. A.; Andrew J. H.; Christine E. O.; Ashley E. R.; Blossom S.; Christopher J. O. Application of the Bicyclo[1.1.1]pentane Motif as a Nonclassical Phenyl Ring Bioisostere in the Design of a Potent and Orally Active γ-Secretase Inhibitor. J. Med. Chem., 2012, 55, 3414-3424. 25. Kyriacos C. N.; Dionisios V.; Sotirios T.; Athanasios P.; Holger K.; Hanan F.; Julia G.; Damien W.; Antonia F. S. Synthesis and Biopharmaceutical Evaluation of Imatinib Analogues Featuring Unusual Structural Motifs. Chem. Med. Chem. 2016, 11, 31. 26. Navanita T. T.; Vikrant A. A. A practical metal-free homolytic aromatic alkylation protocol for the synthesis of 3-(pyrazin-2-yl)bicyclo[1.1.1]pentane-1-carboxylic acid. Org. Biomol. Chem., 2016, 14, 9485. 27. H. Erik D.; Johannes C. L. W. (Bio)isosteres of ortho- and meta-substituted benzenes. Beilstein J. Org. Chem. 2024, 20, 859–890. 28. Denisenko, A.; Garbuz, P.; Shishkina, S. V.; Voloshchuk, N. M.; Mykhailiuk, P. K. Saturated Bioisosteres of ortho-Substituted Benzenes. Angew. Chem., Int. Ed. 2020, 59, 20515–20521. 29. Denisenko, A.; Garbuz, P.; Voloshchuk, N. M.; Holota, Y.; Al-Maali, G.; Borysko, P.; Mykhailiuk, P. K. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat. Chem. 2023, 15, 1155–1163. 30. Harmata, A. S.; Spiller, T. E.; Sowden, M. J.; Stephenson, C. R. J. Photochemical Formal (4 + 2)-Cycloaddition of Imine-Substituted Bicyclo[1.1.1]pentanes and Alkenes. J. Am. Chem. Soc. 2021, 143, 21223–21228. 31. Rigotti, T.; Bach, T. Bicyclo[2.1.1]hexanes by Visible Light-Driven Intramolecular Crossed [2 + 2] Photocycloadditions. Org. Lett. 2022, 24, 8821–8825. 32. Reinhold, M.; Steinebach, J.; Golz, C.; Walker, J. C. L. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem. Sci. 2023, 14, 9885–9891. 33. Guo, R.; Chang, Y.-C.; Herter, L.; Salome, C.; Braley, S. E.; Fessard, T. C.; Brown, M. K. Strain-Release [2π + 2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer. J. Am. Chem. Soc. 2022, 144, 7988–7994. 34. Agasti, S.; Beltran, F.; Pye, E.; Kaltsoyannis, N.; Crisenza, G. E. M.; Procter, D. J. A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. Nat. Chem. 2023, 15, 535–541. 35. Herter, L.; Koutsopetras, I.; Turelli, L.; Fessard, T.; Salomé, C. Preparation of new bicyclo[2.1.1]hexane compact modules: an opening towards novel sp3-rich chemical space. Org. Biomol. Chem. 2022, 20, 9108–9111. 36. Denisenko, A.; Garbuz, P.; Makovetska, Y.; Shablykin, O.; Lesyk, D.; Al-Maali, G.; Korzh, R.; Sadkova, I. V.; Mykhailiuk, P. K. 1,2-Disubstituted bicyclo[2.1.1]hexanes as saturated bioisosteres of ortho-substituted benzene. Chem. Sci. 2023, 14, 14092–14099. 37. Hsu, C.-W.; Lu, Y.-T.; Lin, C.-P.; Yoo, W.-J. Synthesis of Bicyclo[2.1.1]hexan-5-ones via a Sequential Simmons-Smith Cyclopropanation and an Acid-Catalyzed Pinacol Rearrangement of α-Hydroxy Silyl Enol Ethers. Adv. Synth. Catal. 2023, 365, 3082–3087. 38. Namy, J. L.; Girard, P.; Kagan, H. B. A new preparation of some divalent lanthanide iodides and their usefulness in organic synthesis. Nouv. J. Chim. 1977, 1, 5-7. 39. Michal S.; Neal J. F.; Dixit P.; David J. P. Cross-Coupling Reactions Using Samarium(II) Iodide. Chem. Rev. 2014, 114, 5959–6039. 40. Namy, J. L.; Souppe, J.; Kagan, H. B. Efficient formation of pinacols from aldehydes or ketones mediated by samarium diiodide. Tetrahedron Lett. 1983, 24, 765-766. 41. Foster, S. L.; Handa, S.; Krafft, M.; Rowling, D. Samarium(II) iodide-mediated intramolecular pinacol coupling reactions with cyclopropyl ketones. Chem. Commun. 2007, 4791-4793. 42. Kawato, Y.; Takahashi, N.; Kumagai, N.; Shibasaki, M. Catalytic Asymmetric Conjugate Addition of α-Cyanoketones for the Construction of a Quaternary Stereogenic Center. Org. Lett. 2010, 12, 1484-1487. 43. Hagiwara, K.; Himuro, M.; Hirama, M.; Inoue, M. A concise route to the C2-symmetric tricyclic skeleton of ryanodine. Tetrahedron Lett. 2009, 50, 1035-1037. 44. Paul-Henri D. Comprehensive Organic Functional Group Transformations II; Elsevier Pergamon, 2005; pp.375–426. 45. Jayati M.; Ramanathapuram V. V. Convenient Synthesis of an A-Ring Aromatic Trichothecene Analog. J. Org. Chem. 1998, 63, 3855–3858. 46. Longhu Z.; Yongmin Z.; Daqing S. Samarium(II) Iodide-Promoted Intermolecular and Intramolecular Ketone Nitrile Reductive Coupling Reactions. Synthesis. 2000, 91–98. 47. Yoshihiko Y.; Daisuke M.; Reiko H.; Kenji I. The Cp2TiPh-Mediated Reductive Radical Cyclization of Cyanoketones and Related Reactions. Efficient Trapping of Ketyl Radicals by Cp2TiPh-Coordinated Polar Multiple Bonds. J. Org. Chem. 1999, 64, 3224–3229. 48. LeAnne M. F.; Louis D. S. Nitazoxanide: A New Thiazolide Antiparasitic Agent. Clin. Infect. Dis. 2005, 40, 1173–1180. 49. Jean-François R. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res. 2014, 110, 94–103. 50. Rossignol J.F.; La Frazia S.; Chiappa L.; Ciucci A.; Santoro M.G. Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. J. Biol. Chem. 2009, 284, pp. 29798-29808 51. J.F. Rossignol, M.C. Bardin, J. Fulgencio, D. Mogelnicki, C. Bréchot. A randomized double-blind placebo-controlled clinical trial of nitazoxanide for treatment of mild or moderate COVID-19. EClinical Medicine, 2022, 45, 101310. 52. Newmann-Evans, Richard H.; Simon, Reyna J.; Carpenter, B. K. The Influence of Intramolecular Dynamics on Branching Ratios in Thermal Rearrangements. J. Org. Chem. 1990, 55, 695–711. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96143 | - |
| dc.description.abstract | “逃離平面”的概念已成為藥物化學中的一個關鍵焦點,旨在提高候選藥物進入市場的成功率。這涉及從傳統的平面芳香結構(如苯環)向探索三維結構的轉變。其中一類特定的結構是雙環[2.1.1]己烷,其中二取代的雙環[2.1.1]己烷有望成為鄰位和間位取代苯的生物等排體。這些雙環化合物提供了獨特的取代模式和幾何形狀,顯示出有望替代藥物分子中特定苯衍生物的潛力。
這篇論文提出一種合成策略,涉及分子內的二碘化釤介導的酮-酮頻哪醇偶聯反應和酸催化的頻哪醇重排反應,以將3-(2-氧-2-乙基)環丁酮轉化為1-取代雙環[2.1.1]己酮。我們相信,這些雙環酮可作為易於修飾的中間體,從而獲得鄰位取代芳烴的潛在生物等排體。 | zh_TW |
| dc.description.abstract | The concept of "escape from flatland" has become a pivotal focus in medicinal chemistry, aiming to enhance the success of drug candidates reaching the market. This involves a departure from traditional flat, planar aromatic structures, like benzene rings, towards the exploration of three-dimensional (3-D) architectures. One specific class of such structures is bicyclo[2.1.1]hexanes (BCHs), with disubstituted BCHs emerging as potential bioisosteres for ortho- and meta-substituted benzenes. These bicyclic compounds offer unique substitution patterns and geometries, making them promising candidates to replace specific benzene derivatives in drug molecules.
This thesis describes a synthetic strategy involving an intramolecular SmI2-mediated ketone-ketone pinacol coupling and an acid-catalyzed pinacol rearrangement to convert 3-(2-oxo-2-ethyl)cylobutan-1-ones into 1-substituted bicyclo[2.1.1]hexan-2-ones. We believe that these bicyclic ketones could serve as easily modifiable intermediates to access potential bioisosteres to ortho-substituted arenes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-15T16:09:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-15T16:09:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii List of Schemes vi List of Tables viii Chapter 1. Introduction 1 1.1 The Introduction to Isosterism 1 1.2 The Definition of Bioisosteres 1 1.3 Examples of Classical Bioisosteres 3 1.4 Introduction to Benzene Bioisosteres 7 1.5 para-Substituted Benzene Bioisosteres 11 1.6 ortho- and meta-Substituted Benzene Bioisosteres 14 1.7 Disubstituted Bicyclo[2.1.1]hexane (BCH) 16 1.8 SmI2-Mediated Coupling Reaction 22 1.9 Pinacol Rearrangement 24 1.10 Experimental Design 26 Chapter 2 Results and Discussion 29 2.1 Synthesis of 2-Substituted Bicyclo[2.1.1]hexane-1,2-diol 29 2.2 Optimization of the Pinacol Coupling Reaction 33 2.3 Optimization of the Pinacol Rearrangement 34 2.4 Substrate Scope 35 2.5 Proposed Mechanism for the Pinacol Coupling Reaction 38 2.6 Proposed Mechanism for the Pinacol Rearrangement Reaction 40 2.7 Synthesis of Drug-like Molecules 40 2.8 Conclusion 42 Chapter 3 Experimental Section 43 3.1 General Information 43 3.2 Preparation of Key Intermediate 68 and 81 44 3.3 General Procedure for the Synthesis of 72a-o via Addition Reactions 45 3.4 General Procedure for the Synthesis of Cyclobutanone 61a-o 57 3.5 General Procedure for the Synthesis of Bicyclo[2.1.1]hexan-2-one 63a-o 68 3.6 Synthesis of 1-phenylbicyclo[2.1.1]hexan-2-yl acetate (80) 78 3.7 Synthesis of 1-((5-nitrothiazol-2-yl)carbamoyl)bicyclo[2.1.1]hexan-2-yl acetate (82) 79 Reference 81 Chapter 4. Supplementary Information 90 | - |
| dc.language.iso | en | - |
| dc.subject | 苯環生物等排體 | zh_TW |
| dc.subject | 雙環[2.1.1]己酮 | zh_TW |
| dc.subject | 二碘化釤 | zh_TW |
| dc.subject | 頻哪醇偶聯反應 | zh_TW |
| dc.subject | 頻哪醇重排反應 | zh_TW |
| dc.subject | pinacol rearrangement | en |
| dc.subject | benzene bioisostere | en |
| dc.subject | bicyclo[2.1.1]hexanes | en |
| dc.subject | SmI2 | en |
| dc.subject | pinacol coupling | en |
| dc.title | 透過連續分子內二碘化釤介導的還原偶聯和酸催化頻哪醇重排反應合成 1-取代雙環[2.1.1]己-2-酮 | zh_TW |
| dc.title | Synthesis of 1-Substituted Bicyclo[2.1.1]hexan-2-ones via a Sequential Intramolecular SmI2-Mediated Reductive Coupling and an Acid-Catalyzed Pinacol Rearrangement Reaction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊吉水;侯敦仁 | zh_TW |
| dc.contributor.oralexamcommittee | Jye-Shane Yang;Duen-Ren Hou | en |
| dc.subject.keyword | 苯環生物等排體,雙環[2.1.1]己酮,二碘化釤,頻哪醇偶聯反應,頻哪醇重排反應, | zh_TW |
| dc.subject.keyword | benzene bioisostere,bicyclo[2.1.1]hexanes,SmI2,pinacol coupling,pinacol rearrangement, | en |
| dc.relation.page | 193 | - |
| dc.identifier.doi | 10.6342/NTU202404509 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-10-24 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 6.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
