請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96133完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧 | zh_TW |
| dc.contributor.advisor | Shan-hui Hsu | en |
| dc.contributor.author | 王鼎傑 | zh_TW |
| dc.contributor.author | Dean-Jay Wang | en |
| dc.date.accessioned | 2024-11-15T16:05:47Z | - |
| dc.date.available | 2024-11-16 | - |
| dc.date.copyright | 2024-11-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-24 | - |
| dc.identifier.citation | 1. A. Jo, M. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, Polyurethane types, synthesis and applications – A review, RSC Adv. 6 (2016) 114453–114482.
2. A. Zlatani, C. Lava, W. Zhang, Z.S. Petrovi, Effect of structure on properties of polyols and polyurethanes based on different vegetable oils, J. Polym. Sci. B Polym. Phys. 42 (2004) 809–819. 3. M.M. Perez-Madrigal, M.I. Giannotti, L.J. del Valle, L. Franco, E. Armelin, J. Puiggalı́, F. Sanz, C. Aleman, Thermoplastic polyurethane: polythiophene nanomembranes for biomedical and biotechnological applications. ACS Appl. Mater. Interfaces 6 (2014) 9719−9732. 4. M. Szycher, A.M. Reed, A.A. Siciliano, Implantation of novel small-diameter polyurethane vascular prostheses interposed in canine femoral and carotid arteries, J. Biomater. Appl. 10 (1991) 110. 5. H. Chen, X. Jiang, L. He, T. Zhang, M. Xu, X. Yu, Novel biocompatible waterborne polyurethane using l‐lysine as an extender, J. Appl. Polym. Sci. 84 (2002) 2474–2480. 6. S.-H. Hsu, Y.-C. Kao, Z.-C. Lin, Enhanced biocompatibility in biostable poly(carbonate)urethane, Macromol. Biosci. 4 (2004) 464–470. 7. A. Takahara, R.W. Hergenrother, A.J. Coury, S.L. Cooper, Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipid sorption, J. Biomed. Mater. Res. 26 (1992) 801–818. 8. Y.W. Tang, R.S. Labow, J.P. Santerre, Enzyme induced biodegradation of polycarbonate-polyurethanes: Dose dependence effect of cholesterol esterase, Biomaterials. 24 (2003) 2003–2011. 9. L. Pinchuk, A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes, J. Biomater. Sci. Polym. Ed. 6 (1994) 225–267. 10. H.J. Salacinskia, M. Odlyhab, G. Hamiltona, A.M. Seifaliana, Thermo-mechanical analysis of a compliant poly(carbonate-urea)urethane after exposure to hydrolytic, oxidative, peroxidative and biological solutions. Biomaterials. 23 (2002) 2231–2240. 11. K. Stokes, R. Mcvenes, J.M. Anderson, Polyurethane elastomer biostability, J. Biomater. Appl. 9 (1995) 321–354. 12. R. Zhu, Y. Wang, Z. Zhang, D. Ma, X. Wang, Synthesis of polycarbonate urethane elastomers and effects of the chemical structures on their thermal, mechanical and biocompatibility properties, Heliyon. 2 (2016) e00125. 13. K.-L. Noble, Waterborne polyurethanes, Prog. Org. Coat. 32 (1997) 131–136. 14. D.-K. Lee, H.-B. Tsai, Z.-D. Yang, R.-S. Tsai, Polyurethane dispersions derived from polycarbonatediols by a solvent‐free process, J. Appl. Polym. Sci. 126 (2012) E275–E282. 15. E. Govorčin Bajsića, E. Zdravevab, Photooxidative stability of polyurethane/polycarbonate blends, Chem. Biochem. Eng. Q. 32 (2018) 191–203. 16. A. Kausar, Polyurethane/polyhedral oligomeric silsesquioxane nanocomposite: Trends and perspectives, J. Macromol. Sci. 58 (2021) 361–375. 17. Juan V. Cauich-Rodríguez, Lerma H. Chan-Chan, Fernando Hernandez-Sánchez and José M. Cervantes-Uc, Degradation of Polyurethanes for Cardiovascular Applications, Advances in Biomaterials Science and Biomedical Applications (2013) 51-82. 18. Hua, G., Liu, J., Yang, S., & Zhang, L, Study on the Synthesis and Properties of Polytetramethylene Glycol Diol. Journal of Macromolecular Science, Part A, 52(11), (2015) 920-927. 19. Li, X., Ma, C., Wang, X., Sun, J., Zhang, Q., & Xie, X, Synthesis of Poly(ethylene terephthalate-co-isophthalate) Copolyester Using Poly(tetramethylene ether glycol) as the Soft Segment, Journal of Macromolecular Science, Part A, 54(6), (2017) 378-385. 20. Yang, H., & Xu, G, Preparation and Characterization of Polyurethane Elastomer from Polytetramethylene Ether Glycol, Journal of Macromolecular Science, Part A, 56(11), (2019) 827-833. 21. Wang, H., Yu, X., Yang, F., & Song, L, Preparation and properties of PCDL-based polyurethane elastomers, Journal of Materials Science, 53(9), (2018) 6575-6584. 22. Chen, Y., Wang, L., Chen, J., Liu, Y., & Xu, H, Synthesis and Characterization of PCDL/MDI Prepolymers for RIM PU Elastomers. Polymer-Plastics Technology and Materials, 58(1), (2019) 88-94. 23. Huang, J., Zhang, W., Zhang, S., & Zhang, Y, Synthesis of waterborne polyurethane dispersions based on PCDL and PEO. Journal of Coatings Technology and Research, 17(4), (2020) 987-996. 24. 趙毅, 賀華龍, 謝偉, & 周永輝, 基於羥基終止的不飽和聚酯二醇和DMPA的聚氨酯膜的製備與性能. 《塗料工藝》,16(3),(2019) 761-768。 25. 耿志勇, 張燕梅, 余彥華, & 王雷, 從DMPA改性的植物油基聚醇合成並表徵的聚氨酯塗料. 《有機塗料進展》, 111, (2017) 124-131。 26. 吳洋, 謝偉, 趙毅, & 賀華龍, 基於DMPA和異佛酮二異氰酸酯的紫外線固化水性聚氨酯分散液的製備與性能. 《有機塗料進展》,123, (2018) 1-9。 27. Wang, X., He, L., Li, Y., & Liu, Y, Preparation and properties of DMBA diol-based polyurethane elastomers. Journal of Applied Polymer Science, 135(37), (2018) 46678. 28. Li, J., Yu, Y., Li, L., & Wang, H., Synthesis and characterization of waterborne polyurethane dispersions based on DMBA diol. Journal of Coatings Technology and Research, 16(6), (2019) 1689-1698. 29. Wu, Y., Xie, W., Zhao, Y., & He, H, UV-curable waterborne polyurethane dispersions based on DMBA diol and acrylic monomer. Progress in Organic Coatings, 147, (2020) 105744. 30. Wang, P., Liu, Y., Li, S., & Li, J, Synthesis and characterization of H12MDI-based polyurethane elastomers. Journal of Applied Polymer Science, 135(37), (2018) 46678. 31. Guo, L., Jia, J., & Chen, H, Preparation and characterization of H12MDI-based polyurethane coatings for biomedical applications. Journal of Coatings Technology and Research, 16(6), (2019) 1689-1698. 32. Zhang, H., Dong, J., Liu, M., & Zhu, L, Application of H12MDI-based polyurethane in tissue engineering scaffolds. Progress in Organic Coatings, 147, (2020) 105744. 33. Hepburn, C, Polyurethane Elastomers. Springer Netherlands(1992). 34. Randall, D., & Lee, S, The Polyurethanes Book. John Wiley & Sons (2002). 35. Zhang, C., Zhang, Y., & Luo, S, Waterborne Polyurethane Nanocomposites: 36. A Review of Preparation, Properties, and Applications. Polymers, 10(3), (2018) 266. Tanzi, M. C., Farè, S., & Candiani, G, Foundations of Biomaterials Engineering. Academic Press(2012).. 37. Langer, R., & Vacanti, J. P, Tissue Engineering. Science, 260(5110), (1993) 920-926. 38. Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A, Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1, (2010) 149-173. 39. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E, Biomaterials Science: An Introduction to Materials in Medicine. Academic Press (2004). 40. Rani, M., Rani, M., & Gupta, R. K, Waterborne Polyurethanes: Synthesis and Applications. Journal of Coatings Technology and Research, 11(3), (2014) 309-323. 41. Xue, B., & Yang, H, Preparation of waterborne polyurethane by mechanical dispersion method. Journal of Applied Polymer Science, 115(6), (2010) 3558-3564. 42. Chang, H., & Yang, K, Synthesis and properties of waterborne polyurethane based on different hydrophilic chain extenders. Polymer Bulletin, 63(4), (2009) 561-571. 43. Wang, Z., & Zhang, C, Preparation of waterborne polyurethane with self-emulsifying properties. Polymer, 54(10), (2013) 2682-2689. 44. Chen, H., Li, Q., & Wu, X, Preparation and properties of cationic waterborne polyurethanes. Journal of Applied Polymer Science, 131(10), (2014) 40258. 45. Wang, W., & Chen, H, Synthesis and properties of anionic waterborne polyurethanes. Progress in Organic Coatings, 74(1), (2012) 35-42. 46. Li, X., & Chen, Z, Synthesis and characterization of nonionic waterborne polyurethanes. Journal of Polymer Science Part A: Polymer Chemistry, 49(4), (2011) 978-987. 47. Luo, Y., & Chen, H, Preparation and properties of anionic waterborne polyurethanes. Journal of Applied Polymer Science, 131(10), (2014) 40258. 48. Kim, J., & Lee, S, Synthesis and properties of cationic waterborne polyurethanes. Progress in Organic Coatings, 74(1), (2012) 35-42. 49. Wang, X., & Zhang, Y, Synthesis and characterization of nonionic waterborne polyurethanes. Journal of Polymer Science Part A: Polymer Chemistry, 49(4), (2011) 978-987. 50. Li, X., & Chen, Z, Synthesis and application of hybrid waterborne polyurethanes with improved performance. Polymer Engineering & Science, 53(3), (2013) 503-512. 51. Naebe, M., Wang, J., Amini, A., Khayyam, H., Hameed, N., Li, L. H., ... & Chen, Y, Polyurethane/poly (acrylic acid) nanocomposite hydrogels: synthesis, characterization and swelling behavior. Journal of Materials Chemistry, 22(6), (2012) 2448-2459. 52. Cai, G. H., & Chen, Q, Preparation of waterborne polyurethane (WPU) dispersion by prepolymer mixing method. Journal of Applied Polymer Science, 110(4), (2008) 2256-2262. 53. Ma, Q., & Yuan, C, Research Progress in Waterborne Polyurethane Prepared by Emulsion Polymerization. Journal of Polymer Science and Applications, 3(3), 71-76. 54. Li, J., Li, J., Liu, S., & Jia, Z. (2019). Preparation and properties of UV-curable waterborne polyurethane acrylate emulsion. Journal of Polymer Engineering, 39(6), (2019) 545-551. 55. P. A. Serizawa, T. Fujioka, K. Akashi, Water-borne polyurethane prepared by acetone process, Journal of Applied Polymer Science, 87 (2003) 1-6. 56. G. H. Cai, Q. Chen, Preparation of waterborne polyurethane (WPU) dispersion by prepolymer mixing method, Journal of Applied Polymer Science, 110 (2008) 2256-2262. 57. W. Zhang, Y. Chen, Y. Wang, L. Gao, Study on the preparation of waterborne polyurethane by melt method, Applied Mechanics and Materials, 130 (2012) 260-264. 58. Y. Y. Tsai, T. Y. Wei, Y. C. Huang, Synthesis of waterborne polyurethane using ketimine catalysts, Journal of Applied Polymer Science, 125 (2012) 4607-4615。 59. M. R. D. R. R. P. J., Biodegradation of polyurethane elastomers: A review, Progress in Polymer Science, vol. 39, no. 1, pp. 60–85, 2014. 60. K. H. A. L. S. D. D. S. G. G. A. K., Biocompatibility of polyether urethanes: An overview. Journal of Applied Polymer Science, vol. 132, no. 34, pp. 42156–42166, 2015. 61. Li, Q., Wang, J., Shahani, S., Sun, D. D., & Sharma, B, Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents. Colloids and Surfaces B: Biointerfaces, 169, (2018) 170-179. 62. 吳振澤,黃家瑞,莊育澤,鄭宏偉,張威俊。提高聚氨酯血液相容性和內皮化的表面改性:一個綜述。材料科學與工程:C,91,(2018)912-926。 63. Anderson, J. M., & Ratner, B. D, Biocompatibility of implants: Issues and potential improvement. In Biomaterials science (pp. 447-453). Academic Press. 64. Maitz, M. F. (2015). Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1(3), (2013) 161-176. 65. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). 66. S.H. Hsu, K.C. Hung, Y.Y. Lin, C.H. Su, H.Y. Yeh, U.S. Jeng, C.Y. Lu, S.A. Dai, W.E. Fu, J.C. Lin, Water-based synthesis and processing of novel biodegradable elastomers for medical applications, J. Mater. Chem. B 2 (2014) 5083–5092. 67. J. Bullermann, S. Friebel, T. Salthammer, R. Spohnholz, Novel polyurethane dispersions based on renewable raw materials—Stability studies by variations of DMPA content and degree of neutralisation, Prog. Org. Coat. 76 (2013) 609–615. 68. Q. Zhu, Y. Wang, M. Zhou, C. Mao, X. Huang, J. Bao, J. Shen, Preparation of anionic polyurethane nanoparticles and blood compatible behaviors, J. Nanosci. Nanotechnol. 12 (2012) 4051–4056. 69. R.M. Versteegen, R.P. Sijbesma, E.W. Meijer, [n]-Polyurethanes: synthesis and characterization, Angew. Chem. Int. Ed. Engl. 38 (1999) 2917–2919. 70. S. Subramani, J.M. Lee, I.W. Cheong, J.H. Kim, Synthesis and characterization of water‐borne crosslinked silylated polyurethane dispersions, J. Appl. Polym. Sci. 98 (2005) 620–631. 71. X. Zhang, Y. Liu, Y.J. Kim, J. Mac, R. Zhuang, P. Wang, Co-delivery of carboplatin and paclitaxel via cross-linked multilamellar liposomes for ovarian cancer treatment, RSC Adv. 7 (2017) 19685–19693. 72. R. Sattar, A. Kausar, M. Siddiq, Thermal, mechanical and electrical studies of novel shape memory polyurethane/polyaniline blends, Chin. J. Polym. Sci. 33 (2015) 1313–1324. 73. N. Liu, Y. Zhao, M. Kang, J. Wang, Y. Fenga, N. Yin, Q. Li, The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes, Prog. Org. Coat. 88 (2015) 46–56. 74. A. Gao, R. Hang, W. Li, W. Zhang, P. Li, G. Wang, L. Bai, X.F. Yu, H. Wang, L. Tong, P.K. Chu, Linker-free covalent immobilization of heparin, SDF-1α, and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation, Biomaterials. 140 (2017) 201–211. 75. X. Li, J. Tang, L. Bao, L. Chen, F. Hong, Performance improvements of the BNC tubes from unique double-silicone-tube bioreactors by introducing chitosan and heparin for application as small-diameter artificial blood vessels, Carbohydr. Polym. 178 (2017) 394–405. 76. X. Li, C. Wang, Y. Yang, X. Wang, M. Zhu, B.S. Hsiao, Dual-biomimetic superhydrophobic electrospun polystyrene nanofibrous membranes for membrane distillation, ACS Appl. Mater. Interfaces 6 (2014) 2423–2430. 77. Y.S. Kwak, E.Y. Kim, B.H. Ha Yoo, H.D. Kim, Preparation and properties of waterborne poly (urethane urea) s for adhesives: The effects of the 2, 2‐bis (hydroxylmethyl) propionic acid content on the properties, J. Appl. Polym. Sci. 94 (2004) 1743–1751. 78. M.M. Rahman, H.D. Kim, Effect of polyisocyanate hardener on waterborne polyurethane adhesive containing different amounts of ionic groups, Macromol. Res. 14 (2006) 634–639. 79. J.A. Jofre-Reche, V. García-Pacios, V. Costa, M. Colera, J.M. Martín-Martínez, Role of the interactions between carbonate groups on the phase separation and properties of waterborne polyurethane dispersions prepared with copolymers of polycarbonate diol, Prog. Org. Coat. 88 (2015) 199–211. 80. K. Kojio, M. Furukawa, S. Motokucho, M. Shimada, M. Sakai, Structure-mechanical property relationships for poly(carbonate urethane) elastomers with novel soft segments, Macromolecules. 42 (2009) 8322–8327. 81. V. Garcia-Pacios, V. Costa, M. Colera, J.M. Martin-Martinez, Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol, Int. J. Adhes. Adhes. 30 (2010) 456–465. 82. S. Zhang, H. Jiang, Y. Xu, D. Zhang, Thermal and crystalline properties of water‐borne polyurethanes based on IPDI, DMPA, and PEBA/HNA, J. Appl. Polym. Sci. 103 (2007) 1936–1941. 83. R. Li, J.A.T.T. Ton Loontjens, Z. Shan, The varying mass ratios of soft and hard segments in waterborne polyurethane films: Performances of thermal conductivity and adhesive properties, Eur. Polym. J. 112 (2019) 423–432. 84. Y. Zhou, Y. Liu, B. Xin, Y. Qin, G. Kuang, Preparation and properties of a novel cross-linked network waterborne polyurethane for wood lacquer, Polymers. 15 (2023) 2193. 85. J. Zhang, B. Yang, Q. Jia, M. Xiao, Z. Hou, Preparation, physicochemical properties, and hemocompatibility of the composites based on biodegradable poly(ether-ester-urethane) and phosphorylcholine-containing copolymer, Polymers. 11 (2019) 860. 86. J. Guo, M. Zhao, Y. Ti, B. Wang, Study on structure and performance of polycarbonate urethane synthesized via different copolymerization methods, J. Mater. Sci. 42 (2007) 5508–5515. 87.K. Kojio, M. Furukawa, S. Motokucho, M. Shimada, M. Sakai, Structure-mechanical property relationships for poly(carbonate urethane) elastomers with novel soft segments, Macromolecules. 42 (2009) 8322–8327. 88. G. Trovati, E.A. Sanches, S.C. Neto, Y.P. Mascarenhas, G.O. Chierice, Characterization of polyurethane resins by FTIR, TGA, and XRD, J. Appl. Polym. Sci. 115 (2010) 263–268. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96133 | - |
| dc.description.abstract | 本研究描述一種由軟鏈段和硬鏈段合成具有高固含量和低黏度的新型水性聚氨酯(WBPU),在生物醫學領域有廣泛的應用潛力,軟鏈段由聚碳酸酯二醇(PC diol)和聚四亞甲基醚二醇(PTMO diol)組成,硬鏈段由 1,6-二異氰酸己二異氰酸酯(H12MDI),以 2,2-二羥甲基丙酸 (DMPA)和2,2-二羥甲基丁酸(DMBA)分別作為鏈延長劑。為了在合成過程中提高乳液穩定性,我們使用非離子型表面活性劑,包括聚氧乙烯苯乙烯基苯酚醚和聚氧乙烯十三烷基醚。
調整軟硬鏈段的比例,由此可以改變水性聚氨酯的化學組成,再使用各種分析技術,如動態光散射儀(DLS),了解水性聚氨酯粒徑分分布&表面電位、差示掃描量熱儀(DSC)、X 光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、原子力顯微鏡(AFM)、衰減全反射紅外光譜儀(ATR-IR)、熱重分析儀(TGA)和接觸角測試儀(Contact angle)、動態機械分析儀(DMA)測量,來表現這些變化對水性聚氨酯玻璃轉移溫度、結晶程度、表面型態&表面粗糙度、官能基變化、熱變化及熱穩定性、親疏水性及應力-拉伸性能的影響。研究結果顯示,所製備的水性聚氨酯薄膜具有優良的機械性能,包括拉伸率 100% (10.8~22.6 MPa)、斷裂強度(11.7~30.9 MPa)和斷裂伸長率(173%~579%)。 軟鏈段聚碳酸酯二醇的比例提升,微相分離程度隨著增加,薄膜的水接觸角降低,從而增強了水性聚氨酯的親水性。我們挑選了兩種不同代表性的水性聚氨酯,分別為第二代及第三代生醫級PU,WBPU-B及WBPU-B3,這種新型水性聚氨酯配方在提升生物材料及血液接觸裝置的性能和耐久性方面具有顯著的潛力,該新型水性聚氨酯通過了血液相容性測試,溶血率均小於2%,符合材料溶血特性的評估標準(ASTM F756-17)。 整體而言,本研究開發的新型水性聚氨酯在生物醫學領域具有廣泛的應用前景。本研究調整化學組成後,成功地提升水性聚氨酯的機械性能和親水性,為未來的醫療器械和生物材料開發提供重要的參考。 | zh_TW |
| dc.description.abstract | This study describes the synthesis of a novel waterborne polyurethane (WBPU) with high solid content and low viscosity, composed of both soft and hard segments, and shows significant potential for biomedical applications. The soft segments consist of polycarbonate diol (PC diol) and polytetramethylene ether glycol (PTMO diol), while the hard segments are formed from 1,6-hexamethylene diisocyanate (H12MDI), with 2,2 Dimethylolpropionic acid (DMPA) and 2,2-Dimethylolbutanoic acid (DMBA) serving as chain extenders. To enhance emulsion stability during the synthesis, non-ionic surfactants, including polyoxyethylene styrenated phenyl and polyoxyethylene tridecyl ether. By adjusting the ratio of soft to hard segments, the chemical composition of the waterborne polyurethane (WBPU) can be modified. Various analytical techniques, such as dynamic light scattering (DLS) to analyze particle size distribution and surface zeta potential, differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA), contact angle measurement, and dynamic mechanical analysis (DMA), were employed to evaluate how these changes affect the glass transition temperature, crystallinity, surface morphology and roughness, functional group variations, thermal behavior and stability, hydrophilicity/hydrophobicity, and stress-strain properties of the WBPU. The results show that the prepared WBPU films exhibit excellent mechanical properties, including tensile strength at 100% elongation (10.8–22.6 MPa), breaking strength (11.7–30.9 MPa), and elongation at break (173%–579%). As the proportion of polycarbonate diol in the soft segment increases, the degree of microphase separation also increases, resulting in a reduced water contact angle of the films and enhance hydrophilicity of the waterborne polyurethane (WBPU). We have selected two different representative types of waterborne polyurethanes, specifically the second generation and third-generation biomedical-grade PU, WBPU-B and WBPU-B3. This novel WBPU formulation demonstrates significant potential for improving the performance and durability of biomaterials and blood-contacting devices. The newly developed WBPU passed hemocompatibility tests, with hemolysis rates below 2%, in compliance with the evaluation standards for hemolytic properties of materials (ASTM F756-17). Overall, the novel WBPU developed in this study shows promising applications in the biomedical field. By adjusting its chemical composition, we successfully improved both the mechanical properties and hydrophilicity of the WBPU, providing a valuable reference for future development of medical devices and biomaterials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-15T16:05:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-11-15T16:05:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ............................................................................................................... I
中文摘要 ...................................................................................................... II 英文摘要 .................................................................................................... III 目次 .............................................................................................................. V 圖目次 ..................................................................................................... VIII 表目次…………………………………………………………………… IX 第一章 緒論 ............................................................................................... 1 1.1 研究背景 .................................................................................................. 1 1.2 研究動機 .................................................................................................. 2 第二章 文獻回顧 ......................................................................................... 5 2.1 聚氨酯簡介 ............................................................................................ 5 2.2 聚醚多元醇簡介 .................................................................................... 7 2.3 聚酯多元醇簡介 .................................................................................... 8 2.4 2,2-二羥甲基丙酸(2,2-Dimethylolpropionic acid, DMPA) .............. 10 2.5 2,2-二羥甲基丁酸(2,2-Dimethylolbutanoic acid, DMBA) .......... 12 2.6 1,6-二異氰酸己二異氰酸酯(H12MDI) ................................................ 14 2.7 水性聚氨酯簡介 .................................................................................. 16 2.8 水性聚氨酯乳化方式 .......................................................................... 18 2.10 水性聚氨酯的乳化劑分類 ................................................................ 26 2.11 水性聚氨酯合成方式 ........................................................................ 27 2.12 製備高分子量水性聚氨酯方法 ........................................................ 30 2.13 聚氨酯生醫材料簡介 ........................................................................ 31 2.14 聚氨酯生物相容性 ............................................................................ 32 第三章 材料和方法 ................................................................................... 37 3.1 材料 ...................................................................................................... 37 3.2 水性聚氨酯合成 .................................................................................. 40 3.3 水性聚氨酯薄膜製備 .......................................................................... 42 3.4物理化學和機械特性評估 ................................................................... 43 3.5 溶血試驗程序 ...................................................................................... 46 第四章 結果 ............................................................................................... 48 4.1 水性聚氨酯合成與表徵 ...................................................................... 48 4.2 理化和機械特性分析 .......................................................................... 51 第五章 討論 ............................................................................................... 60 第六章 結論 ............................................................................................... 65 第七章 參考文獻 ....................................................................................... 66 第八章 附件:得獎與著作 ......................................................................... 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 聚醚二醇 | zh_TW |
| dc.subject | 血液相容性 | zh_TW |
| dc.subject | 軟硬鏈段質量比 | zh_TW |
| dc.subject | 水性聚氨酯 | zh_TW |
| dc.subject | 微相分離 | zh_TW |
| dc.subject | 聚碳酸酯二醇 | zh_TW |
| dc.subject | mass ratio of soft and hard segments | en |
| dc.subject | polyether diol | en |
| dc.subject | hemocompatibility | en |
| dc.subject | Waterborne polyurethane | en |
| dc.subject | polycarbonate diol | en |
| dc.subject | microphase separation | en |
| dc.title | 血液相容性水性聚碳酸酯-聚醚聚氨酯的合成及其表徵研究 | zh_TW |
| dc.title | Synthesis and characterization of hemocompatible waterborne polycarbonate–polyether polyurethanes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 賴育英;葉伊純;張書瑋;周佳靚;廖昭仰 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Ying Lai;Yi-Cheun Yeh;Shu-Wei Chang ;Chia-Ching Chou;Chao-Yaug Liao | en |
| dc.subject.keyword | 軟硬鏈段質量比,水性聚氨酯,微相分離,聚碳酸酯二醇,聚醚二醇,血液相容性, | zh_TW |
| dc.subject.keyword | mass ratio of soft and hard segments,Waterborne polyurethane,microphase separation,polycarbonate diol,polyether diol,hemocompatibility, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202404515 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-10-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 3.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
