Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 政治學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96124
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅澤民zh_TW
dc.contributor.advisorRonan Tse-Min Fuen
dc.contributor.author郭芃廷zh_TW
dc.contributor.authorPeng-Ting Kuoen
dc.date.accessioned2024-11-14T16:07:54Z-
dc.date.available2024-11-15-
dc.date.copyright2024-11-14-
dc.date.issued2024-
dc.date.submitted2024-09-03-
dc.identifier.citation中文文獻
中央選舉委員會,2022,〈選舉公報〉,https://bulletin.cec.gov.tw/01選舉公報/,查閱時間:2023/8/29。
王業立,2021,《比較選舉制度》,臺北:五南圖書。
王鼎銘、郭銘峰,2009,〈混合式選制下的投票思維:台灣與日本國會選舉變革經驗的比較〉,《選舉研究》,16(2): 101-130。
立法院,2023,https://www.ly.gov.tw/Pages/Detail.aspx?nodeid=161&pid=10,查閱時間:2024/5/22。
全國法規資料庫,2023,〈公職人員選舉罷免法〉,https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=D0020010&flno=43,查閱時間:2023/9/9。
全國法規資料庫,2023,〈公職人員選舉選舉公報編製辦法〉,https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0020079&kw=公職人員,查閱時間:2023/11/17。
余孟哲、黃秀端、陳宥辰,2022,〈臺灣選民的期望落差、社會監督與國會評價-第九屆立法院的分析〉,《臺灣民主季刊》,19(1): 41-82。
沈有忠、許懷仁,2017,〈立委選制變遷與選舉競爭地方化〉,《弘光人文社會學報》,(20): 77-102。
周宛蓉,2009,〈台灣國會選制改革對政黨競爭形態的影響:邁向地方型或全國化的選舉競爭〉,臺北:國立臺灣大學政治學研究所碩士論文。
林繼文,2008,〈以輸爲贏:小黨在日本單一選區兩票制下的參選策略〉,《選舉研究》,15(2): 37-66。
徐永明、陳鴻章, 2007,〈黨內派系競爭與政黨選舉命運-以民進黨為例〉,《政治科學論叢》,(31): 129-174。
張佑宗、盧信宏,2014,〈總統選舉、國家認同與侍從主義的消失?-2000年後雲林縣的個案研究〉,《政治科學論叢》,(61): 1-40。
盛杏湲,1999,〈立法問政與選區服務:第三屆立法委員代表行為的探討〉,《選舉研究》,6(2): 89-120。
———,2000,〈政黨或選區?立法委員的代表取向與行為〉,《選舉研究》,7(2): 37-73。
———,2005,〈選區代表與集體代表:立法委員的代表角色〉,《東吳政治學報》,(21): 1-40。
———,2014a,〈再探選區服務與立法問政:選制改革前後的比較〉,《東吳政治學報》,32(2): 65-116。
———,2014b,〈選制變革前後立委提案的持續與變遷:一個探索性的研究〉,《臺灣政治學刊》,18(1): 73-127。
郭銘峰、黃紀、王鼎銘,2012,〈日本眾議院選舉政黨重複提名策略與效應:選 區層次之分析〉,《政治科學論叢》,(51): 161-215。
游清鑫、范惕維,2014,〈選制差異影響選舉課責的探索研究:以立法委員選舉 為例〉,《民主與治理》,1(1): 111-141。
湯京平、吳重禮、蘇孔志,2002,〈分立政府與地方民主行政:從台中縣「地方基層建設經費」論地方派系與肉桶政治〉,《中國行政評論》,12(1): 37-76。
黃秀端,1994,《選區服務:立法委員心目中連任之基礎》,臺北:唐山出版社。
黃信達、王建雄,2010,〈第七屆立委對應單一選區經營策略之研究-以彰化縣參選人為例〉,《中國地方自治》,63(12): 21-40。
楊鈞池,2005,〈一九九○年代日本選舉制度改革及其影響之分析〉,《高大法學論叢》,1(1): 167-216。
楊婉瑩,2020,〈不只是茶壺裡的風暴?初選分歧的大選效應〉,《政治學報》, (70): 121-155。
廖達琪,2010,〈國會議員生涯類型變遷與民主體制的取向分析-以台灣第二到第七屆立法院爲例〉,《東吳政治學報》,28(2): 49-96。
廖達琪、李承訓、陳柏宇,2013,〈選舉制度與立法者競選政見及立法表現:臺灣立法院第六屆及第七屆區域立委之比較〉,《選舉研究》,20(1): 73-119。
廖達琪、林福仁、黃郁慈、劉子昱、李承訓,2012,〈台灣立法委員政見資料庫之建置〉,《選舉研究》,19(2): 129-158。
蔡學儀,2008,〈單一選區兩票制之政治影響分析〉,梁世武(編),《單一選區兩票制》,臺北:臺灣商務印書館,頁:83-110。
蕭怡靖、黃紀,2010,〈2008年立委選舉候選人票之分析:選民個體與選區總體的多層模型〉,《臺灣政治學刊》,14(1): 3-53。
羅清俊,2008,〈小規模立法委員選區的分配政治-選民對於補助利益的期待〉,《臺灣民主季刊》,5(4): 47-85。
羅清俊、廖健良,2009,〈選制改變前選區規模對立委分配政策提案行爲的影響〉,《台灣政治學刊》,13(1): 3-53。
蘇子喬、劉嘉薇,2022,〈國會選制與憲政體制對國會選舉投票率的影響-內閣制與總統制民主國家的跨國分析〉,《臺灣民主季刊》,19(1): 1-39。
 
英文文獻
Abuzayed, Abeer, and Hend Al-Khalifa. 2021. “BERT for Arabic Topic Modeling: An Experimental Study on BERTopic Technique.” Procedia Computer Science 189: 191-94.
Adams, Greg D. 1996. “Legislative Effects of Single-Member Vs. Multi-Member Districts.” American Journal of Political Science 40(1): 129-44.
André, Audrey, and Sam Depauw. 2013. “District Magnitude and Home Styles of Representation in European Democracies.” West European Politics 36(5): 986-1006.
Anthropic. 2024. “Introducing the next generation of Claude.” in https://www.anthropic.com/news/claude-3-family. Latest update 23 March 2024.
Arora, S., Narayan, A., Chen, M. F., Orr, L., Guha, N., Bhatia, K., ... & Re, C. (2022, September). “Ask me anything: A simple strategy for prompting language models.” Paper presented at the Eleventh International Conference on Learning Representations.
Axelborn, Henrik, and John Berggren. 2023. “Topic Modeling for Customer Insights : A Comparative Analysis of LDA and BERTopic in Categorizing Customer Calls.” in https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1763637&dswid=3233. Latest update 23 October 2023.
Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 2003. “Latent Dirichlet Allocation.” Journal of Machine Learning Research 3(Jan): 993-1022.
Bouma, Gerlof. 2009. “Normalized (Pointwise) Mutual Information in Collocation Extraction.” Proceedings of GSCL 30: 31-40.
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,… Dario Amodei. 2020. “Language Models Are Few-Shot Learners.” Advances in neural information processing systems 33: 1877-1901.
Cain, Bruce, John Ferejohn, and Morris Fiorina. 1987. The Personal Vote: Constituency Service and Electoral Independence. Boston: Harvard University Press.
Carey, John M, and Matthew Soberg Shugart. 1995. “Incentives to Cultivate a Personal Vote: A Rank Ordering of Electoral Formulas.” Electoral Studies 14(4): 417-39.
Catalinac, Amy. 2016. “From Pork to Policy: The Rise of Programmatic Campaigning in Japanese Elections.” The Journal of Politics 78(1): 1-18.
———. 2018. Electoral Reform and National Security in Japan from Pork to Foreign Policy. Cambridge: Cambridge University Press.
Christensen, Ray, and Joel Sawat Selway. 2017. “Pork-Barrel Politics and Electoral Reform: Explaining the Curious Differences in the Experiences of Thailand and Japan.” Journal of Asian Studies 76(2): 283-310.
Christensen, Ray. 1998. “The Effect of Electoral Reforms on Campaign Practices in Japan: Putting New Wine into Old Bottles.” Asian Survey 38(10): 986-1004.
Cox, Gary W. 1990. “Centripetal and Centrifugal Incentives in Electoral Systems.” American Journal of Political Science 34(4): 903-35.
———. 1997. Making Votes Count: Strategic Coordination in the World’s Electoral Systems. Cambridge: Cambridge University Press.
Cox, Gary W., and Emerson Niou. 1994. “Seat Bonuses under the Single Nontransferable Vote System: Evidence from Japan and Taiwan.” Comparative Politics 26(2): 221-36.
Cox, Gary W., and Michael F. Thies. 1998. “The Cost of Intraparty Competition: The Single, Nontransferable Vote and Money Politics in Japan.” Comparative Political Studies 31(3): 267-91.
Crisp, Brian F, Maria C. Escobar-Lemmon, Bradford S. Jones, Mark P. Jones, and Michelle M. Taylor-Robinson. 2004. “Vote-Seeking Incentives and Legislative Representation in Six Presidential Democracies.” The Journal of Politics 66(3): 823-46.
Crisp, Brian, and Rachael E. Ingall. 2002. “Institutional Engineering and the Nature of. Representation: Mapping the Effects of Electoral Reform in Colombia.” American Journal of Political Science 46(4): 733-48.
Downs, Anthony. 1957. “An Economic Theory of Political Action in a Democracy.” Journal of Political Economy 65(2): 135-150.
Duverger, Maurice. 1959. Political Parties: Their Organization and Activity in the Modern State. London: Metheun & Co. Ltd.
Egger, Roman, and Joanne Yu. 2022. “A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts.” Frontiers in Sociology 7: 1-16.
Falkenberg, Max, Alessandro Galeazzi, Maddalena Torricelli, Niccolò Di Marco, Francesca Larosa, Madalina Sas,… Andrea Baronchelli. 2022. “Growing Polarization around Climate Change on Social Media.” Nature Climate Change 12(12): 1114-1121.
Ferejohn, John A. 1974. Pork Barrel Politics: Rivers and Harbors Legislation, 1947-1968. California: Stanford University Press.
Fujimura, Naofumi. 2015. “The Influence of Electoral Institutions on Legislative Representation: Evidence from Japan’s Single Non-Transferable Vote and Single-Member District Systems.” Party Politics 21(2): 209-21.
Gao, Andrew Kean. 2023. “Vec2Vec: A Compact Neural Network Approach for Transforming Text Embeddings with High Fidelity.” in https://arxiv.org/abs/2306.12689. Latest update 22 November 2023.
Gao, Tianyu, Adam Fisch, and Danqi Chen. 2021. “Making Pre-Trained Language Models Better Few-Shot Learners.” in http://arxiv.org/abs/2012.15723. Latest update 22 November 2023.
Gerber, Elisabeth R., and Jeffrey B. Lewis. 2004. “Beyond the Median: Voter Preferences, District Heterogeneity, and Political Representation.” Journal of Political Economy 112(6): 1364-1383.
Greene, Ryan, Ted Sanders, Lilian Weng, and Arvind Neelakantan. “New and Improved Embedding Model.” in https://openai.com/blog/new-and-improved-embedding-model. Latest update 22 November 2023.
Grootendorst, Maarten. 2022. “BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure.” in http://arxiv.org/abs/2203.05794. Latest update 23 November 2023.
———. 2023. “Fine-tune Topics. 6B. LLM & Generative AI.” in https://maartengr.github.io/BERTopic/getting_started/representation/llm.html#summarization. Latest update 15 May 2024.
Hauk Jr, William R., and Romain Wacziarg. 2007. “Small States, Big Pork.” Quarterly Journal of Political Science 2(1): 95-106.
Häussler, Daniel Maier, A. Waldherr, P. Miltner, G. Wiedemann, A. Niekler, A. Keinert, … U. Reber, T. 2021. “Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology.” In Computational Methods for Communication Science ed, New York: Routledge.
Hoffman, Matthew, Francis Bach, and David Blei. 2010. “Online Learning for Latent Dirichlet Allocation.” Paper presented at the Advances in Neural Information Processing Systems (NIPS’10). December 6-9, Vancouver.
Huang, Chi. 2017. “Electoral System Change and Its Effects on the Party System in Taiwan.” In The Taiwan Voter ed. Michigan: University of Michigan Press, 223-252.
Jang, Jinhyeok, and Nick C. N. Lin. 2019. “Personal Votes, Electoral Competitiveness of Parties, and Legislative Representation in Taiwan under SNTV.” Japanese Journal of Political Science 20(1): 21-32.
Jou, Willy. 2009. “Electoral Reform and Party System Development in Japan and Taiwan: A Comparative Study.” Asian Survey 49(5): 759-85.
Juluru, Krishna, Hao-Hsin Shih, Krishna Nand Keshava Murthy, and Pierre Elnajjar. 2021. “Bag-of-Words Technique in Natural Language Processing: A Primer for Radiologists.” Radio Graphics 41(5): 1420-1426.
Kim, Tae Kyun. 2015. “T Test as a Parametric Statistic.” Korean Journal of Anesthesiology 68(6): 540-546.
Kojima, Takeshi, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2023. “Large Language Models Are Zero-Shot Reasoners.” Paper presented at the 36th Conference on Neural Information Processing Systems. November 28 - December 10, LA: New Orleans.
Kubo, Hiroki. 2019. “The Logic of Delegation and Institutional Contexts: Ministerial Selection under Mixed-Member Systems in Japan.” Asian Journal of Comparative Politics 4(4): 303-29.
Lancaster, Thomas D. 1986. “Electoral Structures and Pork Barrel Politics.” International Political Science Review 7(1): 67-81.
Lancaster, Thomas D., and W. David Patterson. 1990. “Comparative Pork Barrel Politics: Perceptions from the West German Bundestag.” Comparative Political Studies 22(4): 458-77.
Lee, Daniel D., and H. Sebastian Seung. 1999. “Learning the Parts of Objects by Non-Negative Matrix Factorization.” Nature 401(6755): 788-791.
———. 2000. “Algorithms for Non-Negative Matrix Factorization.” Advances in neural information processing systems 13 ed. Leen, Todd K., Thomas G. Dietterich, and Volker Tresp. Boston: MIT Press, 535-541.
Lenci, Alessandro. 2008. “Distributional Semantics in Linguistic and Cognitive Research.” Italian journal of linguistics 20(1): 1-31.
Li, Peng-Hsuan, Tsu-Jui Fu, and Wei-Yun Ma, 2019. “Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER.” In Proceedings of the AAAI Conference on Artificial Intelligence 34(05), ed. Washington, DC: AAAI Press, 8236-8244.
Lin, Yen-Ting, and Yun-Nung Chen. 2023. “LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain Conversations with Large Language Models.” in https://arxiv.org/abs/2305.13711. Latest update 23 November 2023.
Liu, Jiachang, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. 2021. “What Makes Good In-Context Examples for GPT-3?” in http://arxiv.org/abs/2101.06804. Latest update 20 March 2024.
Lizzeri, Alessandro, and Nicola Persico. 2001. “The Provision of Public Goods under Alternative Electoral Incentives.” American Economic Review 91(1): 225-39.
Lu, Yao, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. 2022. “Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity.” in http://arxiv.org/abs/2104.08786. Latest update 20 March 2024.
McCubbins, Mathew D., and Gary W. Cox. 2001. “The Institutional Determinants of Economic Policy Outcomes.” Presidents and parliaments: 21-63.
McInnes, Leland, John Healy, and James Melville. 2020. “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.” in http://arxiv.org/abs/1802.03426. Latest update 22 November 2023.
McKean, Margaret, and Ethan Scheiner. 2000. “Japan’s New Electoral System:: La plus Ça Change . . .” Electoral Studies 19(4): 447-77.
Mishra, Swaroop, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi. 2022. “Reframing Instructional Prompts to GPTk’s Language.” in http://arxiv.org/abs/2109.07830. Latest update 22 November 2023.
Muennighoff, Niklas, Nouamane Tazi, Loïc Magne, and Nils Reimers. 2023. “MTEB: Massive Text Embedding Benchmark.” in http://arxiv.org/abs/2210.07316. Latest update 15 March 2024.
Nemoto, Kuniaki. 2018. “Party Competition and the Electoral Rules.” In Japan Decides. 2017, eds. Robert J. Pekkanen, Steven R. Reed, Ethan Scheiner, and Daniel M. Smith. Cham: Springer International Publishing, 165-83.
Norris, Pippa. 2004. Electoral Engineering: Voting Rules and Political Behavior. New York: Cambridge University Press.
Ogunleye, Bayode, Tonderai Maswera , Laurence Hirsch, Jotham Gaudoin, and Teresa Brunsdon. 2023. “Comparison of Topic Modelling Approaches in the Banking Context.” Applied Sciences 13(2): 797-811.
OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,… Shawn Jain. 2024. “GPT-4 Technical Report.” in http://arxiv.org/abs/2303.08774. Latest update 14 March 2024.
OpenAI. 2023. “New Embedding Models and API Updates.” in https://openai.com/blog/new-embedding-models-and-api-updates. Latest update 13 March 2024.
Portmann, Marco, David Stadelmann, and Reiner Eichenberger. 2012. “District Magnitude and Representation of the Majority’s Preferences: Evidence from Popular and Parliamentary Votes.” Public Choice 151(3): 585-610.
Rickard, Stephanie J. 2012. “Electoral Systems, Voters’ Interests and Geographic Dispersion.” British Journal of Political Science 42(4): 855-77.
Röder, Michael, Andreas Both, and Alexander Hinneburg. 2015. “Exploring the Space of Topic Coherence Measures.” Paper presented at the Eighth ACM International Conference on Web Search and Data Mining, February 2-6, Shanghai, China.
Rosner, Frank, Alexander Hinneburg, Michael Röder, Martin Nettling, and Andreas Both. 2014. “Evaluating Topic Coherence Measures.” in https://arxiv.org/abs/1403.6397. Latest update 22 November 2023.
Stockton, Hans. 2010. “How Rules Matter: Electoral Reform in Taiwan.” Social Science Quarterly 91(1): 21-41.
Stratmann, Thomas, and Martin Baur. 2002. “Plurality Rule, Proportional Representation, and the German Bundestag: How Incentives to Pork-Barrel Differ across Electoral Systems.” American Journal of Political Science 46(3): 506-14.
Sun, Tianxiang, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. 2022. “Black-Box Tuning for Language-Model-as-a-Service.” Paper presented at the Thirty-ninth International Conference on Machine Learning, July 17-23, Baltimore, MD.
Taagepera, Rein, and Matthew Soberg Shugart. 1989. Seats and Votes: The Effects and Determinants of Electoral Systems. New Haven, Conn.: Yale University. Press.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,… Illia Polosukhin. 2017. “Attention Is All You Need.” Paper presented at the Advances in Neural Information Processing Systems 30 (NIPS 2017), December 4-9, Long Beach, CA.
Wang, Xuezhi et al. 2022. “Self-Consistency Improves Chain of Thought Reasoning in Language Models.” in https://arxiv.org/abs/2203.11171. Latest update 23 November 2023.
Wei, Colin, Sang Michael Xie, and Tengyu Ma. 2022. “Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning.” Paper presented at the Advances in Neural Information Processing Systems 34 (NeurIPS 2021), December 6-14, Online.
Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia,… Denny Zhou. 2022. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.” Paper presented at the Advances in Neural Information Processing Systems 35 (NeurIPS 2022), December 4-9, Long Beach, CA.
White, Jules, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023. “A Prompt Pattern Catalog to Enhance Prompt Engineering with chatgpt.” in http://arxiv.org/abs/2302.11382. Latest update 29 April 2024.
Wilson, James Q. 2019. American Government: Institutions and Policies. Boston: Cengage Learning.
Wu, Tongshuang, Michael Terry, and Carrie Jun Cai. 2022. “AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts.” In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York: Association for Computing Machinery, 1-22.
Xun, Guangxu et al. 2017. “A Correlated Topic Model Using Word Embeddings.” In Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, Melbourne, Australia: AAAI Press, 4207-4213.
Zhou, Denny, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, et al. 2023. “Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.” in http://arxiv.org/abs/2205.10625. Latest update 19 March 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96124-
dc.description.abstract在政治學中,選舉制度的變革一直是相當重要的研究問題。關於立法委員的立法行為或是選民投票行為等議題,過往文獻可說汗牛充棟,然而對於選舉制度變革對選舉前競選行為之影響的討論卻並不多見。有研究者發現,當選舉制度由複數選區單記不可讓渡制轉變為單一選區相對多數決制下,日本議員候選人的競選策略會轉為更加關注全國性政策,並提出更多的政策綱領型政見。然而本研究發現,在臺灣的案例中,選民對自己選區的立委有更高的辨識度,候選人更容易居功於有利選民的政見,區域立委會傾向提出更多有利於選區利益的政見,意即肉桶立法會在選制改革後更加明顯。具體來說這是因為,選制改變後,選區規模縮小與選民課責性增加,候選人的競選邏輯因此改弦易轍。進一步以臺日比較的視野觀之,肇因於非內閣制與內閣制的不同以及重複提名制度的存在與否等制度上的差異也導致了日本的候選人有額外動機來提出政策綱領型政見,臺灣的候選人則付之闕如。
為了對此假設進行驗證,本研究使用中央選舉委員會之選舉公報,整理第二屆至第十一屆中華民國立法委員選舉的資料,以Latent Dirichlet Allocation和BERTopic主題模型建模分析選舉公報和政見之間的相似性。此外,本研究運用深度學習、人工智慧與提示工程之利,透過Least-to-Most與Chain-of-Thought的提示技術,自動化生成分類的評斷結果,降低過往對於人工判斷的主觀性問題。
本研究發現:國民黨以及民進黨候選人在2005年的選舉制度改革之後,由於選區規模縮小和同質性提高,新選制下選民的可課責性增加,也沒有同黨候選人的競爭壓力,立委更容易被選民所辨識出來,會提高候選人對於肉桶立法的關注程度,因此在單一選區下更有強烈動機提出有利於選區的政策並經營個人選票;相反的,小黨候選人則不太受到選制改變的影響,因為這些候選人並未在競爭環境上有太大的改變,他們仍然面臨到國民黨和民進黨對手的壓力,這些變化都在統計上具有顯著的結果。綜合來說,本研究驗證了選舉制度對於臺灣立委候選人競選策略的影響,並揭示選舉制度並非單一的影響因素,儘管如此,礙於資料取得的限制,本研究未能推論其他因素如憲政體制、重複提名制或是選民期待對候選人競選策略的因果機制。此外,本研究建置一個涵蓋第二屆至第十一屆選舉公報的資料庫,為未來的研究提供了相關資源。
zh_TW
dc.description.abstractElectoral system reform has been a significant research topic in political science. While extensive literature exists on legislators' behavior and voter conduct, fewer studies address how changes in the electoral system impact pre-election campaign strategies.
Research shows that when Japan shifted from the single non-transferable vote (SNTV) system to the single-member district (SMD) system, candidates focused more on national policies and proposed more policy-oriented platforms. However, in Taiwan, voters have higher recognition of their district legislators, and candidates tend to propose more district-specific policies after the reform. This phenomenon, known as pork-barrel legislation, became more prominent due to reduced district size and increased accountability. The differences between Taiwan and Japan are further influenced by their respective constitutional political systems and the presence or absence of dual candidacy practices.
To test this hypothesis, this study analyzed election manifestos from the 2nd to 11th Legislative Yuan elections using Latent Dirichlet Allocation (LDA) and BERTopic models. Additionally, we utilized deep learning, artificial intelligence, and prompt engineering techniques such as Least-to-Most and Chain-of-Thought to automate classification and reduce the subjectivity of manual coding.
The findings reveal that after the 2005 electoral reform, candidates from the Kuomintang (KMT) and Democratic Progressive Party (DPP) increased their focus on pork-barrel legislation due to enhanced voter accountability and reduced intra-party competition. Conversely, minor party candidates were less affected by the reform, continuing to face significant competition from major parties. These changes were statistically significant.
This study validates the impact of electoral system reform on Taiwanese legislative candidates' campaign strategies and highlights that electoral systems are not the sole influencing factor. Due to data limitations, we could not infer causal mechanisms related to constitutional systems, dual candidacy practices, or voter expectations. Additionally, we created a comprehensive database of election manifestos from the 2nd to 11th elections, providing a valuable resource for future research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-14T16:07:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-14T16:07:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
中文摘要 III
英文摘要 VI
目次 VII
圖次 IX
表次 XI
第一章 緒論 1
第一節 研究動機與問題 1
第二節 文獻回顧 5
第二章 理論與假設 9
第一節 選舉制度與選區規模之影響 9
第二節 臺灣與日本之比較 16
第三節 研究假設 20
第三章 研究設計 23
第一節 資料來源 23
第二節 資料預處理 26
第三節 主題模型 32
第四節 模型設定 35
第五節 區分政策綱領與肉桶立法 38
第四章 實證分析 54
第一節 模型評估 54
第二節 實證結果 60
第三節 認真型候選人之實證結果 65
第四節 國民黨候選人之實證結果 72
第五節 民進黨候選人之實證結果 79
第六節 非國民黨與非民進黨候選人之實證結果 86
第五章 結論 94
第一節 臺灣立委候選人的競選策略變化 94
第二節 研究限制與未來研究方向 97
參考文獻 98
附錄 111
-
dc.language.isozh_TW-
dc.title選制改革對立委競選策略之影響: 大型語言模型之應用zh_TW
dc.titleThe Impact of Electoral Reform on Legislators’ Campaign Strategies: An Application of Large Language Modelsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.coadvisor蘇翊豪zh_TW
dc.contributor.coadvisorYi-Hao Suen
dc.contributor.oralexamcommittee廖達琪;陳縕儂;黃瀚萱zh_TW
dc.contributor.oralexamcommitteeDa-Chi Liao;Yun-Nung Chen;Hen-Hsen Huangen
dc.subject.keyword選舉制度改革,競選策略,主題模型,提示工程,大型語言模型,zh_TW
dc.subject.keywordElectoral Reform,Electoral Strategy,Topic Modeling,Prompt Engineering,Large Language Models,en
dc.relation.page133-
dc.identifier.doi10.6342/NTU202402504-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-09-04-
dc.contributor.author-college社會科學院-
dc.contributor.author-dept政治學系-
dc.date.embargo-lift2029-08-07-
顯示於系所單位:政治學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
4.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved