Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96116
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor洪英超zh_TW
dc.contributor.advisorYing-Chao Hungen
dc.contributor.author吳挺維zh_TW
dc.contributor.authorTing-Wei Wuen
dc.date.accessioned2024-10-31T16:06:05Z-
dc.date.available2024-11-01-
dc.date.copyright2024-10-31-
dc.date.issued2024-
dc.date.submitted2024-08-03-
dc.identifier.citationShaukat, N., Khan, B., Ali, S. M., Mehmood, C. A., Khan, J., Farid, U., ... & Ullah, Z. (2018). A survey on electric vehicle transportation within smart grid system. Renewable and Sustainable Energy Reviews, 81, 1329-1349.
IEA (2024), Global EV Outlook 2024, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2024, Licence: CC BY 4.0
Wang, J., Huang, C., He, D., & Tu, R. (2023, September). Range Anxiety among Battery Electric Vehicle Users: Both Distance and Waiting Time Matter. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 67, No. 1, pp. 1309-1315). Sage CA: Los Angeles, CA: SAGE Publications.
Shrestha, S., Baral, B., Shah, M., Chitrakar, S., & Shrestha, B. P. (2022). Measures to resolve range anxiety in electric vehicle users. International Journal of Low-Carbon Technologies, 17, 1186-1206.
Xiang, Y., Yang, J., Li, X., Gu, C., & Zhang, S. (2021). Routing optimization of electric vehicles for charging with event-driven pricing strategy. IEEE Transactions on Automation Science and Engineering, 19(1), 7-20.
Chung, C. Y., Chynoweth, J., Qiu, C., Chu, C. C., & Gadh, R. (2013, October). Design of fair charging algorithm for smart electrical vehicle charging infrastructure. In 2013 International Conference on ICT Convergence (ICTC) (pp. 527-532). IEEE.
Erdelić, T., & Carić, T. (2019). A survey on the electric vehicle routing problem: variants and solution approaches. Journal of Advanced Transportation, 2019(1), 5075671.
Fu, F., & Dong, H. (2019). Targeted optimal-path problem for electric vehicles with connected charging stations. Plos one, 14(8), e0220361.
Cataldo-Díaz, C., Linfati, R., & Escobar, J. W. (2024). Mathematical models for the electric vehicle routing problem with time windows considering different aspects of the charging process. Operational Research, 24(1), 1.
Sweda, T. M., Dolinskaya, I. S., & Klabjan, D. (2017). Adaptive routing and recharging policies for electric vehicles. Transportation Science, 51(4), 1326-1348.
Răboacă, M. S., Băncescu, I., Preda, V., & Bizon, N. (2020). An optimization model for the temporary locations of mobile charging stations. Mathematics, 8(3), 453.
Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the American statistical association, 44(247), 335-341.
Hung, Y. C., Lok, H. P., & Michailidis, G. (2022). Optimal routing for electric vehicle charging systems with stochastic demand: A heavy traffic approximation approach. European Journal of Operational Research, 299(2), 526-541.
Kraft, D. (1988). A software package for sequential quadratic programming. Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt.
Cacoullos, T. (1964). Estimation of a multivariate density. University of Minnesota.
Drezner, Z., & Hamacher, H. W. (Eds.). (2004). Facility location: applications and theory. Springer Science & Business Media.
Ghosh, A., Ghorui, N., Mondal, S. P., Kumari, S., Mondal, B. K., Das, A., & Gupta, M. S. (2021). Application of hexagonal fuzzy MCDM methodology for site selection of electric vehicle charging station. Mathematics, 9(4), 393.
Pagany, R., Ramirez Camargo, L., & Dorner, W. (2019). A review of spatial localization methodologies for the electric vehicle charging infrastructure. International Journal of Sustainable Transportation, 13(6), 433-449.
Humayd, A. S. B., & Bhattacharya, K. (2016). A novel framework for evaluating maximum PEV penetration into distribution systems. IEEE Transactions on Smart Grid, 9(4), 2741-2751.
Bullo, F., Frazzoli, E., Pavone, M., Savla, K., & Smith, S. L. (2011). Dynamic vehicle routing for robotic systems. Proceedings of the IEEE, 99(9), 1482-1504.
Mukhopadhyay, A., & Mazumdar, R. R. (2015). Analysis of randomized join-the-shortest-queue (JSQ) schemes in large heterogeneous processor-sharing systems. IEEE Transactions on Control of Network Systems, 3(2), 116-126.
Andrews, M., & Zhang, L. (2012, October). Energy-delay tradeoffs in a load-balanced router. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1705-1712). IEEE.
Ni, Y. (2019). Prediction of Port Container Throughput Based on Grey Prediction Model--A Case Study of Shanghai Port. Academic Journal of Engineering and Technology Science, 2(5).
Kumar, H., & Singh, P. K. (2021). Enhancing network lifetime and throughput in heterogeneous wireless sensor networks. Wireless Personal Communications, 120(4), 2971-2989.
Rubinstein, R. Y., & Kroese, D. P. (1981). Simulation and the monte carlo method. john wiley&sons. Inc. Publication.
Wasserstein, R. L. (1997). Monte Carlo: Concepts, algorithms, and applications.
Fiacco, A. V., & McCormick, G. P. (1990). Nonlinear programming: sequential unconstrained minimization techniques. Society for Industrial and Applied Mathematics.
Powell, M. J. (1978). Algorithms for nonlinear constraints that use Lagrangian functions. Mathematical programming, 14, 224-248.
Boggs, P. T., & Tolle, J. W. (1995). Sequential quadratic programming. Acta numerica, 4, 1-51.
Scott, D. W. (2015). Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons.
Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American statistical association, 91(433), 401-407.
Devroye, L., & Wagner, T. (1979). Distribution-free performance bounds for potential function rules. IEEE Transactions on Information Theory, 25(5), 601-604.
Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008, December). Isolation forest. In 2008 eighth ieee international conference on data mining (pp. 413-422). IEEE.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96116-
dc.description.abstract科技發展迅速,加上政府補貼政策與氣候變遷引發環保意識的提升,國民更換電動車的意願逐漸提高。然而,隨著電動車數量增加,「充電基礎設施」的規劃面臨挑戰且受到重視。若充電基礎設施規劃不佳,可能會導致交通問題,因此對決策者而言,充電基礎設施的規劃與統籌至關重要。
本研究著重於電動車駕駛人的「里程焦慮」(range anxiety)因素,並將該因素量化,結合過去的方法提出PBRR(a)充電策略(Partition-Based Random Routing with Range Anxiety)。本方法設計一個充電系統,並藉由最佳化模型求解出電動車的充電途程策略,模型中考慮充電需求分布、供電量、充電站位置及每座充電站的等候線穩定性以及電動車駕駛人的「里程焦慮」等因素。其目標是最大化充電系統的吞吐量(throughput)。本研究著重分析在不同供電量、充電站位置及充電需求分布下,里程焦慮如何影響充電系統的吞吐量。
實驗中本研究同時考量里程焦慮的隨機性,將其假設為一個隨機變數,並計算出吞吐量的期望值,提供決策者進行充電系統評估的參考。最後,本研究將原模型延伸至位置與資源分配問題(Location-Allocation Problem),求解出最佳的充電站設立位置以及供電量分配,並統整出最佳解的系統配置傾向。
zh_TW
dc.description.abstractAs the number of electric vehicles (EVs) increase, the planning of charging infrastructure has become a critical challenge. Suboptimal planning of these infrastructures may result in considerable traffic congestion and other logistical issues. Thus, it is crucial for policymakers to implement a strategic approach to the planning of these facilities to ensure their efficient and sustainable integration into the existing transportation framework.
This study focuses on the impact of "range anxiety" on EV drivers and introduces a charging strategy, termed "Partition-Based Random Routing with Range Anxiety." This strategy involves the development of a charging system and an optimization model designed to determine the optimal routing policy for EVs. The model incorporates various factors, including the distribution of charging demand, power capacities, the location of charging stations, the stability of waiting lines at each station, and the range anxiety experienced by EV drivers. The objective is to maximize the throughput of the charging system. This study specifically explores how range anxiety influences the throughput of the charging system under varying conditions of power capacities, charging station locations, and demand distribution. In the experimental analysis, the stochastic nature of range anxiety is also modeled as a random variable, and the expected throughput is computed to provide a reference for policymakers. Furthermore, this study extends the original model to address the Location-Allocation Problem, determining optimal charging station locations and power capacity allocations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-31T16:06:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-10-31T16:06:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要及關鍵字 ii
英文摘要及關鍵字 iii
目次 iv
圖次 vi
表次 viii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1充電基礎設施規劃 3
2.2考慮隨機性的充電策略 5
2.3序列二次規劃 6
2.4多維核密度估計 7
2.5蒙地卡羅法 8
第三章 電動車充電系統與途程策略 9
3.1電動車充電系統之參數定義與說明 10
3.2電動車充電系統之基礎設定 11
3.3考量充電距離之途程策略 13
3.4模型限制式 16
3.5最大化吞吐量之數學模式 18
3.6最佳化模型與求解途程矩陣 20
第四章 模型測試以及驗證 24
4.1實驗驗證吞吐量之數學理論 24
4.2 電量里程數與吞吐量之關聯性 27
4.3電量里程數是隨機變數 43
第五章 充電站位置與供電量之分配 48
5.1位置與資源分配問題 48
5.2決定可行的充電站位置組合 49
5.3決定可行的供電量分配 50
5.4 Location-allocation最佳化模型 51
5.5 Location-allocation模型測試 51
第六章 結論與未來研究方向 55
6.1結論 55
6.2未來研究方向 56
參考文獻 57
附錄 61
-
dc.language.isozh_TW-
dc.title里程焦慮影響電動車充電系統之吞吐量分析zh_TW
dc.titleThe Influence of Range Anxiety on the Throughput of EV Charging Systemsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪一薰;黃奎隆;喻奉天zh_TW
dc.contributor.oralexamcommitteeI-Hsuan Hong;Kwei-Long Huang;Vincent F. Yuen
dc.subject.keyword途程問題,位置與資源分配問題,電動車,最佳化,吞吐量,里程焦慮,zh_TW
dc.subject.keywordRouting,Electric vehicle,Location-Allocation,Optimization,Throughput,Range anxiety,en
dc.relation.page62-
dc.identifier.doi10.6342/NTU202402906-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2029-07-31-
Appears in Collections:工業工程學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
3.11 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved