請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96107完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳日騰 | zh_TW |
| dc.contributor.advisor | Rih-Teng Wu | en |
| dc.contributor.author | 吳亭諺 | zh_TW |
| dc.contributor.author | Ting-Yan Wu | en |
| dc.date.accessioned | 2024-10-29T16:05:12Z | - |
| dc.date.available | 2024-11-01 | - |
| dc.date.copyright | 2024-10-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | [1] Ahmed Ghobarah. Performance-based design in earthquake engineering: state of development. Engineering Structures, 23(8):878–884, 2001.
[2] Afsin Saritas and Filip C Filippou. Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress–strain relations for use in beam finite elements. Engineering Structures, 31(10):2327–2336, 2009. [3] Ying Gao, Junjie Chen, and Liang Zheng. Seismic response and damage analysis of an isolated bridge subjected to near-fault ground motion. Applied Sciences, 12(10):4878, 2022. [4] Ping-Hsiung Wang, Kuo-Chun Chang, and Wei-Chung Cheng. Deteriorated hysteresis behaviors of reinforced concrete bridge columns. ACI Structural Journal, 120(2):33–46, 2023. [5] Yu-Chen Ou, Si-Huy Ngo, Hwasung Roh, Samuel Y Yin, Jui-Chen Wang, and Ping-Hsiung Wang. Seismic performance of concrete columns with innovative seven-and eleven-spiral reinforcement. ACI Structural Journal, 112(5):579, 2015. [6] Kuo-Chun Chang, Yu-Chi Sung, Kuang-Yen Liu, Ping-Hsiung Wang, Zheng-Kuan Lee, Lu-Sheng Lee, and Witarto. Seismic performance of an existing bridge with scoured caisson foundation. Earthquake Engineering and Engineering Vibration, 13:151–165, 2014. [7] Chris Pantelides, Lawrence Reaveley, Jeffrey Duffin, Jon Ward, and Chris Delahunty. In-situ tests of three bents at south temple bridge on interstate 15–final report. Utah Department of Transportation Research Division. Report No. UT-03.32, Utah, 2003. [8] Chang Seok Lee and Sang Whan Han. An accurate numerical model simulating hysteretic behavior of reinforced concrete columns irrespective of types of loading protocols. International Journal of Concrete Structures and Materials, 15(1):5, 2021. [9] Wassim M. Ghannoum and Jack P. Moehle. Dynamic collapse analysis of a concrete frame sustaining column axial failures. ACI Structural journal, 109(3):403, 2012. [10] M.R. LeBorgne and W.M. Ghannoum. Calibrated analytical element for lateral-strength degradation of reinforced concrete columns. Engineering Structures, 81:35–48, 2014. [11] Meijing Hao, Wei Chang, and Wenzhong Zheng. Hysteresis performance and restoring-force model of rc columns jacketed by octagonal and spiral stirrups. Journal of Building Engineering, 82:108280, 2024. [12] Thomas T. Baber and Yi-Kwei Wen. Random vibration of hysteretic, degrading systems. Journal of the Engineering Mechanics Division, 107(6):1069–1087, 1981. [13] Thomas T. Baber and Mohammad N. Noori. Random vibration of degrading, pinching systems. Journal of Engineering Mechanics, 111(8):1010–1026, 1985. [14] Thomas T. Baber and Mohammed N. Noori. Modeling general hysteresis behavior and random vibration application. Journal of Vibration and Acoustics, 108(4):411–420, 1986. [15] Ying Ma, Zebin Wu, Xuebin Cheng, Zhiguo Sun, and Xiaoyu Chen. Parameter identification of hysteresis model of reinforced concrete columns considering shear action. In Structures, volume 47, pages 93–104. Elsevier, 2023. [16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. [17] Huan Luo and Stephanie German Paal. Machine learning–based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals. Journal of Computing in Civil Engineering, 32(5):04018042, 2018. [18] Bilal Ahmed, Sujith Mangalathu, and Jong-Su Jeon. Seismic damage state predictions of reinforced concrete structures using stacked long short-term memory neural networks. Journal of Building Engineering, 46:103737, 2022. [19] De-Cheng Feng, Barbaros Cetiner, Mohammad Reza Azadi Kakavand, and Ertugrul Taciroglu. Data-driven approach to predict the plastic hinge length of reinforced concrete columns and its application. Journal of Structural Engineering, 147(2):04020332, 2021. [20] Chao-Lie Ning, LiPing Wang, and Wenqi Du. A practical approach to predict the hysteresis loop of reinforced concrete columns failing in different modes. Construction and Building Materials, 218:644–656, 2019. [21] Yajie Miao, Mohammad Gowayyed, and Florian Metze. Eesen: End-to-end speech recognition using deep rnn models and wfst-based decoding. In 2015 IEEE workshop on automatic speech recognition and understanding (ASRU), pages 167–174. IEEE, 2015. [22] George Saon, Zoltán Tüske, Daniel Bolanos, and Brian Kingsbury. Advancing rnn transducer technology for speech recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5654–5658. IEEE, 2021. [23] Apeksha Shewalkar, Deepika Nyavanandi, and Simone A. Ludwig. Performance evaluation of deep neural networks applied to speech recognition: Rnn, lstm and gru. Journal of Artificial Intelligence and Soft Computing Research, 9(4):235–245, 2019. [24] Stefan Kombrink, Tomas Mikolov, Martin Karafiát, and Lukás Burget. Recurrent neural network based language modeling in meeting recognition. In Interspeech, volume 11, pages 2877–2880, 2011. [25] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Extensions of recurrent neural network language model. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), pages 5528–5531. IEEE, 2011. [26] Aejaz Farooq Ganai and Farida Khursheed. Predicting next word using rnn and lstm cells: Stastical language modeling. In 2019 fifth international conference on image information processing (ICIIP), pages 469–474. IEEE, 2019. [27] Jun Zhang and Kim-Fung Man. Time series prediction using rnn in multidimension embedding phase space. In SMC’98 conference proceedings. 1998 IEEE international conference on systems, man, and cybernetics (cat. no. 98CH36218), volume 2, pages 1868–1873. IEEE, 1998. [28] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell. A dual-stage attention-based recurrent neural network for time series prediction, 2017. [29] Ibtissam Amalou, Naoual Mouhni, and Abdelmounaim Abdali. Multivariate time series prediction by rnn architectures for energy consumption forecasting. Energy Reports, 8:1084–1091, 2022. [30] Hyun-Su Kim and Kwang-Seob Park. Research on hyperparameter of rnn for seismic response prediction of a structure with vibration control system. Journal of Korean Association for Spatial Structures, 20(2):51–58, 2020. [31] Ruiyang Zhang, Zhao Chen, Su Chen, Jingwei Zheng, Oral Büyüköztürk, and Hao Sun. Deep long short-term memory networks for nonlinear structural seismic response prediction. Computers & Structures, 220:55–68, 2019. [32] Yuchen Liao, Rong Lin, Ruiyang Zhang, and Gang Wu. Attention-based lstm (attlstm) neural network for seismic response modeling of bridges. Computers & Structures, 275:106915, 2023. [33] Hyun-Su Kim. Development of seismic response simulation model for building structures with semi-active control devices using recurrent neural network. Applied Sciences, 10(11):3915, 2020. [34] Xiangyong Ni, Qingsong Xiong, Qingzhao Kong, and Cheng Yuan. Deep hystereticnet to predict hysteretic performance of rc columns against cyclic loading. Engineering Structures, 273:115103, 2022. [35] Salah A Faroughi, Nikhil Pawar, Celio Fernandes, Maziar Raissi, Subasish Das, Nima K. Kalantari, and Seyed Kourosh Mahjour. Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing, 2023. [36] Yang Liu, Zhu Mei, Bin Wu, Oreste S Bursi, Kao-shan Dai, Bo Li, and Yang Lu. Seismic behaviour and failure-mode-prediction method of a reinforced-concrete rigid-frame bridge with thin-walled tall piers: Investigation by model-updating hybrid test. Engineering Structures, 208:110302, 2020. [37] T-H Kim, K-M Lee, Y-S Chung, and HM Shin. Seismic damage assessment of reinforced concrete bridge columns. Engineering Structures, 27(4):576–592, 2005. [38] Ata Babazadeh, Rigoberto Burgueno, and Pedro F. Silva. Use of 3d finite-element models for predicting intermediate damage limit states in rc bridge columns. Journal of Structural Engineering, 141(10):04015012, 2015. [39] Tarutal Ghosh Mondal and S. Suriya Prakash. Nonlinear finite-element analysis of rc bridge columns under torsion with and without axial compression. Journal of Bridge Engineering, 21(2):04015037, 2016. [40] A. Mohammed, H. Almansour, and B. Martín-Pérez. Simplified finite element model for evaluation of ultimate capacity of corrosion-damaged reinforced concrete beam-columns. International Journal of Advanced Structural Engineering, 10:381–400, 2018. [41] Ying Gao, Liang Zheng, Yunshan Han, and Zhiyi Zhao. Damage analysis of reinforced concrete columns based on fiber beam–column element. Applied Sciences, 13(10):6018, 2023. [42] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. [43] Rahmat Ali and Young-Jin Cha. Attention-based generative adversarial network with internal damage segmentation using thermography. Automation in Construction, 141:104412, 2022. [44] Seungbo Shim, Jin Kim, Seong-Won Lee, and Gye-Chun Cho. Road damage detection using super-resolution and semi-supervised learning with generative adversarial network. Automation in Construction, 135:104139, 2022. [45] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014. [46] Gongjie Zhang, Kaiwen Cui, Tzu-Yi Hung, and Shijian Lu. Defect-gan: High-fidelity defect synthesis for automated defect inspection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 2524–2534, January 2021. [47] Ting-Yan Wu, Rih-Teng Wu, Ping-Hsiung Wang, Tzu-Kang Lin, and Kuo-Chun Chang. Development of a high-fidelity failure prediction system for reinforced concrete bridge columns using generative adversarial networks. Engineering Structures, 286:116130, 2023. [48] Young-Ji Park and Alfredo H.-S. Ang. Mechanistic seismic damage model for reinforced concrete. Journal of structural engineering, 111(4):722–739, 1985. [49] Yang Xu, Yi Li, Xiaohang Zheng, Xiaodong Zheng, and Qiangqiang Zhang. Computer-vision and machine-learning-based seismic damage assessment of reinforced concrete structures. Buildings, 13(5):1258, 2023. [50] Michael Berry, Myles Parrish, and Marc Eberhard. Peer structural performance database user's manual (version 1.0). University of California, Berkeley, 2004. [51] Yu-Chen Ou, Jianwei Song, Ping-Hsiung Wang, Leo Adidharma, Kuo-Chun Chang, and George C Lee. Ground motion duration effects on hysteretic behavior of reinforced concrete bridge columns. Journal of Structural Engineering, 140(3):04013065, 2014. [52] AASHTO-LRFD bridge design specifications 1st Ed. American Association of State Highway and Transportation Officials, Washington, D.C., 1994. [53] John B. Mander, Michael J.N. Priestley, and Robert Park. Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8):1804–1826, 1988. [54] G.A. Chang and John B. Mander. Seismic energy based fatigue damage analysis of bridge columns: Part I-Evaluation of seismic capacity. National Center for Earthquake Engineering Research Buffalo, NY, 1994. [55] Dawn Ellen Lehman. Seismic performance of well-confined concrete bridge columns. University of California, Berkeley, 1998. [56] Seismic design criteria version 2.0. California Department of Transportation, Sacramento, CA, 2019. [57] M.J. Nigel Priestley, Frieder Seible, and Gian Michele Calvi. Seismic design and retrofit of bridges. John Wiley & Sons, 1996. [58] Minjie Zhu, Frank McKenna, and Michael H. Scott. Openseespy: Python library for the opensees finite element framework. SoftwareX, 7:6–11, 2018. [59] Frank McKenna. Opensees: a framework for earthquake engineering simulation. Computing in Science & Engineering, 13(4):58–66, 2011. [60] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation, 2014. [61] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. [62] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard gan, 2018. [63] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021. [64] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. [65] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1):21–27, 1967. [66] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. [67] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems, 30, 2017. [68] Suman Ravuri and Oriol Vinyals. Classification accuracy score for conditional generative models. Advances in neural information processing systems, 32, 2019. [69] Yan Xiao and Armen Martirossyan. Seismic performance of high-strength concrete columns. Journal of structural Engineering, 124(3):241–251, 1998. [70] Tomoya Nagasaka. Effectiveness of steel fiber as web reinforcement in reinforced concrete columns. Transactions of the Japan Concrete Institute, 4(1):493–500, 1982. [71] Minoru Ohue, Hisao Morimoto, Shigeru Fujii, and Shiro Morita. The behavior of rc short columns failing in splitting bond-shear under dynamic lateral loading. Transactions of the Japan Concrete Institute, 7(1):293–300, 1985. [72] Xiaoshen Zhou, Toshio Satoh, Weishan Jiang, Arata Ono, and Yasushi Shimizu. Behavior of reinforced concrete short column under high axial load. Transactions of the Japan Concrete Institute, 9(6):541–548, 1987. [73] Abraham C. Lynn, Jack P. Moehle, Stephen A. Mahin, and William T. Holmes. Seismic evaluation of existing reinforced concrete building columns. Earthquake Spectra, 12(4):715–739, 1996. [74] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004. [75] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96107 | - |
| dc.description.abstract | 對地震工程而言,鋼筋混凝土(Reinforcement Concrete, RC)橋柱的遲滯行為、損壞機制及結構性能指標如損害指數(Damage Index, DI)可以提供工程師了解橋柱在反覆載重下的反應行為,因此如何在設計階段時獲取橋柱的遲滯行為及損壞機制是當今重要的研究課題。本研究提出了一個基於閘門循環單元(Gated Recurrent Unit, GRU)的遲滯迴圈預測網路(HysGRU),旨在彌平有限元模擬和真實實驗之間的差異。經由實驗,在模擬所提供的物理限制下,HysGRU 達到了31.51 kN 的均方根誤差,相較於純粹數據驅動的方法和模擬所獲得之誤差,分別降低了24%和62%。此外,HysGRU 於預測遲滯迴圈時,也會一併提取每個層間位移角(Drift Ratio)下所對應之潛在特徵,於此研究中,此潛在特徵作為所提出的損傷模式生成模型HysGAN之條件,藉由輸入不同時間點之潛在特徵以控制HysGAN生成每個層間位移角下相對應的損傷影像。為了評估 HysGAN的模型表現,此研究亦額外提出了一個損傷指標預測網路,透過預測生成之損傷影像對應之損傷指標, 計算預測與真實值之間的R^2分數,藉此評估模型生成表現。HysGAN 在驗證和測試數據集上皆可達到0.92 的R^2分數,相對於基準模型,分別增加了 0.05 和 0.55,顯示出經由潛在特徵的控制可以有效提升模型的通用性及生成影像之品質。此研究中所提出之橋柱損害預測框架可以提供工程師根據設計預定之柱設計參數,預測設計橋柱之遲滯行為,並可以透過選定特定層間位移角,觀察橋柱破壞形式,使工程師可以更有效評估設計橋柱在反覆載重下之結構行為。 | zh_TW |
| dc.description.abstract | Seismic attributes of reinforced concrete (RC) bridge columns, including hysteretic response, damage mechanism, and structural performance measures such as the Damage Index (DI), are pivotal to the domain of seismic engineering. In this study, a sequence-to-sequence hysteresis prediction network based on Gated Recurrent Units (GRU), HysGRU, is proposed to bridge the discrepancy between finite element simulation and experiment. Guided by the physics constraints extrapolated from simulation, HysGRU achieves a root mean square error (RMSE) of 31.51 kN, representing a reduction of 24% and 62% compared to the purely data-driven methodology and simulation, respectively. Moreover, during the prediction of HysGRU, the physics features of hysteretic behavior are extracted as a condition of the proposed damage pattern generative model, HysGAN, which is based on a conditional generative adversarial network (CGAN). To evaluate the performance of HysGAN, a DI prediction network is proposed to assess R^2 scores by the DI prediction of the synthetic damage patterns. Comprehensive experimental evaluations have demonstrated that the integration of latent feature conditioning substantially enhances the quality, stability, and generalization performance. HysGAN attains R^2 scores of 0.92 for both the validation and test datasets, representing significant improvements over the baseline model, with increases of 0.05 and 0.55, respectively. The proposed prognostic framework enables engineers to delineate the hysteresis loop and damage patterns based on predefined column design parameters and chosen drift ratios, facilitating an efficient assessment of seismic design and structural capacity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-29T16:05:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-10-29T16:05:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iv Abstract vi Contents viii List of Figures xi List of Tables xiv Chapter 1 Introduction 1 1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Research Objective and Contribution . . . . . . . . . . . . . . . . . 9 1.3 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2 Dataset 12 2.1 Hysteresis Database . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Column Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Mander Confined Concrete Model . . . . . . . . . . . . . . . . . . 15 2.1.3 Failure Types and Hysteresis Loop . . . . . . . . . . . . . . . . . . 19 2.2 Damage Pattern Database . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Damage Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Damage Patterns and Image Preprocessing . . . . . . . . . . . . . . 21 Chapter 3 Methodology 25 3.1 Finite Element Simulation . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Hysteresis Prediction Network . . . . . . . . . . . . . . . . . . . . . 28 3.3 Damage Pattern Generation Network . . . . . . . . . . . . . . . . . 31 3.4 Damage Quantification . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.1 Damage Index Prediction . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.2 Spalling Height and Area . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Chapter 4 Result and Discussion 38 4.1 Finite Element Simulation . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Hysteresis Behavior Prediction . . . . . . . . . . . . . . . . . . . . . 42 4.2.1 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Damage Index Prediction . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Damage Pattern Generation . . . . . . . . . . . . . . . . . . . . . . 52 4.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4.2 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4.3 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 59 Chapter 5 Conclusion 65 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Limitation and Future Work . . . . . . . . . . . . . . . . . . . . . . 67 References 70 | - |
| dc.language.iso | en | - |
| dc.title | 以物理引導之生成式AI預測RC橋柱破壞模式與遲滯行為 | zh_TW |
| dc.title | Physics-guided Generative AI for Hysteretic Behavior Prediction and Failure Forecasting in RC Bridge Columns | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張國鎮;歐昱辰;宋裕祺 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Chun Chang;Yu-Chen Ou;Yu-Chi Sung | en |
| dc.subject.keyword | 結構性能設計,生成式人工智慧,損壞模式預測,閘門循環單元,遲滯行為預測,條件圖像生成, | zh_TW |
| dc.subject.keyword | Performance-based design,Generative AI,Damage Patterns Forecasting,Gated Recurrent Unit,Hysteresis Behavior Prediction,Conditional Image Generation, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202402878 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-01-01 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 10.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
