請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96104
標題: | 使用時間序列方法提升對預言機操作價格攻擊的抵抗力 Enhancing Resistance to Oracle Price Manipulation Attacks Using Time Series Methods |
作者: | 蕭年葳 Nien-Wei Hsiao |
指導教授: | 廖世偉 Shi-Wei Liao |
關鍵字: | 閃電貸攻擊,去中心化金融(DeFi),價格預言機,自動化做市商(AMM),時間加權平均價格, Flash Loan Attack,Decentralized Finance (DeFi),Price Oracle,Automated Market Maker (AMM),Time Weighted Average Price Model(TWMA), |
出版年 : | 2024 |
學位: | 碩士 |
摘要: | 自從 Aave 在 2018 年引入閃電貸功能後,盡管提高了 DeFi 上資產的流動性,但也吸引了許多駭客利用此功能進行價格操縱並套利。到了 2024 年,這類攻擊仍屢見不鮮。本文設計了 ATR_AWMA(Average True Range_Adaptive Weighted Moving Average) 演算法,旨在為項目方在報價時提供額外參考和保護。我們對該算法進行了模擬回測,使用了過去(2020 年)的數據,因為當時發生過一起重大的操作價格攻擊,和近期數據,因為近期也同樣發生了重大的操作價格攻擊,並和前人的論文結果做比較,取得了顯著成果。結果表明,ATR_AWMA 能穩定預測趨勢,防止價格被不當操縱。 Since Aave introduced flash loans in 2018, while increasing asset liquidity in DeFi, it has also attracted hackers exploiting this feature for price manipulation and arbitrage. By 2024, such attacks remain prevalent. This paper presents the ATR_AWMA(Average True Range_Adaptive Weighted Moving Average) algorithm, designed to provide additional reference and protection for projects during price quotation. We conducted backtesting using both historical (2020), because a significant price manipulation attack occurred at that time and recent data, because there is also a significant price manipulation attack occurred recently, comparing our results with previous studies. The findings indicate that ATR_AWMA can reliably predict trends and prevent improper price manipulation caomparing to some traditional methods |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96104 |
DOI: | 10.6342/NTU202404456 |
全文授權: | 同意授權(限校園內公開) |
電子全文公開日期: | 2029-10-08 |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 目前未授權公開取用 | 2.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。