請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96101完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文方 | zh_TW |
| dc.contributor.advisor | Wen-Fang Wu | en |
| dc.contributor.author | 林睿駿 | zh_TW |
| dc.contributor.author | JUI-CHUN LIN | en |
| dc.date.accessioned | 2024-10-15T16:04:21Z | - |
| dc.date.available | 2024-10-16 | - |
| dc.date.copyright | 2024-10-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-10-08 | - |
| dc.identifier.citation | [1] Shen, W., Wang, N., Zhang, J., Wang, F., & Zhang, G. (2022). Heat Generation and Degradation Mechanism of Lithium-Ion Batteries during High-Temperature Aging. ACS Omega, 7(49), 44733–44742.
[2] Lin, X., Khosravinia, K., Hu, X., Li, J., & Lu, W. (2021). Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries. Progress in Energy and Combustion Science, 87, 100953. [3] Sanguesa, J. A., Torres-sanz, V., Garrido, P., Martinez, F. J., & Marquez-barja, J. M. (2021). A Review on Electric Vehicles: Technologies and Challenges. Smart Cities, 4(1), 372–404. [4] Nogueira, T., Sousa, E., & Alves, G. R. (2022). Electric Vehicles Growth until 2030: Impact on the Distribution Network Power. Energy Reports, 8, 145–152. [5] Muratori, M., Alexander, M., Arent, D., Bazilian, M., Cazzola, P., Dede, E. M., Farrell, J., Gearhart, C., Greene, D., Jenn, A., Keyser, M., Lipman, T., Narumanchi, S., Pesaran, A., Sioshansi, R., Suomalainen, E., Tal, G., Walkowicz, K., & Ward, J. (2021). The Rise of Electric Vehicles—2020 Status and Future Expectations. Progress in Energy, 3, 022002. [6] Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., & Ouyang, M. (2019). A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle. eTransportation, 1, 100005. [7] Saw, L. H., Ye, Y., & Tay, A. A. o. (2016). Integration Issues of Lithium-Ion Battery into Electric Vehicles Battery Pack. Journal of Cleaner Production, 113, 1032–1045. [8] Liu, Z., Tan, C., & Leng, F. (2015). A Reliability-Based Design Concept for Lithium-Ion Battery Pack in Electric Vehicles. Reliability Engineering & System Safety, 134, 169–177. [9] Mohamad, A. A. (2016). Absorbency and Conductivity of Quasi-Solid-State Polymer Electrolytes for Dye-Sensitized Solar Cells: A Characterization Review. Journal of Power Sources, 329(15), 57–71. [10] Li, L., Chen, X., Hu, R., Wang, T., Ji, H., Yuan, Q., Ji, Y., Jiang, Z., Liu, W., & Zheng, W. (2021). Aging Mechanisms and Thermal Characteristics of Commercial 18650 Lithium-Ion Battery Induced by Minor Mechanical Deformation. ASME. J. Electrochem. En. Conv. Stor., 18(2), 021010. [11] Lebrouhi, B. E., Khattari, Y., Lamrani, B., Maaroufi, M., Zeraouli, Y., & Kousksou, T. (2021). Key Challenges for a Large-Scale Development of Battery Electric Vehicles: A Comprehensive Review. Journal of Energy Storage, 44, 103273. [12] Kong, D., Wen, R., Ping, P., Peng, R., Zhang, J., & Chen, G. (2018). Study on Degradation Behavior of Commercial 18650 LiAlNiCoO2 Cells in Over-Charge Conditions. International Journal of Energy Research, 43(1), 552–567. [13] Shahid, S., & Agelin-chaab, M. (2022). A Review of Thermal Runaway Prevention and Mitigation Strategies for Lithium-Ion Batteries. Energy Conversion and Management: X, 16, 100310. [14] Ahmadian, A., Sedghi, M., Elkamel, A., Fowler, M., & Golkar, M. A. (2018). Plug-in Electric Vehicle Batteries Degradation Modeling for Smart Grid Studies: Review, Assessment and Conceptual Framework. Renewable and Sustainable Energy Reviews, 81, 2609–2624. [15] Vermeer, W., Mouli, G. R. chandra, & Bauer, P. (2022). A Comprehensive Review on the Characteristics and Modeling of Lithium-Ion Battery Aging. IEEE Transactions on Transportation Electrification, 8(2), 2609–2624. [16] Badey, Q., Cherouvrier, G., Reynier, Y., Duffault, J., & Franger, S. (2011). Ageing Forecast of Lithium-Ion Batteries for Electric and Hybrid Vehicles. Curr. Top. Electrochem., 16. [17] Ecker, M., Gerschler, J. B., Vogel, J., Käbitz, S., Hust, F., Dechent, P., & Sauer, D. U. (2012). Development of a Lifetime Prediction Model for Lithium-Ion Batteries Based on Extended Accelerated Aging Test Data. Journal of Power Sources, 215, 248–257. [18] Sarasketa-zabala, E., Martinez-laserna, E., Berecibar, M., Gandiaga, I., Rodriguez-martinez, L. M., & Villarreal, I. (2016). Realistic Lifetime Prediction Approach for Li-Ion Batteries. Applied Energy, 162, 839–852. [19] Lucu, M., martinez-laserna, E., Gandiaga, I., & Camblong, H. (2018). A Critical Review on Self-Adaptive Li-Ion Battery Ageing Models. Journal of Power Sources, 401, 85–101. [20] Xia, Q., Wang, Z., Ren, Y., Sun, B., Yang, D., & Feng, Q. (2018). A Reliability Design Method for a Lithium-Ion Battery Pack Considering the Thermal Disequilibrium in Electric Vehicles. Journal of Power Sources, 386, 10–20. [21] Zhang, X., Wang, Y., Liu, C., & Chen, Z. (2017). A Novel Approach of Remaining Discharge Energy Prediction for Large Format Lithium-Ion Battery Pack. Journal of Power Sources, 343, 216–225. [22] Wang, L., Sun, Y., Wang, X., Wang, Z., & Zhao, X. (2019). Reliability Modeling Method for Lithium-Ion Battery Packs Considering the Dependency of Cell Degradations Based on a Regression Model and Copulas. Materials, 12(7), 1054. [23] Warner, J. T. (2015). The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology (1st ed.). Elsevier Science. [24] Luiso, S., & Fedkiw, P. (2020). Lithium-Ion Battery Separators: Recent Developments and State of Art. Current Opinion in Electrochemistry, 20, 99–107. [25] Farahani, S. (2008). ZigBee Wireless Networks and Transceivers (1st ed.). Newnes. [26] Qadrdan, M., Jenkins, N., & Wu, J. (2017). Chapter II-3-D - Smart Grid and Energy Storage. In S. Kalogirou (Eds.), McEvoy’s Handbook of Photovoltaics, Third Edition: Fundamentals and Applications (3rd ed., pp. 915–928). Academic Press. [27] Wenzl, H. (2009). BATTERIES | Capacity. In J. Garche, C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A. j. Rand, & B. Scrosati (Eds.), Encyclopedia of Electrochemical Power Sources (1st ed., pp. 395–400). Elsevier Science. [28] Kularatna, N. (2015). Energy Storage Devices for Electronic Systems: Rechargeable Batteries and Supercapacitors (1st ed.). Academic Press. [29] Shu, X., Shen, S., Shen, J., Zhang, Y., Li, G., Chen, Z., & Liu, Y. (2021). State of Health Prediction of Lithium-Ion Batteries Based on Machine Learning: Advances and Perspectives. IScience, 24(11). [30] Jia, S., Ma, B., Guo, W., & Li, Z. S. (2021). A Sample Entropy Based Prognostics Method for Lithium-Ion Batteries Using Relevance Vector Machine. Journal of Manufacturing Systems, 61, 773–781. [31] Xu, B., Kong, L., Wen, G., & Pecht, M. G. (2021). Protection Devices in Commercial 18650 Lithium-Ion Batteries. IEEE Access, 9, 66687–66695. [32] Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the Development of Advanced Li-Ion Batteries: A Review. Energy & Environmental Science, 4, 3243–3262. [33] Nitta, N., Wu, F., Lee, J. tae, & Yushin, G. (2015). Li-Ion Battery Materials: Present and Future. Materials Today, 18(5), 252–264. [34] Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Nazar, L., Ellis, B., & Kovacheva, D. (2007). Review on Electrode–Electrolyte Solution Interactions, Related to Cathode Materials for Li-Ion Batteries. Journal of Power Sources, 165(2), 491–499. [35] Qian, X., Xuan, D., Zhao, X., & Shi, Z. (2019). Heat Dissipation Optimization of Lithium-Ion Battery Pack Based on Neural Networks. Applied Thermal Engineering, 162, 114289. [36] Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., Tavajohi, N., & Li, B. (2021). A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. Journal of Energy Chemistry, 59, 83–99. [37] Wahl, M. S., Spitthoff, L., Muri, H. I., Jinasena, A., Burheim, O. S., & Lamb, J. J. (2021). The Importance of Optical Fibres for Internal Temperature Sensing in Lithium-Ion Batteries during Operation. Energies, 14(12), 3617. [38] Fernández, I. J., Calvillo, C. F., Sánchez-miralles, A., & Boal, J. (2013). Capacity Fade and Aging Models for Electric Batteries and Optimal Charging Strategy for Electric Vehicles. Energy, 60, 35–43. [39] Birkl, C. R., Roberts, M. R., Mcturk, E., Bruce, P. G., & Howey, D. A. (2017). Degradation Diagnostics for Lithium Ion Cells. Journal of Power Sources, 341, 373–386. [40] Gandoman, F. H., Jaguemont, J., Goutam, S., Gopalakrishnan, R., Firouz, Y., Kalogiannis, T., Omar, N., & Mierlo, J. V. (2019). Concept of Reliability and Safety Assessment of Lithium-Ion Batteries in Electric Vehicles: Basics, Progress, and Challenges. Applied Energy, 251, 113343. [41] Guo, L., Thornton, D. B., Koronfel, M. A., Stephens, I. E. l, & Ryan, M. P. (2021). Degradation in Lithium Ion Battery Current Collectors. Journal of Physics: Energy, 3(3). [42] Song, Y., Sheng, L., Wang, L., Xu, H., & He, X. (2021). From Separator to Membrane: Separators Can Function More in Lithium Ion Batteries. Electrochemistry Communications, 124, 106948. [43] Li, A., Yuen, A. C. Y., Wang, W., Cordeiro, De Cachinho Cordeiro I. M., Wang, C., Chen, T. B. Y., Zhang, J., Chan, Q. N., & Yeoh, G. H. (2021). A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches. Molecules, 26(2), 478. [44] Sharma, A., Zanotti, P., & Musunur, L. P. (2019). Enabling the Electric Future of Mobility: Robotic Automation for Electric Vehicle Battery Assembly. IEEE Access, 7, 170961–170991. [45] Shankleman, J., Biesheuvel, T., Ryan, J., & Merrill, D. (2019, September 7). We’re Going to Need More Lithium. Bloomberg. https://www.bloomberg.com/graphics/2017-lithium-battery-future/ [46] Ramadass, P., Haran, B., White, R., & Popov, B. N. (2003). Mathematical Modeling of the Capacity Fade of Li-Ion Cells. Journal of Power Sources, 123(2), 230–240. [47] Ramadass, P., Haran, B., White, R., & Popov, B. N. (2002). Capacity Fade of Sony 18650 Cells Cycled at Elevated Temperatures: Part II. Capacity Fade Analysis. Journal of Power Sources, 112(2), 614–620. [48] Singh, P., Chen, C., Tan, C., & Huang, S. (2019). Semi-Empirical Capacity Fading Model for SoH Estimation of Li-Ion Batteries. Applied Sciences, 9(15), 3012. [49] Tan, C., Singh, P., & Chen, C. (2020). Accurate Real Time On-Line Estimation of State-of-Health and Remaining Useful Life of Li Ion Batteries. Applied Sciences, 10(21), 7836. [50] Abe, T., Fukuda, H., Iriyama, Y., & Ogumi, Z. (2004). Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. Journal of The Electrochemical Society, 151(8), A1120–A1123. [51] Zhang, Y., & Wang, C. (2009). Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode. Journal of The Electrochemical Society, 156(7), A527–A535. [52] Yamada, Y., Iriyama, Y., Abe, T., & Ogumi, Z. (2009). Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film. Langmuir, 25(21), 12766–12770. [53] Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Klotz, D., & Ivers-tiffée, E. (2011). Studies on LiFePO4 as Cathode Material Using Impedance Spectroscopy. Journal of Power Sources, 196(12), 5342–5348. [54] Liaw, B. Y., Roth, P. E., Jungst, R. G., Nagasubramanian, G., Case, H. L., & Doughty, D. H. (2003). Correlation of Arrhenius Behaviors in Power and Capacity Fades with Cell Impedance and Heat Generation in Cylindrical Lithium-Ion Cells. Journal of Power Sources, 119–121, 874–886. [55] Ozerov, R. P., & Vorobyev, A. A. (2007). Physics for Chemists (1st ed.). Elsevier Science. [56] Waldmann, T., Wilka, M., Kasper, M., Fleischhammer, M., & Wohlfahrt-mehrens, M. (2014). Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries – A Post-Mortem Study. Journal of Power Sources, 262, 129–135. [57] Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T., & Shang, W. (2018). Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Progress in Natural Science: Materials International, 28(6), 653–666. [58] Mann, P. S. (2010). Introductory Statistics (7th ed.). Wiley. [59] Ramachandran, K. M., & Tsokos, C. P. (2015). Mathematical Statistics with Applications in R (2nd ed.). Academic Press. [60] Ibe, O. C. (2014). Fundamentals of Applied Probability and Random Processes (2nd ed.). Academic Press. [61] Ibe, O. C. (2013). Markov Processes for Stochastic Modeling (2nd ed.). Elsevier. [62] Arfken, G. B., Weber, H. J., & Harris, F. E. (2012). Mathematical Methods for Physicists A Comprehensive Guide (7th ed.). Academic Press. [63] Ebeling, C. E. (1997). An Introduction To Reliability and Maintainability Engineering (1st ed.). McGraw-Hill. [64] Zio, E. (2009). Reliability Engineering: Old Problems and New Challenges. Reliability Engineering & System Safety, 94(2), 125–141. [65] Arora, J. S. (2012). Introduction to Optimum Design (3rd ed.). Academic Press. [66] Basile, A., Cassano, A., & Rastogi, N. K. (2015). Advances in Membrane Technologies for Water Treatment Materials, Processes and Applications A Volume in Woodhead Publishing Series in Energy (1st ed.). Woodhead Publishing. [67] Wang, S., Tomovic, M., & Liu, H. (2016). Commercial Aircraft Hydraulic Systems Shanghai Jiao Tong University Press Aerospace Series A Volume in Aerospace Engineering (1st ed.). Academic Press. [68] Ruijters, E., & Stoelinga, M. (2015). Fault Tree Analysis: A Survey of the State-of-the-Art in Modeling, Analysis and Tools. Computer Science Review, 15–16, 29–62. [69] Ross, S. M. (2020). Introduction to Probability and Statistics for Engineers and Scientists (6th ed.). Academic Press. [70] Smith, D. J. (2005). Reliability, Maintainability and Risk Practical Methods for Engineers (7th ed.). Butterworth-Heinemann. [71] Kissell, R., & Poserina, J. (2017). Optimal Sports Math, Statistics, and Fantasy (1st ed.). Academic Press. [72] Dunn, W. L., & Shultis, J. K. (2022). Exploring Monte Carlo Methods (2nd ed.). Elsevier Science. [73] Yang, X. (2017). Engineering Mathematics with Examples and Applications (1st ed.). Academic Press. [74] Freund, R. J., Wilson, W. J., & Mohr, D. L. (2010). Statistical Methods (3rd ed.). Academic Press. [75] Ozdemir, S. (2016). Principles of Data Science (1st ed.). Packt Publishing. [76] Lemons, D. S. (2002). An Introduction to Stochastic Processes in Physics (1st ed.). Johns Hopkins University Press. [77] Keizer, M. C. A. olde, Flapper, S. D. p., & Teunter, R. H. (2017). Condition-Based Maintenance Policies for Systems with Multiple Dependent Components: A Review. European Journal of Operational Research, 261(2), 405–420. [78] Koren, I., & Krishna, C. M. (2020). Fault-Tolerant Systems (2nd ed.). Morgan Kaufmann. [79] Meyers, R. A. (Ed.). (2001). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. [80] 曾映誠(2021)。電池單元性能差異對電動車電池組可靠度分析之影響。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 [81] 歐明輝(2020)。鋰離子電池之健康狀態預測與可靠度分析。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 [82] Duh, Y., Tsai, M., & Kao, C. (2017). Characterization on the Thermal Runaway of Commercial 18650 Lithium-Ion Batteries Used in Electric Vehicle. Journal of Thermal Analysis and Calorimetry, 127, 983–993. [83] Pérez, A., Quintero, V., Rozas, H., Jaramillo, F., Moreno, R. & Orchard, M. (2017). Modelling the degradation process of lithium-ion batteries when operating at erratic state-of-charge swing ranges. 2017 4th International Conference on Control Decision and Information Technologies (CoDIT), 860-865. [84] Preger, Y., Barkholtz, H. M., Fresquez, A., Campbell, D. L., Juba, B. W., Romàn-kustas, J., Ferreira, S. R., & Chalamala, B. (2020). Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions. Journal of The Electrochemical Society, 167, 120532. [85] Wang, Q., Jiang, B., Li, B., & Yan, Y. (2016). A Critical Review of Thermal Management Models and Solutions of Lithium-Ion Batteries for the Development of Pure Electric Vehicles. Renewable and Sustainable Energy Reviews, 64, 106–128. [86] Kucinskis, G., Bozorgchenani, M., Feinauer, M., Kasper, M., Wohlfahrt-mehrens, M., & Waldmann, T. (2022). Arrhenius Plots for Li-Ion Battery Ageing as a Function of Temperature, C-Rate, and Ageing State – An Experimental Study. Journal of Thermal Analysis and Calorimetry, 549, 232129. [87] Naguib, M., Kollmeyer, P., & Emadi, A. (2021). Lithium-Ion Battery Pack Robust State of Charge Estimation, Cell Inconsistency, and Balancing: Review. IEEE Access, 9, 50570 – 50582. [88] Tesla, Inc. (2021, May 22). New Vehicle Limited Warranty. Tesla: Electric Cars, Solar & Clean Energy. [89] Liang, S., Zhenpo, W., & Yonghuan, R. (2019). A Novel Two-Steps Method for Estimation of the Capacity Imbalance among in-Pack Cells. Journal of Energy Storage, 26, 101031. [90] Duh, Y., Sun, Y., Lin, X., Zheng, J., Wang, M., Wang, Y., Lin, X., Jiang, X., Zheng, Z., Zheng, S., & Yu, G. (2021). Characterization on Thermal Runaway of Commercial 18650 Lithium-Ion Batteries Used in Electric Vehicles: A Review. Journal of Energy Storage, 4, 102888. [91] Patel, N., Bhoi, A. K., Padmanaban, S., & Holm-nielsen, J. B. (Eds.). (2021). Electric Vehicles Modern Technologies and Trends (1st ed.). Springer Singapore. [92] Arora, S. (2018). Selection of Thermal Management System for Modular Battery Packs of Electric Vehicles: A Review of Existing and Emerging Technologies. Journal of Power Sources, 400, 621–640. [93] Wu, W., Wang, S., Wu, W., Chen, K., Hong, S., & Lai, Y. (2019). A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management. Journal of Power Sources, 182, 262–281. [94] Mali, V., Saxena, R., Kumar, K., Kalam, A., & Tripathi, B. (2021). Review on Battery Thermal Management Systems for Energy-Efficient Electric Vehicles. Renewable and Sustainable Energy Reviews, 151, 111611. [95] Tete, P. R., Gupta, M. M., & Joshi, S. S. (2021). Developments in Battery Thermal Management Systems for Electric Vehicles: A Technical Review. Journal of Energy Storage, 35, 102255. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96101 | - |
| dc.description.abstract | 電池是電動車最重要的系統之一,現今電動車電池系統常使用鋰離子電池,是以本研究探討電動車用鋰離子電池的健康狀態(SOH)隨充電放電循環次數增加而衰退的趨勢,並特別探討操作溫度對電池可靠度衰退趨勢的影響。
本研究根據阿瑞尼斯-半經驗模型,基於鋰離子電池的充電放電循環次數與操作溫度的變化作為分析電池健康狀態變化的兩大因素,探討電動車用鋰離子電池的健康狀態。藉由設置特定電池健康狀態數值作為判定電池芯、電池系統是否失效的閾值,以可靠度工程理論評估電池芯與電池系統之可靠度,其中電動車電池系統的研究將通過使用串並聯複合系統與k-out-of-n系統建構並分析。研究結果顯示,每當鋰離子電池的運作環境溫度上升,電池芯健康狀態衰減速率將隨之增加,同時亦能觀察到平均未失效充電放電循環次數隨之減少,顯示出操作環境溫度與電池芯可靠度之關聯性。對於電池系統的可靠度,以串並聯複合系統建構電動車電車系統,設置失效閾值與實際案例相同時,能觀察到電池系統可靠度的表現與實際案例相近,代表此電池系統模型之合理性,能很好的評估電池系統的可靠度趨勢。 此成果將作為設計與評估電動車電池系統時的重要依據,協助並支撐未來電動車產業長遠發展。 | zh_TW |
| dc.description.abstract | Batteries are one of the most critical systems in electric vehicle (EV). Currently, lithium-ion batteries (li-ion batteries) are commonly used in EV battery systems. This study investigates the degradation trends of State of Health (SOH) in li-ion batteries used for EVs as reflected by the number of charge-discharge cycles, with particular emphasis on the impact of operating temperature on the variation on battery reliability degradation trends.
This study is based on the Arrhenius Semi-empirical model, using the number of charge-discharge cycles of li-ion batteries and varying temperature in operating temperature as the two main factors to analyze the variations of the SOH of the li-ion batteries. We identify the potential failures of battery cells and battery systems by establishing specific SOH values as thresholds and utilizing reliability engineering theory to evaluate the reliability of these components. Specifically, we assess the system reliability of EV battery systems using Combined series-parallel systems and k-out-of-n systems. The study results indicate that whenever the operating temperature of li-ion batteries increase, the SOH degradative rate of the li-ion batteries will correspondingly rise and the reduction in average count of charge-discharge cycles. Also highlighting the correlation between operating temperature and the reliability of battery cells. Regarding battery systems reliability, constructing the model of an EV battery system using the Combined series-parallel systems. If the failure threshold is match actual cases, it’s showing that the reliability performance of the battery systems closely resembles case study. This shows the model's validity, demonstrating its efficacy in assessing the reliability trends of battery systems. The results of the study will serve as a crucially fundamental groundwork for the design and evaluation of EV battery systems, also assisting and supporting the long-term development of the EV industry in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-15T16:04:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-10-15T16:04:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝………………………………………………………………………………………I
中文摘要………………………………………………………………...………………II ABSTRACT………………………………………………………………………..…..III 目次……………………………………………………………………………………..V 圖次………………………………………………………………...………….……..VIII 表次…………………………………………………………………...………………..XI 第一章 緒論…………………………………………………………………………….1 1.1研究背景與動機……………………………………………………………….1 1.2文獻回顧……………………………………………………………………….3 1.3研究目標……………………………………………………………………….5 1.4論文架構……………………………………………………………………….6 第二章 電池基本理論與工作原理……………………………………..……………...7 2.1電池相關名詞定義…………………………………………………………….7 2.1.1電池類型相關名詞……………………………………………………..7 2.1.2電池架構相關名詞……………………………………………………..8 2.1.3電池特性相關名詞……………………………………………………..8 2.1.4電池狀態相關名詞……………………………………………………..9 2.2電池結構與工作原理………………………………………………………...11 2.2.1鋰電池基礎結構………………………………………………………11 2.2.2鋰電池工作原理………………………………………………………11 2.3鋰電池退化因素與失效模式………………………………………………...12 2.3.1鋰電池退化因素………………………………………………………13 2.3.2鋰電池結構的失效模式………………………………………………14 2.4電動車電池組………………………………………………………………...17 第三章 電池退化趨勢與健康狀態計算模型………………………………………...22 3.1半經驗模型…………………………………………..……………………….22 3.2阿瑞尼斯方程式…………………….………………………………………..28 3.3阿瑞尼斯‐半經驗模型…………………………...…………………………...30 第四章 可靠度工程與應用概論……………………………………………………...35 4.1統計學與機率論的基本概念…………………………..…………………….35 4.1.1統計學基本概念………………………………………………………35 4.1.2機率論基本概念………………………………………………………36 4.1.3隨機事件與條件機率…………………………………………………38 4.2可靠度工程應用與分析的理論和概念……………………………………...41 4.2.1可靠度函數與機率函數的理論和定義………………………………42 4.2.2失效函數與失效理論…………………………………………………45 4.2.3機率分佈函數…………………………………………………………47 4.3資料統計理論………………………………………………………………...51 4.3.1中央極限定理…………………………….………...…………………51 4.3.2經驗規則…………………….…………...……………………………52 4.4機率分布的可加性原理……………………………………………………...53 4.5系統可靠度…………………………………………………………………...55 4.5.1串聯系統………………………………………………………………55 4.5.2並聯系統………………………………………………………………56 4.5.3串並聯複合系統………………………………………………………56 4.5.4 k-out-of-n系統………………………………………………………...58 第五章 電動車電池芯與電池組之可靠度分析……………………………………...63 5.1電池芯可靠度分析…………………………………………………………...63 5.1.1電池芯於溫度25℃條件下運作……………...………………………66 5.1.2電池芯於溫度30℃條件下運作……………...………………………73 5.1.3電池芯於溫度35℃條件下運作……………...………………………80 5.1.4運作溫度對電池芯可靠度影響之分析……………...…………….…87 5.2電池系統可靠度分析………………………………………………………...92 5.2.1電池系統於溫度25℃條件下運作……………...……………………94 5.2.2電池系統於溫度30℃條件下運作……………...……………………95 5.2.3電池系統於溫度35℃條件下運作……………...……………………96 5.2.4電池系統於多溫度區間條件下運作………………...…………….…97 5.2.5電動車電池系統可靠度之分析……………………...…………….…98 5.3考量k-out-of-n系統差異之電池系統可靠度分析……………………….....99 5.3.1電池系統內至少50%電池芯未失效………………………………..101 5.3.2電池系統內至少45%電池芯未失效………………………………..103 5.3.3電池系統內至少55%電池芯未失效………………………………..105 5.3.4 k-out-of-n系統差異對電池系統可靠度影響之分析…………….....108 5.4實務案例分析……………………………………………………………….109 第六章 結論………………………………………………………………………….131 參考文獻……………………………………………………………………………...135 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 阿瑞尼斯方程式於電動車電池系統可靠度分析上之應用 | zh_TW |
| dc.title | Application of Arrhenius Equation to the Reliability Analysis of Electric Vehicle Battery Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳國慶;詹魁元 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Ching Chen;Kuei-Yuan Chan | en |
| dc.subject.keyword | 阿瑞尼斯方程式,半經驗容量衰減模型,電池健康狀態,電動車,電池系統,可靠度工程, | zh_TW |
| dc.subject.keyword | Arrhenius Equation,Semi-Empirical Capacity Fading Model,State of Health,Electric Vehicle,Battery Systems,Reliability Engineering, | en |
| dc.relation.page | 145 | - |
| dc.identifier.doi | 10.6342/NTU202404449 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-10-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
