請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96099
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳凱風 | zh_TW |
dc.contributor.advisor | Kai-Feng Chen | en |
dc.contributor.author | 陳政綱 | zh_TW |
dc.contributor.author | Zheng-Gang Chen | en |
dc.date.accessioned | 2024-10-14T16:11:45Z | - |
dc.date.available | 2024-10-15 | - |
dc.date.copyright | 2024-10-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-09-16 | - |
dc.identifier.citation | [1] Signal Samples 2016. https://github.com/ExtraYukawa/ttc_bar/blob/ lep_mvaID/crab/samples2016_signal.json.
[2] Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1–29, 2012. [3] Georges Aad et al. Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV. JHEP, 08:045, 2016. [4] Wolfgang Adam. Track and vertex reconstruction in CMS. Nucl. Instrum. Meth. A, 582:781–784, 2007. [5] Merzlaya Anastasia. Methods of the track reconstruction, March 2015. https:// indico.cern.ch/event/451901/contributions/1948142/attachments/1164660/1678519/MerzlayaA_MethodsOfTrackReconstruction_15.09. 2015.pdf. [6] NAquilina,MGiovannozzi,MLamont,NSammut,RSteinhagen,ETodesco,and J Wenninger. Tune variations in the Large Hadron Collider. Nucl. Instrum. Methods Phys. Res., A, 778:6–13, 2015. [7] Ryan Atkin. Review of jet reconstruction algorithms. J. Phys. Conf. Ser., 645(1):012008, 2015. [8] ATLAScollaboration.MeasurementofJetMassandSubstructureforInclusiveJets in √s = 7 TeV pp Collisions with the ATLAS Experiment. Technical report, CERN,Geneva, 2011. All figures including auxiliary figures are available at https://at- las.web.cern.ch/Atlas/GROUPS/ PHYSICS/ CONFNOTES/ ATLAS-CONF-2011- 073. [9] Dmitriy Baranov, Sergey Mitsyn, Pavel Goncharov, and Gennady Ososkov. The Particle Track Reconstruction based on deep Neural networks. EPJ Web of Conferences, 214:06018, 2019. [10] Jonathan Baxter. A Bayesian/information theoretic model of bias learning. In Proceedings of the ninth annual conference on Computational learning theory - COLT '96, COLT '96. ACM Press, 1996. [11] G. L. Bayatian et al. CMS Physics: Technical Design Report Volume 1: Detector Performance and Software. 2006. [12] Emil Bols, Jan Kieseler, Mauro Verzetti, Markus Stoye, and Anna Stakia. Jet flavour classification using DeepJet. JINST, 15:P12012, 2020. [13] Eduard Boos and Lev Dudko. Triple top quark production in standard model. Int. J. Mod. Phys. A, 37(05):2250023, 2022. [14] Erica Brondolin. CLUE a clustering algorithm for current and future experiments. Technical report, CERN, Geneva, 2023. [15] JoanBruna,WojciechZaremba,ArthurSzlam,andYannLeCun.SpectralNetworks and Locally Connected Networks on Graphs, 2014. [16] Oliver Sim Brüning, Paul Collier, P Lebrun, Stephen Myers, Ranko Ostojic, John Poole, and Paul Proudlock. LHC Design Report. CERN Yellow Reports: Mono- graphs. CERN, Geneva, 2004. [17] X Buffat, R Alemany-Fernandez, Rossano Giachino, W Herr, G Papotti, Tatiana Pieloni, R Calaga, and S White. Observation of coherent beam-beam effects in the lhc. 01 2011. [18] K. Danske Vidensk. Selsk. Mat.-Fys. Medd. C. Moller. General properties of the characteristic matrix in the theory of elementary particles. i. 1945. [19] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm. JHEP, 04:063, 2008. [20] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet user manual. Eur. Phys. J. C, 72:1896, 2012. [21] R. Calaga, P. Baudrenghien, Ofelia Capatina, Erk Jensen, and Eric Montesinos. Chapter 4: RF systems. CERN Yellow Rep. Monogr., 10:65–86, 2020. [22] Rama Calaga. Crab Cavities for the LHC Upgrade. 2012. [23] Rich Caruana. Multitask Learning: A Knowledge-Based Source of Inductive Bias. In International Conference on Machine Learning, 1993. [24] CERN. ALICE. https://www.home.cern/science/experiments/alice. [25] CERN. How an accelerator works. https://home.cern/science/accelerators/how-accelerator-works. [26] CERN. LHC parameters. https://www.lhc-closer.es/taking_a_closer_look_at_lhc/1.lhc_parameters. [27] CERN. CAS - CERN Accelerator School : 50 Years of Synchrotrons: CERN, Geneva, Switzerland 7 Nov 1996. CAS - CERN Accelerator School : 50 Years of Synchrotrons, Geneva, 1997. CERN. Early synchrotrons in Britain. Early work for CERN/J Lawson ; The CERN synchrotrons/G Brianti. - short version of RAL-97- 011. [28] Serguei Chatrchyan et al. Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC. JHEP, 06:077, 2011. [29] Serguei Chatrchyan et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012. [30] SergueiChatrchyanetal.Searchfornewphysicsineventswithsame-signdileptons and b-tagged jets in pp collisions at √s = 7 TeV. JHEP, 08:110, 2012. [31] Serguei Chatrchyan et al. Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy. Phys. Rev. Lett., 109:071803, 2012. [32] SergueiChatrchyanetal.SearchforNewPhysicsinEventswithSame-SignDilep- tons and b Jets in pp Collisions at √s = 8 TeV. JHEP, 03:037, 2013. [Erratum: JHEP 07, 041 (2013)]. [33] SergueiChatrchyanetal.Descriptionandperformanceoftrackandprimary-vertex reconstruction with the CMS tracker. JINST, 9:P10009, 2014. [34] Taoli Cheng. Recursive Neural Networks in Quark/Gluon Tagging. Computing and Software for Big Science, 2(1), June 2018. [35] CMS collaboration. Baseline muon selections for Run-I. https://twiki.cern. ch/twiki/bin/view/CMSPublic/SWGuideMuonId. [36] CMS collaboration. CloseByParticleGun. https://hgcal.web.cern.ch/ Generation/CloseByParticleGun. [37] CMS collaboration. CMS Pile-up simulation. https://opendata.cern.ch/ docs/cms-guide-pileup-simulation. [38] CMS collaboration. Energy Regression and Particle Identification in HGCal.https://indico.cern.ch/event/799486/contributions/3492052/ subcontributions/284302/attachments/1875750/3088524/MLforTICL_ Scrum.pdf. [39] CMS collaboration. Golden json file for 2016. /afs/cern.ch/cms/CAF/ CMSCOMM/COMM_DQM/certification/Collisions16/13TeV/Legacy_2016/ Cert_271036-284044_13TeV_Legacy2016_Collisions16_JSON.txt. [40] CMS collaboration. Golden json file for 2017. /afs/cern.ch/cms/CAF/ CMSCOMM/COMM_DQM/certification/Collisions17/13TeV/Legacy_2017/ Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt. [41] CMS collaboration. Golden json file for 2018. /afs/cern.ch/cms/CAF/ CMSCOMM/COMM_DQM/certification/Collisions18/13TeV/Legacy_2018/ Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt. [42] CMS collaboration. Heavy flavour tagging for 13 TeV data in 2017 Ultra-Legacy reprocessing and 10_6_X MC. https://twiki.cern.ch/twiki/bin/view/ CMS/BtagRecommendation106XUL17. [43] CMS collaboration. MissingETOptionalFilters. https://twiki.cern.ch/ twiki/bin/viewauth/CMS/MissingETOptionalFilters. [44] CMS collaboration. PID and Energy Regression within HGCal. https://hgcal.web.cern.ch/Reconstruction/Tutorial/ #particle-id-probabilities-and-energy-regression. [45] CMS collaboration. Rochester corrections. https://twiki.cern.ch/twiki/ bin/view/CMS/RochcorMuon. [46] CMS collaboration. RooCBExGaussShape for tag and probe. https: //github.com/cms-sw/cmssw/blob/master/PhysicsTools/TagAndProbe/ interface/RooCBExGaussShape.h. [47] CMS collaboration. SFUncertaintiesAndCorrelations. https: //btv-wiki.docs.cern.ch/PerformanceCalibration/ SFUncertaintiesAndCorrelations/#subjet-b-tagging. [48] CMS collaboration. The CMS electromagnetic calorimeter project: Technical Design Report. Technical design report. CMS. CERN, Geneva, 1997. [49] CMS collaboration. The CMS Hadron Calorimeter project: Technical Design Report. Technical design report. CMS. CERN, Geneva, 1997. [50] CMS collaboration. The CMS trigger system. Journal of Instrumentation, 12(01):P01020–P01020, January 2017. [51] CMS collaboration. The Phase-2 Upgrade of the CMS Endcap Calorimeter. Tech- nical report, CERN, Geneva, 2017. [52] CMS collaboration. NLO single-top channel cross sections. Toplhcwg public web- page, 2017r34. [53] CMScollaboration.NNLO+NNLLtop-quark-paircrosssections.Toplhcwgpublic webpage, 2017r34. [54] CMS collaboration. CMS luminosity measurement for the 2017 data-taking period at √s = 13 TeV. Technical report, CERN, Geneva, 2018. [55] CMS Collaboration. Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector. CMS Detector Performance Note CMS-DP-2018-058, 2018. [56] CMS collaboration. CMS luminosity measurement for the 2018 data-taking period at √s = 13 TeV. Technical report, CERN, Geneva, 2019. [57] CMS collaboration. Study of vector boson scattering in leptonic w±w± and wz diboson events at √s=13 Tev. CMS Internal Analysis Note AN2019-089-v7, 2019. [58] CMS collaboration. Treatment of the HEM15/16 region in 2018 data. hypernews, 2019. [59] CMS collaboration. Standard Model Cross sections for CMS at 13 Tev. Cms internal webpage, CERN LHC, 2019r27. [60] CMS collaboration. Jet identification for the 13 tev ul data. twiki, CERN LHC, 2020. [61] CMS collaboration. Jet identification in high pile-up environment (pileupjetid). twiki, CERN LHC, 2020. [62] CMS collaboration. Pileup mitigation at CMS in 13 TeV data. JINST, 15(09):P09018, 2020. Submitted to JINST. [63] CMS collaboration. Reweighting recipe to emulate Level 1 ECAL prefiring. twiki, 2021. [64] CMScollaboration.Searchfornewphysicsintopquarkproductionwithadditional leptons in proton-proton collisions at √s = 13 TeV using effective field theory. JHEP, 03:095, 2021. [65] CMS collaboration. The TICL (v4) reconstruction at the CMS Phase-2 High Gran- ularity Calorimeter Endcap. 2022. [66] CMS collaboration. Gridpack location. /eos/cms/store/group/phys_ generator/cvmfs/gridpacks/UL/13TeV/madgraph/V5_2.6.5/g2HDM/ ttc/g2HDM_ttc_{X}_M{Y}_rhotu{C1}_rhotc{C2}_rhott00_slc7_amd64_ gcc700_CMSSW_10_6_0_tarball.tar.xz. [67] CMS collaboration. Signal MG5_aMC cards. https://github.com/ cms-sw/genproductions/tree/master/bin/MadGraph5_aMCatNLO/cards/ production/2017/13TeV/g2HDM/. [68] CMScollaboration.SignalSamples2017.https://github.com/ExtraYukawa/ ttc_bar/blob/lep_mvaID/crab/samples2017_signal.json. [69] CMScollaboration.SignalSamples2018.https://github.com/ExtraYukawa/ ttc_bar/blob/lep_mvaID/crab/samples2018_signal.json. [70] CMS collaboration. Signal UFO Model File. https:// cms-project-generators.web.cern.ch/cms-project-generators/ gen2HDM_cg_to_ttc_ttt_ttS_UFO.tar.gz. [71] CMS Collaboration. Performance of the CMS muon detector and muon recon- struction with proton-proton collisions at √s=13 TeV. Journal of Instrumentation, 13(06):P06015–P06015, June 2018. [72] CMS Collaboration. Search for higgs boson pair production in the bbww decay mode in proton-proton collisions at √s = 13 tev, 2024. [73] D Contardo, M Klute, J Mans, L Silvestris, and J Butler. Technical Pro- posal for the Phase-II Upgrade of the CMS Detector. Technical report, Geneva, 2015. Upgrade Project Leader Deputies: Lucia Silvestris (INFN-Bari), Jeremy Mans (University of Minnesota) Additional contacts: Lucia.Silvestris@cern.ch, Jeremy.Mans@cern.ch. [74] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C, 71:1554, 2011. [75] Eduardo da Silva Almeida, Alexandre Alves, N. Rosa Agostinho, Oscar J.P. Éboli, and M.C. Gonzalez-Garcia. Electroweak Sector Under Scrutiny: A Combined Analysis of LHC and Electroweak Precision Data. Phys. Rev. D, 99(3):033001, 2019. [76] D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. 2/2017, 10 2016. [77] D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. 2/2017, 10 2016. [78] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019. [79] M. Diamantopoulou, D. Karasavvas, N. Saoulidou, E. Tziaferi, and I. Zisopoulos. UL JetID criteria on CHS AK4 jets for UL17 and UL18 samples. slides, 2020. [80] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi- aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, 2021. [81] Gerald Dugan. Collective effects in multi-particle beams. USPAS Lecture 20. [82] Lyndon R. Evans. The Large Hadron Collider : A Marvel Of Technology. 2009. [83] Extra Yukawa group. The list of backgrounds can also be accessed where xxxx= 2016, 2017, 2018. https://github.com/ExtraYukawa/ttc_bar/blob/lep_ mvaID/crab/samplesXXXX.json. [84] RikkertFrederix,DavidePagani,and Marco Zaro. Large NLO corrections in ttW and tttt hadronproduction from supposedly subleading EW contributions. JHEP,02:031, 2018. [85] Rikkert Frederix and Ioannis Tsinikos. On improving NLO merging for ttW pro- duction. JHEP, 11:029, 2021. [86] Rikkert Frederix and Ioannis Tsinikos. On improving NLO merging for ttW pro- duction. JHEP, 11:029, 2021. [87] Kunihiko Fukushima. Visual Feature Extraction by a Multilayered Network of Analog Threshold elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969. [88] M.A. Furman. The moller luminosity factor. August 2003. [89] SondreVikFurusethandXavierBuffat.Modelingofnonlineareffectsduetohead- on beam-beam interactions. Phys. Rev. Accel. Beams, 21:081002, Aug 2018. [90] Jason Gallicchio and Matthew D. Schwartz. Quark and gluon jet substructure. Journal of High Energy Physics, 2013(4), April 2013. [91] Shiqi Gong, Qi Meng, Jue Zhang, Huilin Qu, Congqiao Li, Sitian Qian, Weitao Du, Zhi-Ming Ma, and Tie-Yan Liu. An efficient Lorentz equivariant graph neural network for jet tagging. Journal of High Energy Physics, 2022(7):30, Jul 2022. [92] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R. Martin, and Shi-Min Hu. PCT: Point cloud transformer. Computational Visual Media, 7(2):187–199, April 2021. [93] Jay Hauser and Frank Hartmann. Introduction to CMS Tracking: Muons and Tracker. PowerPoint slides. https://indico.cern.ch/event/317063/ contributions/732633/attachments/609275/838401/Induction. Tracking.v2.pdf. [94] Aram Hayrapetyan et al. The CMS Statistical Analysis and Combination Tool: COMBINE. 4 2024. [95] Werner Herr. Beam-beam interactions. 2006. [96] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359–366, 1989. [97] Wei-ShuHou.Tree level t—>ch or h—>t anti-cdecays. Phys.Lett.B, 296:179– 184, 1992. [98] Wei-ShuHou and Mariko Kikuchi. Approximate Alignment in Two Higgs Doublet Model with Extra Yukawa Couplings. EPL, 123(1):11001, 2018. [99] Ltd John Wiley & Sons. Synchrotron Physics, chapter 3, pages 51–106. 2019. [100] Xiangyang Ju, Daniel Murnane, Paolo Calafiura, Nicholas Choma, Sean Conlon, Steven Farrell, Yaoyuan Xu, Maria Spiropulu, Jean-Roch Vlimant, Adam Aurisano, Jeremy Hewes, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Markus Atkinson, Mark Neubauer, Gage DeZoort, Savannah Thais, Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu, Alex Ballow, and Alina Lazar. Performance of a geometric deep learning pipeline for HL-LHC particle tracking. The European Physical Journal C, 81(10), October 2021. [101] Thomas Junk. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Meth. A, 434:435, 1999. [102] Vardan Khachatryan et al. Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at √s = 8TeV. JINST, 10:P06005, 2015. [103] Vardan Khachatryan et al. Performance of the CMS missing transverse momentum reconstruction in pp data at √s = 8 TeV. JINST, 10(02):P02006, 2015. [104] Vardan Khachatryan et al. Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. JINST, 12:P02014, 2017. [105] Vardan Khachatryan et al. Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. JINST, 12(02):P02014, 2017. [106] Vyacheslav I. Klyukhin. Design and Description of the CMS Magnetic System Model. Symmetry, 13:1052, 2021. [107] Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Energy flow networks: deep sets for particle jets. Journal of High Energy Physics, 2019(1), January 2019. [108] Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Energy Flow Networks: Deep Sets for Particle Jets. JHEP, 01:121, 2019. [109] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convolutional neural networks. Commun. ACM, 60(6):84–90, may 2017. [110] HungLe and AliBorji. What are the Receptive, Effective Receptive, and Projective Fields of Neurons in Convolutional Neural Networks?, 2018. [111] Isabelle Leang, Ganesh Sistu, Fabian Burger, Andrei Bursuc, and Senthil Yogamani. Dynamic Task Weighting Methods for Multi-task Networks in Autonomous Driving Systems, 2020. [112] Jason Sang Hun Lee, Inkyu Park, Ian James Watson, and Seungjin Yang. Quark-Gluon Jet Discrimination Using Convolutional Neural Networks. Journal of the Korean Physical Society, 74(3):219–223, February 2019. [113] R. Lietava. Introduction to triggering. PDF Slides. https://indico.cern.ch/ event/659612/contributions/2690262/attachments/1591386/2518642/ triggerintro4.pdf. [114] Dening Lu, Qian Xie, Mingqiang Wei, Kyle Gao, Linlin Xu, and Jonathan Li. Transformers in 3d point clouds: A survey, 2022. [115] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks, 2017. [116] Fabio Maltoni, Davide Pagani, and Ioannis Tsinikos. Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on ttH searches at the LHC. JHEP, 02:113, 2016. [117] Fabio Maltoni, Davide Pagani, and Ioannis Tsinikos. Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on ttH searches at the LHC. JHEP, 02:113, 2016. [118] Arabella Martelli. The CMS Electromagnetic Calorimeter: lessons learned during LHC run 1, overview and future projections. PoS, TIPP2014:029, 2014. [119] KyleMatoba,NikolaosDimitriadis,andFrançoisFleuret.BenefitsofMaxPooling in Neural networks: Theoretical and Experimental Evidence. Transactions on Machine Learning Research, 2023. [120] Eric A. Moreno, Olmo Cerri, Javier M. Duarte, Harvey B. Newman, Thong Q. Nguyen, Avikar Periwal, Maurizio Pierini, Aidana Serikova, Maria Spiropulu, and Jean-Roch Vlimant. JEDI-net: a jet identification algorithm based on interaction networks. Eur. Phys. J. C, 80(1):58, 2020. [121]Stephen Myers. The Large Hadron Collider, chapter Chapter 22, pages 371–442. [122] Zoltán Nagy and Davison E. Soper. What is a parton shower? Physical Review D, 98(1), July 2018. [123] Katsunobu Oide and Kaoru Yokoya. The Crab Crossing Scheme for Storage Ring Colliders. Phys. Rev. A, 40:315–316, 1989. [124] Felice Pantaleo, Marco Rovere, and on behalf of the CMS Collaboration. The Iterative Clustering framework for the CMS HGCAL Reconstruction. Journal of Physics: Conference Series, 2438(1):012096, 2023. [125] Joosep Pata, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, and Maria Girone. Machine Learning for Particle Flow Reconstruction at CMS. J. Phys. Conf. Ser., 2438(1):012100, 2023. [126] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, 2017. [127] Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D, 101(5), March 2020. [128] HuilinQuandLoukasGouskos.ParticleNet:JetTaggingviaParticleClouds.Phys. Rev. D, 101(5):056019, 2020. [129] Huilin Qu, Congqiao Li, and Sitian Qian. Particle Transformer for Jet Tagging, 2024. [130] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do Vision Transformers See Like Convolutional Neural Networks?, 2022. [131] A. L. Read. Presentation of search results: the CLs technique. J. Phys. G, 28:2693, 2002. [132] Keith Rehermann and Brock Tweedie. Efficient Identification of Boosted Semileptonic Top Quarks at the LHC. JHEP, 03:059, 2011. [133] Marco Rovere, Ziheng Chen, Antonio Di Pilato, Felice Pantaleo, and Chris Seez. CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High Energy Physics, 2020. [134] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks, 2017. [135] Michaela Schaumann. Beam-Beam Interaction Studies at LHC. Master’s thesis, RWTH Aachen U., 2011. [136] Thomas Schörner-Sadenius, editor. The Large Hadron Collider: Harvest of Run 1. Springer, Berlin, 2015. [137] A.M.Sirunyanetal. Particle-flow reconstruction and global event description with the CMS detector. JINST, 12:P10003, 2017. [138] A. M. Sirunyan et al. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at √s = 13 TeV. JINST, 13(06):P06015, 2018. [139] Albert M Sirunyan metal. Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton–proton collisions at √s = 13 TeV. Phys. Lett. B, 774:682–705, 2017. [140] Albert M Sirunyan et al. Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying τ leptons at √s = 13 TeV. JHEP, 08:066, 2018. [141] Albert MSirunyan etal. Performance of missing transverse momentum reconstruction in proton-proton collisions at √s = 13 TeV using the CMS detector. JINST, 14:P07004, 2019. [142] Albert M Sirunyan et al. Search for the production of four top quarks in the single lepton and opposite-sign dilepton final states in proton-proton collisions at √s = 13 TeV. JHEP, 11:082, 2019. [143] Albert M Sirunyan et al. Observation of electroweak production of Wγ with two jets in proton-proton collisions at √s = 13 TeV. Phys. Lett. B, 811:135988, 2020. [144] Albert M Sirunyan et al. Observation of the Production of Three Massive Gauge Bosons at √s =13 TeV. Phys. Rev. Lett., 125(15):151802, 2020. [145] Albert MSirunyan etal. Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC. JINST, 16(05):P05014, 2021. [146] Albert M Sirunyan et al. Precision luminosity measurement in proton-proton collisions at √s = 13 TeV in 2015 and 2016 at CMS. Eur. Phys. J. C, 81(9):800, 2021. [147] Andris Skuja. An Overview of the CMS Hadron Calorimeter. PowerPoint slides. https://indico.cern.ch/event/31463/contributions/726204/ attachments/603326/830281/08-AndrisSkuja-HCALstatus_LeHCReport.pdf. [148] T. Speer. The CMS Tracker. April 2010. [149] Armen Tumasyan et al. A new calibration method for charm jet identification validated with proton-proton collision events at √s =13 TeV. JINST, 17(03):P03014, 2022. [150] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, 2023. [151] V Veszpremi1 and CMS collaboration. Operation and performance of the CMS tracker. Journal of Instrumentation, (03):C03005, March 2014. [152] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. Dynamic Graph CNN for Learning on Point Clouds, 2019. [153] Jorg Wenninger. Operation and Configuration of the LHC in Run 2. 2019. [154] Simon Mathieu White. Determination of the Absolute Luminosity at the LHC, 2010. Presented on 11 Oct 2010. [155] E. Wilson. Nonlinearities and resonances. In CERN Accelerator School: Course on General Accelerator Physics, pages 239–251, 1992. [156] E Wilson and B J Holzer. Beam Dynamics. pages 15–50, 2020. [157] Lemeng Wu, Xingchao Liu, and Qiang Liu. Centroid Transformers: Learning to Abstract with Attention, 2021. [158] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural Networks?, 2019. [159] Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen, Lei Xiao, Jie Jiang, and Guibing Guo. Adatask: A Task-Aware Adaptive Learning Rate Approach to Multi-Task Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 37(9):10745–10753, June 2023. [160] EfeYazgan. ttc/u signal cross sections when there is interference. https://gist.github.com/efeyazgan/1d0e39a29b6eed12cc1c3c097430b812. [161] Efe Yazgan. ttc/u signal cross sections when there is no interference. https: //gist.github.com/efeyazgan/b5926ba4e2f60ef198592872e79c622c. [162] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring Self-attention for Image Recognition, 2020. [163]HengshuangZhao,LiJiang,JiayaJia,PhilipTorr,andVladlenKoltun.PointTransformer, 2021. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96099 | - |
dc.description.abstract | 本論文包含三個獨立的研究專題:第一個專題致力於搜尋新型希格斯粒子。我們利用新的湯川耦合ρtc和 ρtu,探索廣義雙希格斯粒子偶模型所預測的兩個新型希格斯粒子:CP偶稱的H重希格斯粒子和CP奇稱的A 重希格斯粒子。我們的研究主要聚焦於同電荷輕子與噴射流的信號特徵,並運用DeepJet演算法提供關 鍵的噴射流風味信息。實驗數據來自 CERN 大型強子對撞機的 CMS 實驗,涵蓋了完整的 Run 2 數據集。這項研究不僅探索了標準模型的可能擴展,還為未來新 型希格斯粒子的搜尋提供了重要的物理洞見。第二個專題旨在解決大型強子對撞機面臨的一個既具挑戰性又極為重要的物理問題:區分輕夸克和膠子風味噴流。 鑒於許多標準模型和新物理模型預測的事件都富含輕夸克噴流,我們開發了一個創新的深度學習模型。該模型整合了向量注意力機制和 Lund 變數,後者能提供噴流內部結構的關鍵信息。在公開的輕夸克和膠子噴流數據集上,我們的模型展現出優於當前最先進的 Particle Transformer 模型的性能。第三個專題引入了兩項創新:一是專為多任務學習設計的 AdaTask 梯度優化算法,二是將計算機視覺領域的 Vision Transformer應用於粒子重建。我們的模型在性能優化方面取得的進展,充分展示了這些先進技術在粒子物理學應用中的巨大潛力。這三個專題共同推進了粒子物理學和機器學習的前沿,為未來的研究開闢了新的方向。 | zh_TW |
dc.description.abstract | This thesis incorporates three distinct research projects in particle physics and machine learning:
The first project investigates the potential existence of heavy Higgs bosons predicted by the generalized two-Higgs doublet model. It focuses on two neutral Higgs bosons, CP- even H and CP-odd A, probed through new Yukawa couplings ρtc and ρtu. The analysis employs a signature of two same-sign leptons associated with jets, utilizing the DeepJet algorithm for crucial jet flavor information. Using the full Run 2 dataset collected by the CMS experiment at CERN’s Large Hadron Collider, this research explores potential extensions to the Standard Model of particle physics and provides physics insight for future heavy Higgs bosons searches. The second project addresses the challenge of separating light quark-initiated jets from gluon-heavy backgrounds at the LHC, crucial for both Standard Model and Beyond Standard Model processes. We develop deep learning models incorporating vector attention mechanisms and Lund variables to capture jet internal structure information. Our model demonstrates superior performance over the current state-of-the-art Particle Transformer when trained and evaluated on the Quark-Gluon public dataset. The third project introduces the AdaTask algorithm, an optimization algorithm dedicated to multi-task learning, and applies the Vision Transformer, a prominent deep learning model in computer vision, to the particle reconstruction in the next-generation detector, High Granularity Calorimeter. The improved performance of our model showcases the potential of these advanced techniques in particle physics applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-14T16:11:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-10-14T16:11:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xiii List of Tables xxxiii Part I · Searching for Heavy Higgs Boson 1 Chapter 1 Introduction And Motivation for Heavy Higgs Boson searching 3 Chapter 2 The Large Hadron Colliders and Compact Muon Solenoid Experiments 11 2.1 Introduction to the Large Hadron Collider . . . . . . . . . . . . . . . 11 2.1.1 Introduction to Beam at the LHC................... 17 2.1.2 Luminosity at the LHC ........................ 17 2.1.3 Performance Limitations on Luminosity . . . . . . . . . . . . . . . 20 2.2 The Compact Muon Solenoid Detector ................ 27 2.2.1 Solenoid Magnet System ....................... 28 2.2.2 Muon System ............................. 29 2.2.3 Electromagnetic Calorimeter ..................... 31 2.2.4 Hadronic Calorimeter......................... 32 2.2.5 Tracker ................................ 33 2.2.6 Trigger system............................. 35 2.3 Data samples .............................. 37 Chapter 3 Signal and Background Process 39 3.1 Signal......................39 3.2 Background...................45 Chapter 4 Event Reconstruction And Object Definition 57 4.1 Primary Vertex ............................. 61 4.2 Lepton: Muon And Electron...................... 62 4.2.1 Basic muon definition......................... 62 4.2.2 Basic electron definition ....................... 63 4.2.3 Isolation of muons and electrons ................... 63 4.2.4 Separation of the prompt leptons from nonprompt leptons: mvaTTH 64 4.2.5 Fake lepton definition......................... 64 4.2.6 Lepton selections ........................... 65 4.3 Jet.................................... 66 4.4 Missing transverse momentum..................... 68 Chapter 5 Event Selection Criteria and Region Definition 69 5.1 Triggers................................. 69 5.2 MET Filters............................... 72 5.3 Drell-Yan Region definition ...................... 72 5.4 Signal region definition......................... 74 Chapter 6 Data to Monte Carlo Corrections 83 6.1 Pileup reweighting ........................... 83 6.2 Trigger Scale Factors.......................... 83 6.2.1 MET dataset and MET triggers for trigger scale factor derivation . . 84 6.2.2 Event selection for trigger scale factors. . . . . . . . . . . . . . . . 86 6.2.3 Trigger Efficiency results....................... 87 6.2.4 Trigger scale factors results and systematic uncertainties . . . . . . 98 6.2.5 Validation of Trigger scale factors .................. 98 6.3 Lepton energy scale and resolution corrections . . . . . . . . . . . . 101 6.4 Lepton Identification Scale Factors ..................102 6.4.1 Tag And Probe method ........................102 6.4.2 Electron Identification Scale Factors . . . . . . . . . . . . . . . . . 104 6.4.3 Muon Identification Scale Factors ..................105 6.5 Level-1triggerpre-firingin2016and2017data. . . . . . . . . . . . 110 6.6 HEM15/16issuein2018........................ 110 6.7 Charm-quark tagger shape calibration ................. 114 Chapter 7 Background Estimation using Data-driven method 125 7.1 Charge Misidentifcation Background Estimation . . . . . . . . . . . 125 7.2 Nonprompt Background Estimation .................. 130 7.2.1Tight-to-Loose ............................130 7.2.2 Data-Driven results in the signal region . . . . . . . . . . . . . . . 132 Chapter 8 Systematic Uncertainty 135 8.1 Experimental Uncertainties....................... 135 8.2 Theoretical Uncertainties........................ 140 8.3 Uncertainties on prefit distributions ..................141 Chapter 9 Multivariate Discriminator — Boosted Decision Tree 147 9.1 Input features for BDT......................... 147 9.2 BDT training strategy ......................... 149 Chapter 10 Signal Extraction 157 10.1 Scaling .................................159 10.2 Results on ttu ̄ and ttc ̄ signals .....................162 10.2.1 Impacts and Pulls . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.2.2 Upper Limits .............................164 Chapter 11 Summary And Conclusion 205 Part II ·Jet Tagging with Machine Learning 207 Chapter 12 Introduction And Motivation 209 12.1 Challenge: Quarka nd Gluon Tagging.................209 Chapter 13 Introduction To Self-Attention Mechanism 213 13.1 Scalar Attention Mechanism......................215 13.2 Vector Attention Mechanism......................217 Chapter 14 Model Architecture 221 14.1 Architecture of model .........................221 14.2 Implementation Details.........................223 Chapter 15 Experiment 227 15.1 Baselines................................227 15.2 Results .................................227 15.3 Ablation Study for Interaction Matrix .................229 15.4 Computational Cost ..........................230 Chapter 16 Summary And Future work 231 Part III ·Particle Reconstruction with HGCal with Machine Learning 233 Chapter 17 Introduction And Motivation 235 Chapter 18 Introduction To High Granularity Calorimeter and CLUstering Energy Algorithm 239 18.1 High Granularity Calorimeter .....................240 18.2 CLustering Energy Algorithm .....................244 18.2.1Procedure of CLUE algorithm ....................246 Chapter 19 Sample Preparation 251 Chapter 20 Model Architecture 253 20.1 Vision Transformer...........................255 Chapter 21 Multi-Task Learning 259 Chapter 22 Summary 265 22.1 Conclusion on Results .........................265 22.2 Potential Directions for Future Study .................270 References 273 | - |
dc.language.iso | en | - |
dc.title | 通過額外湯川木耦合搜尋奇特希格斯粒子、利用向量注意機制標記粒子激漿流、以及粒子在高精密度量熱儀透過多任務學習模型及視覺變換器之重建 | zh_TW |
dc.title | Explorations of Exotic Higgs Boson Search through Extra Yuakwawa coupling, Jet Tagging with vector-attention mechanism, and Multi-Task Learning for Particle Reconstruction with HGCal detector using vision Transformer | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 裴斯達;呂榮祥;侯維恕;章文箴;徐百嫻 | zh_TW |
dc.contributor.oralexamcommittee | Stathes Paganis ;Rong-Shyang Lu;Wei-Shu Hou;Wen-Chen Chang;Pai-hsien Hsu | en |
dc.subject.keyword | 新型希格斯例子,新湯川耦合,向量注意力機制,Lund變數,多任務學習,AdaTask梯度優化演算法, | zh_TW |
dc.subject.keyword | Heavy Higgs bosons,New Yukawa couplings,vector attention mechanism,Lund variables,Multi-task learning,AdaTask gradient optimization algorithm, | en |
dc.relation.page | 287 | - |
dc.identifier.doi | 10.6342/NTU202404371 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-09-18 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 22.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。