Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96098
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柳玗珍zh_TW
dc.contributor.advisorWoo-Jin Yooen
dc.contributor.author吳淳輔zh_TW
dc.contributor.authorChun-Fu Wuen
dc.date.accessioned2024-10-14T16:11:28Z-
dc.date.available2024-10-15-
dc.date.copyright2024-10-14-
dc.date.issued2024-
dc.date.submitted2024-09-22-
dc.identifier.citation1. I. Langmuir, Isomorphism, Isoserism and Covalence. J. Am. Chem. Soc. 1919, 41, 1543–1559.
2. H. Grimm, Structure and Size of the Non-metallic Hydrides. Z. Electrochem 1925, 31, 474–480.
3. H. Erlenmeyer, M. Leo, Über Pseudoatome. Helv. Chim. Acta 1932, 15, 1171–1186.
4. J. Tomcsik, H. Sehwarzweiss, M. Trissler, H. Erlenmeyer, Untersuchungen über einen immunochemischen Vergleich zwischen Ring- und Pseudoringverbindungen. Helv. Chim. Acta 1949, 32, 31–34.
5. N. A. Meanwell, Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54, 2529–2591.
6. N. R. Council, First Symposium on Chemical-biological Correlation, May 26-27, 1950, The National Academies Press, Washington, DC, 1951.
7. C. W. Thornber, Isosterism and molecular modification in drug design. Chem. Soc. Rev. 1979, 8, 563–580.
8. N.A. Meanwell, Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822–5880.
9. H. Okuda, K. Ogura, A. Kato, H. Takubo, T. Watabe, A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. J. Pharmacol. Exp. Ther. 1998, 287, 791–799.
10. M. A. M. Subbaiah, N.A. Meanwell, Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J. Med. Chem. 2021, 64, 14046–14128.
11. T. Wang, Z. Yin, Z. Zhang, J. A. Bender, Z. Yang, G. Johnson, Z. Yang, L. M. Zadjura, C. J. D. Arienzo, D. D. Parker, C. Gesenberg, G. A. Yamanaka, Y. F. Gong, H. T. Ho, H. Fang, N. Zhou, B. V. McAuliffe, B. J. Eggers, L. Fan, B. Nowicka-Sans, I. B. Dicker, Q. Gao, R. J. Colonno, P. F. Lin, N. A. Meanwell, J. F. Kadow, Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects. J Med. Chem. 2009, 52, 7778–7787.
12. F. Lovering, J. Bikker, C. Humblet, Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756.
13. P. E. Eaton, Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century. Angew. Chem. Int. Ed. 1992, 31, 1421–1436.
14. R. Pellicciari, M. Raimondo, M. Marinozzi, B. Natalini, G. Costantino, C. Thomsen, (S)-(+)-2-(3‘-Carboxybicyclo[1.1.1]pentyl)- glycine, a Structurally New Group I Metabotropic Glutamate Receptor Antagonist. J. Med. Chem. 1996, 39, 2874–2876.
15. Y. L. Goh, Y. T. Cui, V. Pendharkar, V. A. Adsool, Toward Resolving the Resveratrol Conundrum: Synthesis and in Vivo Pharmacokinetic Evaluation of BCP–Resveratrol. ACS Med. Chem. Lett. 2017, 8, 516–520.
16. M. Zhong, E. Peng, N. Huang, Q. Huang, A. Huq, M. Lau, R. Colonno, L. Li, Discovery of functionalized bisimidazoles bearing cyclic aliphatic-phenyl motifs as HCV NS5A inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 5731–xxx.
17. P. K. Mykhailiuk, Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 2019,17, 2839–2849.
18. A. Denisenko, P. Garbuz, S. V. Shishkina, N. M. Voloshchuk, P. K. Mykhailiuk, Saturated Bioisosteres of ortho-Substituted Benzenes. Angew. Chem. Int. Ed. 2020, 59, 20515–20521.
19. A. Denisenko, P. Garbuz, Y. Makovetska, O. Shablykin, D. Lesyk, G. Al-Maali, R. Korzh, I. V. Sadkova, P. K. Mykhailiuk, 1,2-Disubstituted bicyclo[2.1.1]hexanes as saturated bioisosteres of ortho-substituted benzene. Chem. Sci. 2023,14, 14092–14099.
20. L. Herter, I. Koutsopetras, L. Turelli, T. Fessard, C. Salomé, Preparation of new bicyclo[2.1.1]hexane compact modules: an opening towards novel sp3-rich chemical space. Org. Biomol. Chem. 2022, 20, 9108–9111.
21. R. Guo, Y. C. Chang, L. Herter, C. Salomé, S. E. Braley, T. C. Fessard, M. K. Brown Strain-Release [2π + 2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer. J. Am. Chem. Soc. 2022, 144, 7988–7994.
22. S. Agasti, F. Beltran, E. Pye, N. Kaltsoyannis, G. Crisenza, D. Procter, A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres. Nat. Chem. 2023, 15, 535–541.
23. Y. Liu, S. Lin, Y. Li, J. H. Xue, Q. Li, H. Wang, Pyridine-Boryl Radical-Catalyzed [2π + 2σ] Cycloaddition of Bicyclo[1.1.0]butanes with Alkenes. ACS Catal. 2023, 13, 5096–5103.
24. M. Szostak, N. J. Fazakerley, D. Parmar, D. J. Procter, Cross-Coupling Reactions Using Samarium(II) Iodide. Chem. Rev. 2014, 114, 5959–6039.
25. T. K. Hutton, K. Muir, D. J. Procter, Samarium(II)-mediated reactions of γ,δ-unsaturated ketones. Cyclization and fragmentation processes. Org. Lett. 2002, 4, 2345–2347.
26. K. Makino, A. Kondoh, Y. Hamada, Synthetic studies on polyoxypeptins: stereoselective synthesis of (2S,3R)-3-hydroxy-3-methylproline using SmI2-mediated cyclization. Tetrahedron Lett. 2002, 43, 4695–4698.
27. K. C. Nicolaou, S. P. Ellery, J. S. Chen, Samarium Diiodide Mediated Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2009, 48, 7140–7165.
28. T. Mukaiyama, I. Shiina, H. Iwadare, H. Sakoh, Y. Tani, M. Hasegawa, K. Saitoh, Asymmetric total synthesis of Taxol. Proc. Jpn. Acad. Ser. B. 1997, 73, 95–100.
29. K. A. Scott, P. B. Cox and J. T. Njardarson, J. Med. Chem., 2022, 65, 7044–7072.
30. C. W. Hsu, Y. T. Lu, C. P. Lin, W. J. Yoo, Synthesis of Bicyclo[2.1.1]hexan-5-ones via a Sequential Simmons-Smith Cyclopropanation and an Acid-Catalyzed Pinacol Rearrangement of α-Hydroxy Silyl Enol Ethers. Adv. Synth. Catal. 2023, 365, 3082–3087.
31. G. A. Molander, J. A. McKie, A facile synthesis of bicyclo[m.n.1]alkan-1-ols. Evidence for organosamarium intermediates in the samarium(II) iodide promoted intramolecular Barbier-type reaction. J. Org. Chem. 1991, 56, 4112–4120.
32. G. A. Molander, J. A. McKie, Samarium(II) iodide-induced reductive cyclization of unactivated olefinic ketones. Sequential radical cyclization/intermolecular nucleophilic addition and substitution reactions. J. Org. Chem. 1992, 57, 3132–3139.
33. C. Stevens, N. D. Kimpe, A New Entry into 2-Azabicyclo[2.1.1]hexanes via 3-(Chloromethyl)cyclobutanone. J. Org. Chem. 1996, 61, 2174–2178.
34. (a) H. Y. Chuang, M. Isobe, Recent Progresses in the Synthesis of Solanoeclepin A. Tetrahedron 2017, 73, 2705–2714; (b) D. B. G. Williams, K. Blann, Highly Functionalised Cyclobutanols by Samarium(II) Iodide Induced Radical Cyclisations of Carbohydrate-Derived Unsaturated Ketones. Eur. J. Org. Chem. 2004, 3286–3291; (c) H. Villar, F. Guibé, Diastereoselective SmI2-mediated cyclisation of δ-oxo-α, β-unsaturated esters to cyclopropanols. Tetrahedron Lett. 2002, 43, 9517–9520; (d) T. K. Hutton, K. Muir, D. J. Procter, Samarium (II)-mediated reactions of γ, δ-unsaturated ketones. Cyclization and fragmentation processes. Org. Lett. 2002, 4, 2345–2347.
35. Y. Yamashita, D. Maki, S. Sakurai, T. Fuse, S. Matsumoto, M. Akazome, Preparation of chiral 3-oxocycloalkanecarbonitrile and its derivatives by crystallization-induced diastereomer transformation of ketals with chiral 1,2-diphenylethane-1,2-diol. RSC Adv. 2018, 8, 32601–32609.
36. F. Huang, S. Zhang, Iminyl Radicals by Reductive Cleavage of N–O Bond in Oxime Ether Promoted by SmI2: A Straightforward Synthesis of Five-Membered Cyclic Imines. Org. Lett. 2019, 21, 7430–7434.
37. (a) K. A. Choquette, D. V. Sadasivam, R. A. Flowers, II, Catalytic Ni (II) in Reactions of SmI2: Sm (II)- or Ni (0)-Based Chemistry? J. Am. Chem. Soc. 2011, 133, 10655–10661; (b) S. H. Chung, M. S. Cho, J. Y. Choi, D. W. Kwon, Y. H. Kim, Facile Ring Expansions of α-Halomethyl β-Keto Esters Mediated with SmI2. Synlett 2001, 1266–1268; (c) F. Machrouhi, B. Hamann, J.-L. Namy, H. B Kagan, Improved Reactivity of Diiodosamarium by Catalysis with Transition Metal Salts. Synlett 1996, 633–634.
38. (a) G. A. Molander, B. Czakó, D. J. St. Jean, A General Route toward the Synthesis of the Cladiellin Skeleton Utilizing a SmI2-Mediated Cyclization. J. Org. Chem. 2006, 71, 1172–1180; (b) C. De Dobbeleer, A. Ates, J.-C. Vanherk, I. E. Markó, Efficient access to functionalised medium-ring systems by radical fragmentation/radical addition to α-iodoketones. Tetrahedron Lett. 2005, 46, 3889–3893; (c) I. E. Markó, J.-C. Vanherck, A. Ates, B. Tinant, J.-P. Declercq, Efficient and convergent stereocontrolled spiroannulation of ketones. Tetrahedron Lett. 2003, 44, 3333–3336; (d) K. Makino, A. Kondoh, Y. Hamada, Synthetic studies on polyoxypeptins: stereoselective synthesis of (2S, 3R)-3-hydroxy-3-methylproline using SmI2-mediated cyclization. Tetrahedron Lett. 2002, 43, 4695–4698.
39. A. P. Degnan, D. Maxwell, A. Balakrishnan, J. M. Brown, A. Easton, M. Gulianello, U. Hanumegowda, M. H. Drzewi, R. Miller, K. S. Santone, A. Senapati, E. E. Shields, D. V. Sivarao, R. Westphal, V. J. Whiterock, X. Zhuo, J. J. Bronson, K. E. Macor, Difluorocyclobutylacetylenes as positive allosteric modulators of mGluR5 with reduced bioactivation potential. Bioorg. Med. Chem. Lett. 2016, 26, 5871–5876.
40. (a) T. J. Devi, B. Saikia, N. C. Barua, A stereocontrolled route to D-ribo-phytosphingosine and sphinganine from an achiral secondary homoallylic alcohol using Sharpless kinetic resolution. Tetrahedron 2013, 69, 3817–3822; (b) P. H. J. Carlsen, T. Katsuki, V. S. Martin, K. B. Sharpless, A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J. Org. Chem. 1981, 46, 3936–3938.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96098-
dc.description.abstract苯環的飽和生物等排體替代物在藥物發現領域中是重點研究方向,並且近幾年來二取代雙環[2.1.1]己烷已被確認為能夠充當鄰位和間位取代苯生物等排體的多功能分子骨架。在我們之前的研究中,我們合成了1-取代雙環[2.1.1]己烷-5-醇,這些化合物可以作為鄰位酚類生物等排體。然而,在我們的官能化研究中,我們發現這些化合物無法忍受強酸和強鹼的條件,因此限制了我們合成若干具有生物活性的分子骨架。為此,我們假設將醇基重新定位到橋頭位置希望可以提高雙環醇的穩定性。在本論文中,我們概述了通過兩類二碘化釤介導的還原環化反應合成一系列2-取代雙環[2.1.1]己烷-1-醇的方法,以充當鄰位酚類生物等排體。zh_TW
dc.description.abstractThe substitution of benzene rings with saturated bioisosteres is an area of focus in drug discovery, and disubstituted bicyclo[2.1.1]hexanes have been identified as versatile molecular scaffolds capable of serving as ortho- and meta-substituted benzene bioisosteres. In our previous work, we synthesized 1-substituted bicyclo[2.1.1]hexan-5-ols, which could act as ortho-phenolic bioisosteres. However, during our functionalization studies, we found that these compounds could not endure strong acidic and basic conditions, which limits our ability to synthesize saturated version of several bioactive molecules. Therefore, we supposed that relocating the alcohol group to the bridgehead position could enhance the stability of the bicyclic alcohol. In this thesis, we outline the synthesis of a range of 2-substituted bicyclo[2.1.1]hexan-1-ols via two categories of SmI2-mediated reductive cyclization reactions for acting as ortho-phenolic bioisosteres.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-10-14T16:11:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-10-14T16:11:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract.....i
摘要.....ii
Chapter 1 Introduction.....1
1.1 Definition and history of bioisoterism.....1
1.2 Examples of classical bioisosteres.....5
1.3 Examples of rigid hydrocarbons as benzene bioisosteres.....8
1.4 Synthesis of bicyclo[2.1.1]hexane as ortho-substituted benzene bioisostere.....12
1.5 Introduction of SmI2 mediated cross coupling reaction.....17
Chapter 2 Experimental Design.....21
Chapter 3 Results and Discussion.....24
3.1 Starting material synthesis and optimization for ketyl-olefin cyclization.....24
3.2 Substrate scope for ketyl-olefin cyclization.....28
3.3 Starting material synthesis and optimization for the Barbier reaction.....30
3.4 Substrate scope for the Barbier reaction.....32
3.5 Starting material synthesis and optimization for the Reformastky-type reaction.....35
3.6 Conclusion.....38
Chapter 4 Experimental Section.....39
4.1 General Information.....39
4.2 Preparation of aldehyde 60.....40
4.3 General procedure for the synthesis of 54a-54l via olefination reactions.....41
4.4 Substrate scope for the synthesis of 56a-h (General Procedure A).....48
4.5 Substrate scope for the synthesis of 56h-l (General Procedure B).....51
4.6 General procedure for the synthesis of 66a-n via addition reactions.....54
4.7 Substrate scope for the synthesis of 55a-n (General Procedure C).....66
4.8 Preparation of cyclobutanones 68 for Reformatsky reaction.....75
Reference.....79
Chapter 5 Supplementary Information.....87
5.1 NMR spectra.....87
-
dc.language.isoen-
dc.title藉由二碘化釤介導的還原環化反應合成 2-取代雙環[2.1.1]己-1-醇zh_TW
dc.titleSynthesis of 2-Substituted Bicyclo[2.1.1]hexan-1-ols via SmI2-Mediated Reductive Cyclization Reactionsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee羅禮強;陳國庭zh_TW
dc.contributor.oralexamcommitteeLee-Chiang Lo;Kuo-Ting Chenen
dc.subject.keyword二取代的雙環[2.1.1]己烷,苯生物等排體,2-取代的雙環[2.1.1]己烷-1-醇,鄰位酚衍生物,二碘化釤介導的還原環化反應,zh_TW
dc.subject.keywordDisubstituted bicyclo[2.1.1]hexanes,Benzene bioisosteres,2-Substituted bicyclo[2.1.1]hexan-1-ols,Ortho-phenolic,SmI2-mediated reductive cyclization,en
dc.relation.page189-
dc.identifier.doi10.6342/NTU202404379-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-23-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf5.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved