請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96058完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳嘉晉 | zh_TW |
| dc.contributor.advisor | Chia-Chin Chen | en |
| dc.contributor.author | 黃安榕 | zh_TW |
| dc.contributor.author | An-Rong Huang | en |
| dc.date.accessioned | 2024-09-25T16:50:22Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] C. Pettinari, F. Marchetti, N. Mosca, G. Tosi, A. Drozdov, Application of metal− organic frameworks, Polymer International 66 (2017) 731-744.
[2] Y. Feng, Q. Chen, M. Jiang, J. Yao, Tailoring the properties of UiO-66 through defect engineering: A review, Industrial & Engineering Chemistry Research 58 (2019) 17646-17659. [3] P.M. Schoenecker, C.G. Carson, H. Jasuja, C.J. Flemming, K.S. Walton, Effect of water adsorption on retention of structure and surface area of metal–organic frameworks, Industrial & Engineering Chemistry Research 51 (2012) 6513-6519. [4] F. Yang, H. Huang, X. Wang, F. Li, Y. Gong, C. Zhong, J.-R. Li, Proton conductivities in functionalized UiO-66: tuned properties, thermogravimetry mass, and molecular simulation analyses, Cryst. Growth Des. 15 (2015) 5827-5833. [5] E.G. Seebauer, K.W. Noh, Trends in semiconductor defect engineering at the nanoscale, Materials Science and Engineering: R: Reports 70 (2010) 151-168. [6] O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials, Nature 423 (2003) 705-714. [7] J.J. Calvo, S.M. Angel, M.C. So, Charge transport in metal–organic frameworks for electronics applications, Apl Materials 8 (2020). [8] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (2013) 1230444. [9] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295 (2002) 469-472. [10] Z. Wang, S.M. Cohen, Postsynthetic covalent modification of a neutral metal− organic framework, Journal of the American Chemical Society 129 (2007) 12368-12369. [11] H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks, Science 327 (2010) 846-850. [12] S. Ma, H.-C. Zhou, Gas storage in porous metal–organic frameworks for clean energy applications, Chemical Communications 46 (2010) 44-53. [13] M. Sadakiyo, T. Yamada, H. Kitagawa, Rational designs for highly proton-conductive metal− organic frameworks, Journal of the American Chemical Society 131 (2009) 9906-9907. [14] J.J. Low, A.I. Benin, P. Jakubczak, J.F. Abrahamian, S.A. Faheem, R.R. Willis, Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration, Journal of the American Chemical Society 131 (2009) 15834-15842. [15] J.G. Nguyen, S.M. Cohen, Moisture-resistant and superhydrophobic metal− organic frameworks obtained via postsynthetic modification, Journal of the American Chemical Society 132 (2010) 4560-4561. [16] S.J. Yang, C.R. Park, Preparation of highly moisture-resistant black-colored metal organic frameworks, Advanced Materials (Deerfield Beach, Fla.) 24 (2012) 4010-4013. [17] J.B. Decoste, G.W. Peterson, M.W. Smith, C.A. Stone, C.R. Willis, Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition, Journal of the American Chemical Society 134 (2012) 1486-1489. [18] W. Zhang, Y. Hu, J. Ge, H.-L. Jiang, S.-H. Yu, A facile and general coating approach to moisture/water-resistant metal–organic frameworks with intact porosity, Journal of the American Chemical Society 136 (2014) 16978-16981. [19] Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li, H.-C. Zhou, Zr-based metal–organic frameworks: design, synthesis, structure, and applications, Chemical Society Reviews 45 (2016) 2327-2367. [20] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, Journal of the American Chemical Society 130 (2008) 13850-13851. [21] G.C. Shearer, S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K.P. Lillerud, Tuned to perfection: ironing out the defects in metal–organic framework UiO-66, Chemistry of Materials 26 (2014) 4068-4071. [22] G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K.P. Lillerud, Defect Engineering: Tuning the Porosity and Composition of the Metal-Organic Framework UiO-66 via Modulated Synthesis, Chemistry of Materials 28 (2016) 3749-3761. [23] W.J. Phang, H. Jo, W.R. Lee, J.H. Song, K. Yoo, B. Kim, C.S. Hong, Superprotonic conductivity of a UiO‐66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation, Angewandte Chemie International Edition 54 (2015) 5142-5146. [24] D. Zou, D. Liu, Understanding the modifications and applications of highly stable porous frameworks via UiO-66, Materials Today Chemistry 12 (2019) 139-165. [25] O. Basu, S. Mukhopadhyay, S. Laha, S.K. Das, Defect engineering in a metal–organic framework system to achieve super-protonic conductivity, Chemistry of Materials 34 (2022) 6734-6743. [26] Q.-Q. Liu, S.-S. Liu, X.-F. Liu, X.-J. Xu, X.-Y. Dong, H.-J. Zhang, S.-Q. Zang, Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor, Inorganic Chemistry 61 (2022) 3406-3411. [27] M.A. Syzgantseva, N.F. Stepanov, O.A. Syzgantseva, Band alignment as the method for modifying electronic structure of metal− organic frameworks, ACS applied materials & interfaces 12 (2020) 17611-17619. [28] M.A. Syzgantseva, C.P. Ireland, F.M. Ebrahim, B. Smit, O.A. Syzgantseva, Metal substitution as the method of modifying electronic structure of metal–organic frameworks, Journal of the American Chemical Society 141 (2019) 6271-6278. [29] M.C. Scharber, N.S. Sariciftci, Low band gap conjugated semiconducting polymers, Advanced Materials Technologies 6 (2021) 2000857. [30] L.-M. Yang, G.-Y. Fang, J. Ma, E. Ganz, S.S. Han, Band gap engineering of paradigm MOF-5, Cryst. Growth Des. 14 (2014) 2532-2541. [31] J.L. Mancuso, A.M. Mroz, K.N. Le, C.H. Hendon, Electronic structure modeling of metal–organic frameworks, Chemical reviews 120 (2020) 8641-8715. [32] S. Ling, B. Slater, Unusually large band gap changes in breathing metal–organic framework materials, The Journal of Physical Chemistry C 119 (2015) 16667-16677. [33] M. Taddei, G.M. Schukraft, M.E. Warwick, D. Tiana, M.J. McPherson, D.R. Jones, C. Petit, Band gap modulation in zirconium-based metal–organic frameworks by defect engineering, Journal of materials chemistry A 7 (2019) 23781-23786. [34] E. Flage− Larsen, A. Røyset, J.H. Cavka, K. Thorshaug, Band gap modulations in UiO metal–organic frameworks, The Journal of Physical Chemistry C 117 (2013) 20610-20616. [35] K.L. Svane, J.K. Bristow, J.D. Gale, A. Walsh, Vacancy defect configurations in the metal–organic framework UiO-66: energetics and electronic structure, Journal of Materials Chemistry A 6 (2018) 8507-8513. [36] J. Maier, Physical chemistry of ionic materials: ions and electrons in solids, John Wiley & Sons2023. [37] S. Dissegna, K. Epp, W.R. Heinz, G. Kieslich, R.A. Fischer, Defective metal‐organic frameworks, Advanced Materials 30 (2018) 1704501. [38] Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect‐engineered metal–organic frameworks, Angewandte Chemie International Edition 54 (2015) 7234-7254. [39] M.J. Cliffe, W. Wan, X. Zou, P.A. Chater, A.K. Kleppe, M.G. Tucker, H. Wilhelm, N.P. Funnell, F.-X. Coudert, A.L. Goodwin, Correlated defect nanoregions in a metal–organic framework, Nature communications 5 (2014) 4176. [40] O. Karagiaridi, M.B. Lalonde, W. Bury, A.A. Sarjeant, O.K. Farha, J.T. Hupp, Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers, Journal of the American Chemical Society 134 (2012) 18790-18796. [41] M. Vandichel, J. Hajek, F. Vermoortele, M. Waroquier, D.E. De Vos, V. Van Speybroeck, Active site engineering in UiO-66 type metal–organic frameworks by intentional creation of defects: a theoretical rationalization, CrystEngComm 17 (2015) 395-406. [42] L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory, Chemistry of Materials 23 (2011) 1700-1718. [43] U. Ravon, M. Savonnet, S. Aguado, M.E. Domine, E. Janneau, D. Farrusseng, Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects, Microporous and mesoporous materials 129 (2010) 319-329. [44] H. Wu, Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption, Journal of the American Chemical Society 135 (2013) 10525-10532. [45] F.E. Chen, T.A. Pitt, D.J. Okong’o, L.G. Wetherbee, J.J. Fuentes-Rivera, P.J. Milner, A structure–activity study of aromatic acid modulators for the synthesis of zirconium-based metal–organic frameworks, Chemistry of Materials 34 (2022) 3383-3394. [46] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr‐based metal–organic frameworks: from nano to single crystals, Chemistry–A European Journal 17 (2011) 6643-6651. [47] J. Winarta, B.H. Shan, S.M. Mcintyre, L. Ye, C. Wang, J.C. Liu, B. Mu, A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal-Organic Framework, Cryst. Growth Des. 20 (2020) 1347-1362. [48] B.H. Shan, S.M. McIntyre, M.R. Armstrong, Y.X. Shen, B. Mu, Investigation of Missing-Cluster Defects in UiO-66 and Ferrocene Deposition into Defect-Induced Cavities, Industrial & Engineering Chemistry Research 57 (2018) 14233-14241. [49] R.C. Klet, Y. Liu, T.C. Wang, J.T. Hupp, O.K. Farha, Evaluation of Brønsted acidity and proton topology in Zr-and Hf-based metal–organic frameworks using potentiometric acid–base titration, Journal of Materials Chemistry A 4 (2016) 1479-1485. [50] M.R. DeStefano, T. Islamoglu, S.J. Garibay, J.T. Hupp, O.K. Farha, Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites, Chemistry of Materials 29 (2017) 1357-1361. [51] K.S. Sing, Physisorption of nitrogen by porous materials, Journal of Porous Materials 2 (1995) 5-8. [52] T.S. Van Erp, J.A. Martens, A standardization for BET fitting of adsorption isotherms, Microporous and Mesoporous Materials 145 (2011) 188-193. [53] M. Kruk, M. Jaroniec, A. Sayari, Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes, The Journal of Physical Chemistry B 101 (1997) 583-589. [54] P.I. Ravikovitch, G.L. Haller, A.V. Neimark, Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts, Advances in colloid and interface science 76 (1998) 203-226. [55] R.F. Cracknell, K.E. Gubbins, M. Maddox, D. Nicholson, Modeling fluid behavior in well-characterized porous materials, Accounts of chemical research 28 (1995) 281-288. [56] K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry 57 (1985) 603-619. [57] K.-D. Kreuer, Proton conductivity: materials and applications, Chemistry of materials 8 (1996) 610-641. [58] P. Colomban, Proton Conductors: Solids, membranes and gels-materials and devices, Cambridge University Press1992. [59] D.W. Lim, H. Kitagawa, Proton Transport in Metal-Organic Frameworks, Chemical Reviews 120 (2020) 8416-8467. [60] P. Sindhu, K. Ananthram, A. Jain, K. Tarafder, N. Ballav, Insulator-to-metal-like transition in thin films of a biological metal-organic framework, Nature Communications 14 (2023) 2857. [61] R. Saha, K. Gupta, C.J. Gómez García, Strategies to Improve Electrical Conductivity in Metal–Organic Frameworks: A Comparative Study, Cryst. Growth Des. 24 (2024) 2235-2265. [62] N.N. Rabin, M.S. Islam, M. Fukuda, J. Yagyu, R. Tagawa, Y. Sekine, S. Hayami, Enhanced mixed proton and electron conductor at room temperature from chemically modified single-wall carbon nanotubes, RSC advances 12 (2022) 8632-8636. [63] X.L. He, B. Shao, R.K. Huang, M. Dong, Y.Q. Tong, Y. Luo, T. Meng, F.J. Yang, Z. Zhang, J. Huang, A Mixed Protonic–Electronic Conductor Base on the Host–Guest Architecture of 2D Metal–Organic Layers and Inorganic Layers, Advanced Science 10 (2023) 2205944. [64] K. Kreuer, Fast proton conductivity: A phenomenon between the solid and the liquid state?, Solid State Ionics 94 (1997) 55-62. [65] N. Agmon, The grotthuss mechanism, Chemical Physics Letters 244 (1995) 456-462. [66] K.D. Kreuer, A. Rabenau, W. Weppner, Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors, Angew. Chem. Int. Ed. Engl. 21 (1982) 208-209. [67] J. Calbo, M.J. Golomb, A. Walsh, Redox-active metal–organic frameworks for energy conversion and storage, Journal of Materials Chemistry A 7 (2019) 16571-16597. [68] L. Sun, M.G. Campbell, M. Dincă, Electrically conductive porous metal–organic frameworks, Angewandte Chemie International Edition 55 (2016) 3566-3579. [69] E.C. Model, E.A. Solutions, Treatment of the Impedance of Mixed Conductors, Journal of The Electrochemical Society 146 (1999) 4183-4188. [70] J. Maier, Electrochemical investigation methods of ionic transport properties in solids, Solid State Phenomena 39 (1994) 35-60. [71] J. Maier, Mass transport in the presence of internal defect reactions—concept of conservative ensembles: I, chemical diffusion in pure compounds, Journal of the American Ceramic Society 76 (1993) 1212-1217. [72] M.H. Hebb, Electrical conductivity of silver sulfide, The journal of chemical physics 20 (1952) 185-190. [73] X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong, Impedance study of (PEO) 10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes, Electrochimica acta 46 (2001) 1829-1836. [74] J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy, Advanced materials 2 (1990) 132-138. [75] H. Xu, S. Sommer, N.L.N. Broge, J. Gao, B.B. Iversen, The chemistry of nucleation: in situ pair distribution function analysis of secondary building units during UiO‐66 MOF formation, Chemistry–A European Journal 25 (2019) 2051-2058. [76] P. Quaino, F. Juarez, E. Santos, W. Schmickler, Volcano plots in hydrogen electrocatalysis - uses and abuses, Beilstein J Nanotech 5 (2014) 846-854. [77] S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 39 (1972) 163-184. [78] K. Murphy, Are nitrogen molecules really larger than oxygen molecules, The correct answere, with respect to" permeation", is yes (2015). [79] J. Yin, Z. Kang, Y. Fu, W. Cao, Y. Wang, H. Guan, Y. Yin, B. Chen, X. Yi, W. Chen, Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules, Nature Communications 13 (2022) 5112. [80] M.B. Pramanik, M.A. Al Rakib, M.A. Siddik, S. Bhuiyan, Doping Effects and Relationship between Energy Band Gaps, Impact of Ionization Coefficient and Light Absorption Coefficient in Semiconductors, European Journal of Engineering and Technology Research 9 (2024) 10-15. [81] B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, physica status solidi (b) 252 (2015) 1700-1710. [82] A. De Vos, K. Hendrickx, P. Van Der Voort, V. Van Speybroeck, K. Lejaeghere, Missing linkers: an alternative pathway to UiO-66 electronic structure engineering, Chemistry of Materials 29 (2017) 3006-3019. [83] A. Dhakshinamoorthy, A. Santiago‐Portillo, A.M. Asiri, H. Garcia, Engineering UiO‐66 metal organic framework for heterogeneous catalysis, ChemCatChem 11 (2019) 899-923. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96058 | - |
| dc.description.abstract | 金屬有機框架(MOFs)具有優異的可調性、高比表面積和孔隙率,使其在催化、吸附和分離等眾多領域中可以廣泛的應用。優異的可調性,讓MOFs在合成過程中改變合成參數就可能產生結構中的缺陷,或是在合成中快速結晶化也有造成結構錯位機會。MOFs有兩種缺陷,分別是連接體缺失(Missing linker)、簇團缺失(Missing cluster),其中連接體缺失在文獻上指出可以提供活性位點、布忍斯特與路易斯酸位點、提高親水性,這讓MOFs在催化、吸附、質子傳輸上大放異彩。
在本研究中以鋯金屬與對苯二甲酸(H2BDC)合成出的UiO-66作為材料,Zr-O的配位鍵結很強導致UiO-66穩定性高,對水、酸性溶液、有機溶劑等的溶劑容忍性極高,甚至結構中產生缺陷也不會崩塌。UiO-66是質子導體,此特性有利於研究缺陷對質子傳輸造成的影響。為了創造出連接體缺失,我們在合成中加入調節器去跟對苯二甲酸(H2BDC)競爭與鋯金屬鍵結的機會,產生以醋酸鹽及OH/OH2形式存在的連接體缺失。從本研究的實驗結果發現有連接體缺失的UiO-66與文獻相比質子導電率有超過兩個數量級的差別,這證實連接體缺失提高親水性讓水分子更容易吸附在結構中,對質子傳輸有很大的幫助。另外,在紫外光可見光光譜中,發現有連接體缺失的UiO-66與文獻理論計算出的無缺陷UiO-66相比能隙低0.6 eV,因此也證實了有連接體缺失存在的UiO-66會改變原本無缺陷的電子結構。但是同時我們也發現並不是連接體缺失越多就會有越高的質子導電率及較低的能隙,這是因為當連接體缺失越多導致結構中的孔徑體積會越大,即使有連接體缺失會吸附更多水分子幫助質子傳輸,還是無法讓整個孔徑佈滿水分子,因此阻礙了質子傳輸的途徑。孔徑體積越大不只影響質子傳輸的途徑,也會影響電子穿過空間的傳輸途徑(through-space pathway)。而電子結構的部分則是因為在加入調節器產生連接體缺失時,同時也產生未配位的鋯金屬位點,但是為了維持電中性及結構穩定,調節器會變為封蓋劑與未配位的鋯金屬位點結合,導致最終有連接體缺失的UiO-66電子結構不受到連接體缺失的數量影響。 本研究著重於連接體缺失對於質子、電子導電率的影響,也經由連接體缺失與孔徑體積之間的關係進一步解釋質子、電子傳輸途徑的影響,對於研究金屬有機框架的載子最佳傳輸途徑提供了材料設計的指引。 | zh_TW |
| dc.description.abstract | Metal-organic frameworks (MOFs) possess excellent tunability, high specified surface area, and porosity, making them widely applicable in fields such as catalysis, adsorption, and separation. Their tunability allows the synthesis parameters to be adjusted, potentially creating defects in the structure or causing structural misalignment during rapid crystallization. MOFs exhibit two types of defects: missing linker and missing cluster. As reported in the literature, missing linkers can provide active sites, Brønsted and Lewis acid sites, and increase hydrophilicity, which greatly enhances MOFs' performance in catalysis, adsorption, and proton transport.
In this study, UiO-66, synthesized from zirconium metal and terephthalic acid (H2BDC), was used as the material. The strong Zr-O coordination bonds lead to high stability and remarkable tolerance to water, acidic solutions, and organic solvents. Even with defects, the structure does not collapse. UiO-66 is an excellent proton conductor, beneficial for studying the effects of defects on proton transport. To create missing linkers, we introduced modulators during synthesis to compete with H2BDC for binding with zirconium metal, resulting in missing linkers in the form of acetate groups and OH/OH2 groups. Experimental results showed that UiO-66 with missing linkers exhibited proton conductivity more than two orders of magnitude higher than reported in the literature, confirming that missing linkers increase hydrophilicity and facilitate water molecule adsorption, greatly aiding proton transport. Additionally, UV-visible spectroscopy revealed that UiO-66 with missing linkers has a bandgap 0.6 eV lower than the defect-free UiO-66 calculated theoretically, indicating that missing linkers alter the original electronic structure of the defect-free UiO-66. However, we also found that an increasing number of missing linkers does not necessarily lead to higher proton conductivity and lower band gaps. This is because an increasing number of missing linkers results in larger pore volumes within the structure. Although the missing linkers enhance water molecule adsorption, facilitating proton transport, the pores cannot be entirely filled with water molecules, thereby obstructing the proton transport pathways. Larger pore volumes also impact the through-space pathway for electron transport. Regarding the electronic structure, the introduction of a modulator to create missing linkers also results in the formation of uncoordinated zirconium sites. To maintain charge neutrality and structural stability, the modulator acts as a capping agent, binding with these uncoordinated zirconium sites. Consequently, the electronic structure of UiO-66 with missing linkers is not influenced by the number of missing linkers. This study focuses on the impact of missing linkers on proton and electron conductivity. Additionally, it elucidates the relationship between missing linkers and pore volume, further explaining the effects on proton and electron transport pathways. These findings will aid future research in optimizing carrier transport pathways. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:50:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:50:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgment ii
摘要 iv Abstract vi Contents ix List of Figures xii List of Tables xviii Chapter 1 Introduction 1 1.1 Preface 1 1.2 Chemistry of Metal-Organic Frameworks 2 1.2.1 Metal-Organic Framework Application 4 1.2.2 Zr-based Metal-Organic Frameworks 6 1.3 Model Material: UiO-66 10 1.4 Electronic Structure of Metal-Organic Frameworks 14 1.4.1 Electronic Absorption Spectra of Defective UiO-66 19 1.5 Defect Engineering the UiO-66 22 1.5.1 Create the Defect 25 1.5.2 Characterization of Defects 33 1.6 Nitrogen Isotherm Adsorption 38 1.6.1 Classification of Physisorption Isotherm 40 1.7 Conductor 41 1.7.1 Proton Conductor 41 1.7.2 Electron Conductor 44 1.7.3 Mixed Proton-Electron Conductor 46 1.8 Transport Mechanism of Carrier in MOFs 48 1.8.1 Proton Transport in MOFs 49 1.8.2 Electron Transport in MOFs 51 1.9 Transmission Line Model 53 1.10 Blocking Electrode 57 1.11 Electrical Measurement 59 1.11.1 Electrochemical Impedance Spectroscopy (EIS) 59 1.11.2 DC Polarization 64 Chapter 2 Experiment 67 2.1 Chemical and Materials 67 2.2 Experimental Instrument 68 2.3 Preparation of UiO-66 Powder 68 2.4 Preparation of UiO-66 Pellet 70 2.5 Physical Characteristics 71 2.5.1 X-ray Diffraction 71 2.5.2 Titration experiment 72 2.5.3 Nitrogen Isotherm Adsorption 72 2.6 Ultraviolet-Visible Spectroscopy 74 2.7 Electrical Measurement 74 Chapter 3 Results and Discussions 76 3.1 Materials Characterizations 76 3.2 Quantification of Missing Linker 79 3.3 Specific Surface Area & Pore Size Distribution 83 3.4 Optical Properties & Band Gap 88 3.5 Electrical Property Measurement 92 3.5.1 Electrochemical Impedance Spectroscopy (EIS) 93 3.5.2 DC polarization 97 3.6 Electrical Conductivity Variation by Defects 99 3.6.1 Proton Conductivity 99 3.6.2 Electron Conductivity 101 Chapter 4 Conclusions 105 References 107 | - |
| dc.language.iso | en | - |
| dc.title | 金屬有機框架缺陷工程:提升混合質子電子導電度之策略 | zh_TW |
| dc.title | Defect Engineering the Metal-Organic Frameworks: Strategies Towards Enhancing Mixed Proton-Electron Conductivity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐振哲;闕居振;李文亞 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Che Hsu;Chu-Chen Chueh;Wen-Ya Lee | en |
| dc.subject.keyword | 金屬有機框架,可調性,連接體缺失,調節器,孔徑體積,傳輸途徑,電子結構, | zh_TW |
| dc.subject.keyword | Metal-organic frameworks (MOFs),tunability,missing linker,modulator,pore volume,transport pathway,electronic structure, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202401962 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2029-08-07 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
