請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖 | zh_TW |
| dc.contributor.advisor | Chi-Sheng Wu | en |
| dc.contributor.author | 方睿林 | zh_TW |
| dc.contributor.author | Jui-Lin Fang | en |
| dc.date.accessioned | 2024-09-25T16:46:09Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | Lasek, J., Yu, Y. H., & Wu, J. C. (2013). Removal of NOx by photocatalytic processes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 14, 29-52.
Glarborg, P., Jensen, A. D., & Johnsson, J. E. (2003). Fuel nitrogen conversion in solid fuel fired systems. Progress in energy and combustion science, 29(2), 89-113. Zhu, Z., & Xu, B. (2022). Purification technologies for NOx removal from flue gas: a review. Separations, 9(10), 307. Galbiati, M. A., Cavigiolo, A., Effuggi, A., Gelosa, D., & Rota, R. (2004). Mild combustion for fuel-NOx reduction. Combustion Science and Technology, 176(7), 1035-1054. Miller, J. A., & Bowman, C. T. (1989). Mechanism and modeling of nitrogen chemistry in combustion. Progress in energy and combustion science, 15(4), 287-338. Varatharajan, K., & Cheralathan, M. (2012). Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review. Renewable and sustainable energy reviews, 16(6), 3702-3710. Zeldovich Y. The oxidation of nitrogen in combustion and explosions. Acta Physicochim 1946;21:577–628. Fenimore, C. P. (1971, January). Formation of nitric oxide in premixed hydrocarbon flames. In Symposium (international) on combustion (Vol. 13, No. 1, pp. 373-380). Elsevier. Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NOx abatement: A review. Science of the total environment, 408(19), 3976-3989. Shan, W., Yu, Y., Zhang, Y., He, G., Peng, Y., Li, J., & He, H. (2021). Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3. Catalysis Today, 376, 292-301. Yadav, D., & Prasad, R. (2016). Low temperature de-NOx technology-a challenge for vehicular exhaust and its remedation: an overview. Procedia Technology, 24, 639-644. Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental pollution, 151(2), 362-367. Boningari, T., & Smirniotis, P. G. (2016). Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement. Current Opinion in Chemical Engineering, 13, 133-141. Chen, R., Zhang, T., Guo, Y., Wang, J., Wei, J., & Yu, Q. (2021). Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chemical Engineering Journal, 420, 127588. Xu, X., Chen, C., Qi, H., He, R., You, C., & Xiang, G. (2000). Development of coal combustion pollution control for SO2 and NOx in China. Fuel Processing Technology, 62(2-3), 153-160. Ho, T. C. (1988). Hydrodenitrogenation catalysis. Catalysis Reviews Science and Engineering, 30(1), 117-160. Osama, A. M. (2018). Radiant Heat Transfer in Nitrogen-Free Combustion Environments. International Journal of Nonlinear Sciences and Numerical Simulation, 19(2), 175-188. Ma, L., Fang, Q., Tan, P., Zhang, C., Chen, G., Lv, D., Duan, X., Chen, Y. (2016). Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600 MWe FW down-fired utility boiler with a novel combustion system. Applied Energy, 180, 104-115. Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied catalysis A: general, 222(1-2), 221-236. Pârvulescu, V. I., Grange, P., & Delmon, B. (1998). Catalytic removal of NO. Catalysis today, 46(4), 233-316. Kobayashi, M., & Hagi, M. (2006). V2O5-WO3/TiO2-SiO2-SO42− catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2. Applied Catalysis B: Environmental, 63(1-2), 104-113. Kwon, D. W., Park, K. H., & Hong, S. C. (2016). Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum. Chemical Engineering Journal, 284, 315-324. Shi, Z., Peng, Q., Jiaqiang, E., Xie, B., Wei, J., Yin, R., & Fu, G. (2023). Mechanism, performance and modification methods for NH3-SCR catalysts: A review. Fuel, 331, 125885. Xu, G., Guo, X., Cheng, X., Yu, J., & Fang, B. (2021). A review of Mn-based catalysts for low-temperature NH 3-SCR: NO x removal and H 2 O/SO 2 resistance. Nanoscale, 13(15), 7052-7080. Jiang, L., Liu, Q., Ran, G., Kong, M., Ren, S., Yang, J., & Li, J. (2019). V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chemical Engineering Journal, 370, 810-821. Chen, H., Xia, Y., Fang, R., Huang, H., Gan, Y., Liang, C., ... & Liu, X. (2018). The effects of tungsten and hydrothermal aging in promoting NH3-SCR activity on V2O5/WO3-TiO2 catalysts. Applied Surface Science, 459, 639-646. Kwon, D. W., Park, K. H., & Hong, S. C. (2016). Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum. Chemical Engineering Journal, 284, 315-324. Kwon, D. W., Park, K. H., Ha, H. P., & Hong, S. C. (2019). The role of molybdenum on the enhanced performance and SO2 resistance of V/Mo-Ti catalysts for NH3-SCR. Applied Surface Science, 481, 1167-1177. Huang, L., Zeng, Y., Gao, Y., Wang, H., Zong, Y., Chang, Z., ... & Yu, Y. (2022). Promotional effect of phosphorus addition on improving the SO2 resistance of V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO. Journal of Physics and Chemistry of Solids, 163, 110566. Wallin, M., Forser, S., Thormählen, P., & Skoglundh, M. (2004). Screening of TiO2-supported catalysts for selective NOx reduction with ammonia. Industrial & engineering chemistry research, 43(24), 7723-7731. Geng, Y., Shan, W., Liu, F., & Yang, S. (2021). Adjustment of operation temperature window of Mn-Ce oxide catalyst for the selective catalytic reduction of NOx with NH3. Journal of Hazardous Materials, 405, 124223. Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S. I., & Kagawa, S. (1986). Copper (II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. Journal of the Chemical Society, Chemical Communications, (16), 1272-1273. Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NO x. Chemical Communications, 48(66), 8264-8266. Qian, L., Georgi, A., Gonzalez-Olmos, R., & Kopinke, F. D. (2020). Degradation of perfluorooctanoic acid adsorbed on Fe-zeolites with molecular oxygen as oxidant under UV-A irradiation. Applied Catalysis B: Environmental, 278, 119283. Mladenović, M., Paprika, M., & Marinković, A. (2018). Denitrification techniques for biomass combustion. Renewable and Sustainable Energy Reviews, 82, 3350-3364. Hosseini, S., Moghaddas, H., Soltani, S. M., & Kheawhom, S. (2020). Technological applications of honeycomb monoliths in environmental processes: a review. Process Safety and Environmental Protection, 133, 286-300. Bardhan, P. (1997). Ceramic honeycomb filters and catalysts. Current Opinion in Solid State and Materials Science, 2(5), 577-583. Williams, J. L. (2001). Monolith structures, materials, properties and uses. Catalysis Today, 69(1-4), 3-9. Forzatti, P., Ballardini, D., & Sighicelli, L. (1998). Preparation and characterization of extruded monolithic ceramic catalysts. Catalysis Today, 41(1-3), 87-94. Avila, P., Montes, M., & Miró, E. E. (2005). Monolithic reactors for environmental applications: A review on preparation technologies. Chemical engineering journal, 109(1-3), 11-36. Govender, S., & Friedrich, H. B. (2017). Monoliths: a review of the basics, preparation methods and their relevance to oxidation. Catalysts, 7(2), 62. Gan, L., Lei, S., Yu, J., Ma, H., Yamamoto, Y., Suzuki, Y., ... & Zhang, Z. (2015). Development of highly active coated monolith SCR catalyst with strong abrasion resistance for low-temperature application. Frontiers of environmental science & engineering, 9, 979-987. Dislich, H., & Hinz, P. (1982). History and principles of the sol-gel process, and some new multicomponent oxide coatings. Journal of Non-Crystalline Solids, 48(1), 11-16. Puetz, J., & Aegerter, M. A. (2004). Dip coating technique. Sol-gel technologies for glass producers and users, 37-48. Zhu, Y., Lv, G., Song, C., Li, B., Zhu, Y., Liu, Y., Zhang, W., Wang, Y. (2019). Optimization of the washcoat slurry for hydrotalcite-based lnt catalyst. Catalysts, 9(8), 696. Tang, X., & Yan, X. (2017). Dip-coating for fibrous materials: mechanism, methods and applications. Journal of Sol-Gel Science and Technology, 81, 378-404. Brinker, C. J. (2013). Dip coating. In Chemical solution deposition of functional oxide thin films (pp. 233-261). Vienna: Springer Vienna. Larson, R. G., & Rehg, T. J. (1997). Spin coating. In Liquid Film Coating: Scientific principles and their technological implications (pp. 709-734). Dordrecht: Springer Netherlands. Innocenzi, P. C., Guglielmi, M., Gobbin, M., & Colombo, P. (1992). Coating of metals by the sol-gel dip-coating method. Journal of the European Ceramic Society, 10(6), 431-436. Contardi, I., Cornaglia, L., & Tarditi, A. M. (2017). Effect of the porous stainless steel substrate shape on the ZrO2 deposition by vacuum assisted dip-coating. International Journal of Hydrogen Energy, 42(12), 7986-7996. Wei Liu, Curtis Robert Fekety, Todd P. St Clair. (2007). Method for membrane deposition. U.S. Pat. No. 8,006,637. United States, Patent Application Publication. Ivan Petrovic, Subramanian Prasad, Joseph Palamara. (2020). Zeolite with reduced extra-framework aluminum. U.S. Patent Application No. 20200206723(A1). United States, Patent Application Publication. Sai P. Katikaneni, Joongmyeon, Bae, Sangho Lee, Minseok Bae. (2021). Structured catalysts for pre-reforming hydrocarbons. U.S. Patent Application No. 20210162374(A1). United States, Patent Application Publication. 白立旻, 吳紀聖. (2023). 選擇性催化還原脫硝蜂巢式觸媒的製備和鑑定. Preparation and Characterization of Honeycomb Catalyst for Selective Catalytic Reduction of NO. 台灣大學博碩士論文典藏系統. URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90656 Hwang, N., & Barron, A. R. (2011). BET surface area analysis of nanoparticles. The connexions project, 1-11. Temiz, C. (2022). Scanning Electron Microscopy. IntechOpen. doi: 10.5772/intechopen.103956 Long, J., Nand, A., & Ray, S. (2021). Application of spectroscopy in additive manufacturing. Materials, 14(1), 203. Stevie, F. A., & Donley, C. L. (2020). Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 38(6). Cristiani, C., Valentini, M., Merazzi, M., Neglia, S., & Forzatti, P. (2005). Effect of ageing time on chemical and rheological evolution in γ-Al2O3 slurries for dip-coating. Catalysis Today, 105(3-4), 492-498. Vergunst, T., Kapteijn, F., & Moulijn, J. A. (2001). Monolithic catalysts—non-uniform active phase distribution by impregnation. Applied Catalysis A: General, 213(2), 179-187. Wong, W. C., & Nobe, K. (1984). Kinetics of nitric oxide reduction with ammonia on" chemical mixed" and impregnated vanadium (V) oxide-titanium (IV) oxide catalysts. Industrial & engineering chemistry product research and development, 23(4), 564-568. Lai, J. K., & Wachs, I. E. (2018). A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts. Acs Catalysis, 8(7), 6537-6551. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96044 | - |
| dc.description.abstract | NOx是氮氧化物的統稱主要包含一氧化氮(NO)和二氧化氮(NO2),此種氣體是一種法定的空氣汙染物,會導致臭氧層的破壞、酸雨、霧霾以及誘導光化學煙霧的形成,同時也對人體健康造成危害。為此,各個國家制定了NOx的排放標準,所以工廠需要將煙氣中的NOx去除,以達到法定標準。使用氨氣(NH3)作為還原劑的選擇性觸媒還原法(selective catalytic reduction, SCR)是目前工業界最廣泛使用的脫硝方法,而在脫硝的反應器中經常使用的是蜂巢式觸媒,因其有高機械強度和低壓降的優點。
本研究將探討覆膜的蜂巢式觸媒,主要分成兩個部分,一是蜂巢式載體的覆膜技術;二是脫硝的活性測試。 在蜂巢式載體的覆膜技術中,使用材質為堇青石(cordierite)的蜂巢式載體作為骨架,然後使用浸漬覆膜法(dip coating)將二氧化鈦(TiO2)覆膜至蜂巢式載體表面。最後使用溼式含浸法(wet impregnation)將活性金屬擔載至二氧化鈦覆膜的蜂巢式載體上,從而得到覆膜的蜂巢式觸媒。從結果可看出,蜂巢式載體的TiO2覆膜具有穩固的附著力。除此之外,本研究也證實在金屬含浸溶液中加入PEG(Polyethylene glycol),能有效讓金屬離子留在蜂巢式載體的孔洞中,並達到更均勻的活性金屬分布。另外,增加金屬含浸溶液的濃度也能限制溶液在乾燥過程的流動。 在活性測試中,測試蜂巢式觸媒MnPVMo/TiO2/HC的脫硝反應活性,並且會加入二氧化硫(SO2)和水氣到反應器,測試此觸媒的抗硫抗水能力。結果顯示在溫度250℃、GHSV=1910h-1、100 ppm SO2和13% H2O的條件下,能表現超過90%的一氧化氮(NO)轉化率。除此之外,也進行長時間穩定性測試,發現沒有明顯的活性下降,表示此觸媒具有非常良好的穩定性以及抗硫抗水的能力,是符合我們期望的觸媒。除此之外,透過測試實驗,也證實水的吸附為主要造成活性下降的原因。 | zh_TW |
| dc.description.abstract | NOx generally contains NO and NO2. It’s one of the legal air pollutants, and it causes ozone depletion, acid rain and photochemical smog. NOx is also harmful to human health. Many countries regulate NOx emission regulations, so industries need to remove NOx from the flue gas. The NH3-SCR(selective catalytic reduction) is most widely used de-Nox process in the industry. Honeycomb catalyst is used in the reactor because it has the advantages of high mechanical strength and low-pressure drop.
In this thesis, there are two parts, including the honeycomb coating of catalysts and the de-NOx activity test. In the coating process, start with cordierite as the honeycomb framework, and a TiO2 layer was covered on the honeycomb support by dip coating. Then, the active metals on the TiO2 layer on the honeycomb was deposited by the wet impregnation method. As a result, the TiO2 coating layer had stable and sturdy adhesion. Besides, our result confirmed that adding PEG (Polyethylene glycol) to the metal solution could keep metal ions in the channels of the honeycomb during the drying step, thus obtaining uniform metal distribution. Increasing the concentration of the metal solution can also restrict the metal solution from moving to outer surface during the drying process. In de-NOx activity evaluation, the best honeycomb catalyst, MnPVMo/TiO2/HC, was performed. In order to test the honeycomb catalyst’s resistance to SO2 and water, SO2 and water vapor were added to the reaction stream. As a result, this catalyst demonstrated over 90% NO conversion under the condition at 250℃, GHSV=1910h-1 with 100 ppm SO2 and 13% water. In addition, a long-term stability test showed no significant decrease of NO conversion in 60 hours. In summary, this catalyst maintained very good stability and resisted SO2 and water. The honeycomb catalyst reached our expectations. Besides, through experiments, it was also confirmed that water adsorption is the main reason for the decrease in activity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:46:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:46:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iii 目次 iv 圖次 viii 表次 x 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究目的 1 第2章 文獻探討 3 2.1 氮氧化物介紹 3 2.1.1 氮氧化物的生成 3 2.1.1.1 燃料型NOx 3 2.1.1.2 熱力型NOx 3 2.1.1.3 火焰型NOx 4 2.1.2 氮氧化物的種類與危害 4 2.2 常見脫除氮氧化物的方法 4 2.2.1 燃燒前處理技術 5 2.2.2 燃燒中控制技術 5 2.2.3 燃燒後處理技術 5 2.3 選擇性觸媒還原法(SCR) 8 2.3.1 SCR基本介紹 8 2.3.2 SCR反應 8 2.3.3 常見的SCR觸媒 9 2.3.3.1 釩鈦觸媒 12 2.3.3.2 錳基觸媒 12 2.3.3.3 沸石觸媒 12 2.3.4 工業上的SCR系統與設備 13 2.4 蜂巢式觸媒 15 2.4.1 蜂巢式觸媒介紹 15 2.4.2 蜂巢式觸媒製作方法 15 2.4.2.1 擠壓成形式 16 2.4.2.2 覆膜式 16 2.5 浸漬覆膜法 16 第3章 研究方法與步驟 21 3.1 實驗藥品與儀器設備介紹 21 3.1.1 實驗藥品 21 3.1.2 實驗氣體 21 3.1.3 儀器設備 22 3.2 蜂巢式觸媒製備 22 3.2.1 蜂巢式載體前處理 22 3.2.2 TiO2覆膜液製備 24 3.2.3 TiO2浸漬覆膜 24 3.2.4 釩鉬磷錳金屬溶液製備 25 3.2.5 含浸法製備 26 3.2.6 滴乾法製備 27 3.3 脫硝反應系統 28 3.3.1 脫硝反應系統 28 3.3.2 實驗數據計算方式 30 3.4 觸媒鑑定原理介紹 30 3.4.1 BET比表面積分析 30 3.4.2 X光繞射儀 31 3.4.3 掃描式電子顯微鏡 32 3.4.4 能量散射光譜儀 34 3.4.5 X光光電子能譜儀 34 3.4.6 超音波震盪附著力測試 35 第4章 分析與討論 36 4.1 BET 比表面積分析 36 4.2 X光繞射圖譜分析 36 4.3 場發射掃描式電子顯微分析 37 4.4 能量散射光譜分析 38 4.5 X光光電子能譜分析 40 4.6 超音波震盪附著力測試結果分析 42 第5章 結果與討論 44 5.1 蜂巢式觸媒覆膜結果 44 5.1.1 PEG對蜂巢式觸媒內金屬分布的影響 44 5.1.2 含浸法與滴乾法製備結果比較 45 5.1.3 最適合的蜂巢式觸媒 47 5.2 MnPVMo/TiO2/HC蜂巢式觸媒 49 5.2.1 觸媒擔載量 49 5.2.2 覆膜厚度理論計算 49 5.2.3 SCR活性測試(無硫無水) 49 5.2.4 60小時穩定性測試(有硫有水) 51 5.3 流量與加入二氧化硫和水對觸媒活性的影響 53 5.3.1 流量與加入二氧化硫和水對觸媒活性的影響 53 5.3.2 二氧化硫和水對觸媒活性影響的比較 54 5.4 動力學參數計算 55 5.5 MnPVMo/TiO2/HC與商用觸媒活性比較 57 第6章 結論與未來展望 61 參考文獻 62 個人小傳 68 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 高效脫硝觸媒蜂巢式載體覆膜技術開發及活性測試 | zh_TW |
| dc.title | High Performance De-NOx Catalysts Coated on Honeycomb and Activity Test | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 游文岳;郭奐廷 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yueh Yu;Huan-Ting Kuo | en |
| dc.subject.keyword | 氮氧化物,脫硝,蜂巢式觸媒,浸漬覆膜,二氧化鈦,選擇性觸媒還原法, | zh_TW |
| dc.subject.keyword | NOx,de-NOx,honeycomb catalyst,dip coating,TiO2,SCR, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202403356 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2027-08-12 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
