請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96043完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪立本 | zh_TW |
| dc.contributor.advisor | Li-Pen Wang | en |
| dc.contributor.author | 陳沛均 | zh_TW |
| dc.contributor.author | Pei-Chun Chen | en |
| dc.date.accessioned | 2024-09-25T16:45:51Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | Alessandrini, S., Davò, F., Sperati, S., Benini, M., and Delle Monache, L. (2014). Comparison of the economic impact of different wind power forecast systems for producers. Advances in Science and Research, 11(1):49–53.
Alessandrini, S., Delle Monache, L., Sperati, S., and Cervone, G. (2015). An analog ensemble for short-term probabilistic solar power forecast. Applied Energy, 157:95– 110. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek, W. (2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140. Benestad, R. E. (2010). Downscaling precipitation extremes: Correction of analog models through pdf predictions. Theoretical and Applied Climatology, 100:1–21. Bennett, C. H., Gács, P., Li, M., Vitányi, P. M., and Zurek, W. H. (1998). Information distance. IEEE Transactions on information theory, 44(4):1407–1423. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature verification using a” siamese” time delay neural network. Advances in neural information processing systems, 6. Bulygina, N., McIntyre, N., and Wheater, H. (2009). Conditioning rainfall-runoff model parameters for ungauged catchments and land management impacts analysis. Hydrology and Earth System Sciences, 13(6):893–904. Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and Codron, F. (2010). Winter 2010 in europe: A cold extreme in a warming climate. Geophysical Research Letters, 37(20). Chandler, R. E. (2020). Multisite, multivariate weather generation based on generalized linear models. Environmental Modelling & Software, 134:104867. Chapin, F. S., Matson, P. A., and Vitousek, P. M. (2011). Earth’s Climate System, pages 23–62. Springer New York, New York, NY. Chattopadhyay, A., Nabizadeh, E., and Hassanzadeh, P. (2020). Analog forecasting of extreme-causing weather patterns using deep learning. Journal of Advances in Modeling Earth Systems, 12(2):e2019MS001958. Chicco, D. (2021). Siamese neural networks: An overview. Artificial neural networks, pages 73–94. Cross, D., Onof, C., and Winter, H. (2020). Ensemble estimation of future rainfall ex- tremes with temperature dependent censored simulation. Advances in Water Resources, 136:103479. Dai, T.-Y. and Wang, L.-P. (2021). Modelling high-resolution rainfall extremes in a chang- ing climate. In EGU General Assembly Conference Abstracts, pages EGU21–2436. Delle Monache, L., Eckel, F. A., Rife, D. L., Nagarajan, B., and Searight, K. (2013). Probabilistic weather prediction with an analog ensemble. Monthly Weather Review, 141(10):3498–3516. Delle Monache, L., Nipen, T., Liu, Y., Roux, G., and Stull, R. (2011). Kalman filter and analog schemes to postprocess numerical weather predictions. Monthly Weather Review, 139(11):3554–3570. Došilović, F. K., Brčić, M., and Hlupić, N. (2018). Explainable artificial intelligence: A survey. In 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), pages 0210–0215. IEEE. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. Dovganich, A. and Krylov, A. S. (2019). A nonlocal image denoising algorithm using the structural similarity metric. Programming and Computer Software, 45:141–146. Ebers, N., Schröter, K., and Müller-Thomy, H. (2023). Estimation of future rain- fall extreme values by temperature-dependent disaggregation of climate model data. EGUsphere, 2023:1–25. Farmer, G. T. and Cook, J. (2013). Atmospheric Circulation and Climate, pages 231–243. Springer Netherlands, Dordrecht. Fountoulakis, I., Redondas, A., Lakkala, K., Berjon, A., Bais, A. F., Doppler, L., Feis- ter, U., Heikkila, A., Karppinen, T., Karhu, J. M., et al. (2017). Temperature depen- dence of the brewer global uv measurements. Atmospheric Measurement Techniques, 10(11):4491–4505. Giorgi, F., Hewitson, B., Arritt, R., Gutowski, W., Gutowski, W., Knutson, T., and Land- sea, C. (2001). Regional climate information—evaluation and projections. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni- tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nico- las, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abel- lan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N. (2020). The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049. Hoffmann, S. and Lessig, C. (2023). Atmodist: Self-supervised representation learning for atmospheric dynamics. Environmental Data Science, 2:e6. Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., and Samek, W. (2020). xxai-beyond explainable artificial intelligence. In International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers, pages 3–10. Springer. Hsu, L.-H., Wu, Y.-c., Chiang, C.-C., Chu, J.-L., Yu, Y.-C., Wang, A.-H., and Jou, B. J.- D. (2023). Analysis of the interdecadal and interannual variability of autumn extreme rainfall in taiwan using a deep-learning-based weather typing approach. Asia-Pacific Journal of Atmospheric Sciences, 59(2):185–205. Hu, W., Cervone, G., Young, G., and Delle Monache, L. (2023). Machine learning weather analogs for near-surface variables. Boundary-Layer Meteorology, 186(3):711–735. Kaczmarska, J. M., Isham, V. S., and Northrop, P. (2015). Local generalised method of moments: an application to point process-based rainfall models. Environmetrics, 26(4):312–325. Khajure, S. and Mohod, S. (2016). Future weather forecasting using soft computing tech- niques. Procedia Computer Science, 78:402–407. Kohlbrenner, M., Bauer, A., Nakajima, S., Binder, A., Samek, W., and Lapuschkin, S. (2020). Towards best practice in explaining neural network decisions with lrp. In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE. Lorenz, E. N. (1969). Atmospheric predictability as revealed by naturally occurring ana- logues. Journal of Atmospheric Sciences, 26(4):636–646. Loubere, P. (2012). The global climate system. Nature Education Knowledge, 3(10):24. Lovejoy, S. (2015). A voyage through scales, a missing quadrillion and why the climate is not what you expect. Climate Dynamics, 44:3187–3210. Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30. Matulla, C., Zhang, X., Wang, X., Wang, J., Zorita, E., Wagner, S., and Von Storch, H. (2008). Influence of similarity measures on the performance of the analog method for downscaling daily precipitation. Climate Dynamics, 30:133–144. McLennan, J. and Deutsch, C. (2002). Conditional bias of geostatistical simulation for estimation of recoverable reserves. CIM proceedings Vancouver. Minh, D., Wang, H. X., Li, Y. F., and Nguyen, T. N. (2022). Explainable artificial intel- ligence: a comprehensive review. Artificial Intelligence Review, pages 1–66. Montavon, G., Samek, W., and Müller, K.-R. (2018). Methods for interpreting and un- derstanding deep neural networks. Digital signal processing, 73:1–15. Na LI, L. R. and JIAO, B. (2020). An analogy-based method for strong convection forecasts in china using gfs forecast data. Atmospheric and Oceanic Science Letters, 13(2):97–106. Panziera, L., Germann, U., Gabella, M., and Mandapaka, P. (2011). Nora–nowcasting of orographic rainfall by means of analogues. Quarterly Journal of the Royal Meteorological Society, 137(661):2106–2123. Pinson, P. and Madsen, H. (2009). Ensemble-based probabilistic forecasting at horns rev. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 12(2):137–155. Rasp, S. and Lerch, S. (2018). Neural networks for postprocessing ensemble weather forecasts. Monthly Weather Review, 146(11):3885–3900. Rasp, S. and Thuerey, N. (2021). Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems, 13(2):e2020MS002405. Reulen, E. and Mehrkanoon, S. (2024). Ga-smaat-gnet: Generative adversarial small attention gnet for extreme precipitation nowcasting. arXiv preprint arXiv:2401.09881. Ribalaygua, J., Torres, L., Pórtoles, J., Monjo, R., Gaitán, E., and Pino, M. (2013). Description and validation of a two-step analogue/regression downscaling method. Theoretical and Applied Climatology, 114:253–269. Roulston, M. S., Kaplan, D. T., Hardenberg, J., and Smith, L. A. (2003). Using medium- range weather forcasts to improve the value of wind energy production. Renewable Energy, 28(4):585–602. Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., and Giannotti, F. (2021). Glocalx-from local to global explanations of black box ai models. Artificial Intelligence, 294:103457. Shapley, L. S. et al. (1953). A value for n-person games. Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagating activation differences. In International conference on machine learning, pages 3145–3153. PMlR. Sperati, S., Alessandrini, S., and Delle Monache, L. (2017). Gridded probabilistic weather forecasts with an analog ensemble. Quarterly Journal of the Royal Meteorological Society, 143(708):2874–2885. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):1929–1958. Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J.-P., van Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and Zwiers, F. W. (2016). Attribution of extreme weather and climate-related events. WIREs Climate Change, 7(1):23–41. Taszarek, M., Pilguj, N., Allen, J. T., Gensini, V., Brooks, H. E., and Szuster, P. (2021). Comparison of convective parameters derived from era5 and merra-2 with rawinsonde data over europe and north america. Journal of Climate, 34(8):3211–3237. Toth, Z. (1989). Long-range weather forecasting using an analog approach. Journal of Climate, 2(6):594 – 607. Vahedifard, F., Thota, S. K., Cao, T. D., Samarakoon, R. A., and McCartney, J. S. (2020). Temperature-dependent model for small-strain shear modulus of unsaturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 146(12):04020136. Vautard, R. and Yiou, P. (2009). Control of recent european surface climate change by atmospheric flow. Geophysical Research Letters, 36(22). Velikou, K., Lazoglou, G., Tolika, K., and Anagnostopoulou, C. (2022). Reliability of the era5 in replicating mean and extreme temperatures across europe. Water, 14(4):543. Walsh, J. E., Brettschneider, B., Kettle, N. P., and Thoman, R. L. (2021). An analog method for seasonal forecasting in northern high latitudes. Atmospheric and Climate Sciences, 11(3):469–485. Wang, L., Zhang, Y., and Feng, J. (2005). On the euclidean distance of images. IEEE transactions on pattern analysis and machine intelligence, 27(8):1334–1339.64 Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality as- sessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612. Willems, P. and Vrac, M. (2011). Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. Journal of Hydrology, 402(3):193– 205. Xavier, P. K. and Goswami, B. N. (2007). An analog method for real-time forecasting of summer monsoon subseasonal variability. Monthly Weather Review, 135(12):4149 – 4160. Yan, Z., Wang, S., Ma, D., Liu, B., Lin, H., and Li, S. (2019). Meteorological factors affecting pan evaporation in the haihe river basin, china. Water, 11(2):317. Yiou, P., Vautard, R., Naveau, P., and Cassou, C. (2007). Inconsistency between atmo- spheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in europe. Geophysical Research Letters, 34(21). Zhao, Z. and Giannakis, D. (2016). Analog forecasting with dynamics-adapted kernels. Nonlinearity, 29(9):2888. Zorita, E. and von Storch, H. (1999). The analog method as a simple statistical down- scaling technique: Comparison with more complicated methods. Journal of Climate, 12(8):2474 – 2489. Zucchini, W. and Guttorp, P. (1991). A hidden markov model for space-time precipitation. Water Resources Research, 27(8):1917–1923. Zujovic, J., Pappas, T. N., and Neuhoff, D. L. (2013). Structural texture similarity metrics for image analysis and retrieval. IEEE Transactions on Image Processing, 22(7):2545– 2558. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96043 | - |
| dc.description.abstract | 氣候類比法可透過計算相關大氣參數間的距離,來量化不同氣候狀態間的相 似性;此方法目前已被廣泛使用於大氣科學中的天氣預測和氣候風險研究。近年 來,深度學習以「特徵」的概念、數據驅動的方式,於各領域展現其卓越的能 力。因此,本研究旨在探索深度學習技術應用於氣候類比法中的潛力,並提出了 一種數據驅動的氣候類比方法 ClimaDist (CD),其藉由提取氣候動態變化的特徵、 結合非傳統用於大氣領域之距離度量 (如:影像歐幾里得距離 (image Euclidean distance, IMED) 和結構相似性指數 (structural similarity index metric, SSIM),取代 傳統方法中的原始大氣參數與歐幾里德距離。本研究以 ERA5 (ECMWF Reanalysis v5) 重分析大氣資料來測試不同模型和距離度量組合,其結果顯示,基於 CD 技術 之模型,無論是在重現觀測分佈或是預測參數變化之準確度,皆優於其他模型組 合。此外,本研究更近一步導入可解釋人工智慧技術 (explainable AI, XAI),嘗試 以資料之角度,剖析 CD 在捕捉、學習氣候動態之觀點,包含關鍵特徵之選取以 及神經網路層間資訊傳遞之決策路徑,分析結果顯示氣候特徵差異及其時空變化 對於氣候類比之選取至關重要,然而傳統方法中經常忽略其重要性,而本研究提 出之數據驅動模型可以有效地捕捉氣候之時空特性變化。 | zh_TW |
| dc.description.abstract | Analogue methods are widely used in atmospheric science for weather forecasting and climate risk studies. The concept of weather/climate analogues is straightforward: it quantifies the similarity between weather conditions at target and candidate time periods by computing a distance using relevant atmospheric variables (e.g., temperatures and geopotential heights). Traditionally, Euclidean distance (ED) is used for this task, computed over the original value space of the variables.
In recent years, with the rapid advance in deep learning (DL) techniques, the concept of 'features' (or representations) has emerged, providing an alternative for analogue-related applications. This study aims to explore the potential of DL in climate-scale applications. Specifically, we propose a data-driven climate analogue approach, ClimaDist (CD), which involves constructing a data-driven climate dynamics model. ClimaDist identifies features relevant to climate dynamics, and we use these features, instead of the original input atmospheric variables, to search for analogues. In addition to the traditional ED, we explore two other distance measures that have not been widely used in the atmospheric community: the image Euclidean distance (IMED) and the structural similarity index metric (SSIM). We tested a range of different combinations of models and distance measures using ERA5 reanalysis data. Our results suggest that the proposed CD-based models outperform all other model combinations under comparison in terms of their ability to reproduce both the observed distributions and variations. We further employ explainable AI (XAI) techniques to investigate the perspectives of CD models in analogue identification, with focuses on feature importance and the decision flows between neural network layers. The analysis results indicate that it is critical to account for the spatial and temporal variations in the importance of different climate features, which are often neglected in traditional methods. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:45:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:45:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee - i
Acknowledgements - iii 摘要 - v Abstract - vii Contents - ix List of Figures - xi List of Tables - xv Chapter 1 Introduction - 1 Chapter 2 Data and Study Area - 5 2.1 Study area - 5 2.2 Atmospheric variables - 5 Chapter 3 Methodology - 13 3.1 A data-driven approach to re-discovering climate analogues - 13 3.1.1 Overview - 13 3.1.2 ClimaDist: a deep-learning based climate dynamics model - 14 3.2 Analogues identification - 23 3.3 Explainable AI (XAI) - 26 3.3.1 SHapley Additive exPlanations (SHAP) - 27 3.3.2 Layer-Wise Relevance Propagation (LRP) - 28 Chapter 4 Result and Discussion - 31 4.1 Overview - 31 4.2 Quality of analogues - 32 4.2.1 Best 'individual' analogue - 33 4.2.2 Ensemble analogues - 41 4.3 XAI perspective - 45 4.3.1 SHAP: feature importance - 46 4.3.2 LRP: model decision flow - 49 Chapter 5 Conclusions - 53 References - 57 Appendix A — Results of all model combinations - 67 A.1 Definitions of all model combinations - 67 A.2 Analog results of all model combinations - 68 | - |
| dc.language.iso | en | - |
| dc.title | 利用數據驅動方法改進氣候類比法 | zh_TW |
| dc.title | Rediscovering the climate analogue method: insights from a data-driven approach | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝依芸;林旭信 | zh_TW |
| dc.contributor.oralexamcommittee | I-Yun Hsieh;Shiu-Shin Lin | en |
| dc.subject.keyword | 氣候變遷,氣候類比,深度學習, | zh_TW |
| dc.subject.keyword | Climate change,Analogue,Deep learning, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202403686 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 26.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
