Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96020
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳嘉晉zh_TW
dc.contributor.advisorChia-Chin Chenen
dc.contributor.author陳廷瑋zh_TW
dc.contributor.authorTing Wei Chenen
dc.date.accessioned2024-09-25T16:39:06Z-
dc.date.available2024-12-27-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation[1] Kittel, C. (2021). Introduction to Solid State Physics, 8th edition, 161-190.
[2] Maier, J. (1993). Defect Chemistry: Composition, Transport, and Reactions in the Solid State; Part I: Thermodynamics. Angew. Chem. Int. Ed., 32(3), 313-335.
[3] Gregg, B. A., Chen, S.-G. & Branz, H. M. (2004). On the superlinear increase in conductivity with dopant concentration in excitonic semiconductors. Appl. Phys. Lett., 84(10), 1707-1709.
[4] Levinson, J., Shepherd, F. R., Scanlon, P. J., Westwood, W. D., Este, G. & Rider M. (1982). Conductivity behavior in polycrystalline semiconductor thin film transistors. J. Appl. Phys., 53(2), 1193-1202.
[5] Roosbroeck, W. V. (1953). The Transport of Added Current Carriers in a Homogeneous Semiconductor. Phys. Rev., 91(2), 282.
[6] Deppe, D. G. & Holonyak, N. (1988). Atom diffusion and impurity‐induced layer disordering in quantum well III‐V semiconductor heterostructures. J. Appl. Phys., 64(12), R93-R113.
[7] Akasaki, I. & Amano, H. (1997). Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters. Jpn. J. Appl. Phys., 36(9), 5393.
[8] Van de Walle, C. G. (2002). Strategies for Controlling the Conductivity of Wide-Band-Gap Semiconductors. Phys. Status Solidi B, 229(1), 221-228.
[9] Aydin, E., Bastiani, M. D. & Wolf, S. D. (2019). Defect and Contact Passivation for Perovskite Solar Cells. Adv. Mater., 31(25), 1900428.
[10] Zhu, M.-L., Jin, L. & Xuan, F.-Z. (2018). Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes. Acta Mater., 157, 259-275.
[11] Mays, R. G., Jones, C. L., Holloway, G. J. & Studinsku, D. P. (1990). Experiences with Defect Prevention. IBM Syst. J., 29(1), 4-32.
[12] Kumaresh, S. & Baskaran, R. (2010). Defect Analysis and Prevention for Software Process Quality Improvement. Int. J. Comput. Appl., 8(7), 42-47.
[13] Maier, J. (2000). Point-defect thermodynamics and size effects. Solid State Ion., 131(1-2), 13-22.
[14] Rogal, J., Divinski, S. V., Finnis, M. W., Glensk, A., Neugebauer, J., Perepezko, J. H., Schuwalow, S., Sluiter, M. H. F. & Sundman, B. (2014). Perspectives on point defect thermodynamics. Phys. Status Solidi B, 251(1), 97-129.
[15] Collins, C. B., Carlson, R. O. & Gallagher, C. J. (1957). Properties of Gold-Doped Silicon. Phys. Rev., 105, 1168.
[16] Lutz, G. (1996). Effects of deep level defects in semiconductor detectors. Nuclear Inst. and Methods in Physics Research, A, 377(2-3), 234-243.
[17] Chiang, S.-Y. & Pearson, G. L. (1975). Properties of vacancy defects in GaAs single crystals. J. Appl. Phys. 46, 2986–2991.
[18] Asom, M. T., Benton, J. L., Sauer, R. & Kimerling, L. C. (1987). Interstitial defect reactions in silicon. Appl. Phys. Lett., 51, 256-258.
[19] Broqvist, P., Alkauskas, A. & Pasquarello, A. (2008). Defect levels of dangling bonds in silicon and germanium through hybrid functionals. Phys. Rev. B, 78(7), 075203.
[20] Joo S. & Liang H. (2013). Encyclopedia of Tribology, 2989-2994.
[21] Sardela, M. (2014). Particle Materials Characterization, 133-187.
[22] Prohaska, T., Irrgeher, J., Zitek, A. & Jakubowski, N. (2014). Sector Field Mass Spectrometry for Elemental and Isotopic Analysis, 439-499.
[23] Pearse, A. J., Gillette, E., Lee, S. B. & Rubloff, G. W. (2016). The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping. Phys. Chem. Chem. Phys., 18, 19093.
[24] Biesinger, M. C. et. al (2008). Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides. J. Phys. Conf. Ser., 100, 012025.
[25] Grosvenor, A. P., Kobe, B. A., Biesinger, M. C. & McIntyre, N. S. (2004). Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal., 36(12) 1564-1574.
[26] Seah, M. P. (1980). The quantitative analysis of surfaces by XPS: A review. Surf. Interface Anal., 2(6), 222-239.
[27] Pawlik, M. (1992). Spreading resistance:A quantitative tool for process control and development. J. Vac. Sci. Technol. B, 10(1), 388-392.
[28] Wolf, P. D., Clarysse, T., Vandervorst, W., Snauwaert, J. & Hellemans, L. (1996). One‐ and two‐dimensional carrier profiling in semiconductors by nanospreading resistance profiling. J. Vac. Sci. Technol. B, 14, 380-385.
[29] Boukamp, B. A. (1986). A package for impedance/admittance data analysis. Solid State Ion., 18, 136-140.
[30] Hickmott, T. W. (1991). Admittance measurements of acceptor freezeout and impurity conduction in Be-doped GaAs. Phys. Rev. B, 44(24), 13487.
[31] Sellers, M. C. K. & Seebauer, E. G. (2011). Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach. Thin Solid Films, 519, 2103-2110.
[32] Shewchun, J., Waxman, A. & Warfield, G. (1967). Tunneling in MIS structures—I: Theory. Solid-State Electron., 10(12), 1165-1186.
[33] Naumova, O. V., Vohmina, E. V., Gavrilova, T. A., Dudchenko, N. V., Nikolaev, D. V., Spesivtsev, E. V. & Popov, V. P. (2006). Properties of silicon nanolayers on insulator. Mater. Sci. Eng. B, 135(3), 238-241.
[34] Tung, R. T. (2001). Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R, 35(1–3), 1-138.
[35] Rideout, V. L. (1975). A review of the theory and technology for ohmic contacts to group III–V compound semiconductors. Solid-State Electron., 18(6), 541-550.
[36] Lüth, H. (2015). Solid Surfaces, Interfaces and Thin Films. 337-391.
[37] Hall, R. N. (1952). Electron-Hole Recombination in Germanium. Phys. Rev., 87, 387.
[38] Shockley, W. & Read, W. T. (1952). Statistics of the Recombinations of Holes and Electrons. Phys. Rev., 87, 835.
[39] Walter, T., Herberholz, R., Müller, C. & Schock, H. W. (1996). Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. J. Appl. Phys., 80(8), 4411-4420.
[40] Lang, D. V. (1974). Deep‐level transient spectroscopy: A new method to characterize traps in semiconductors. J. Appl. Phys., 45, 3023-3032.
[41] Kočka, J. (1976). The density of states at the fermi level of the non-crystalline semiconductors. Czech. J. Phys. B, 26, 807-811.
[42] Li, J. V. & Levi, D. H. (2011). Determining the defect density of states by temperature derivative admittance spectroscopy. J. Appl. Phys., 109(8), 083701.
[43] Jacoboni, C., Canali, C., Ottaviani, G. & Quaranta, A. A. (1977). A review of some charge transport properties of silicon. Solid-State Electron., 20(2), 77-89.
[44] Kavasoglu, A. S., Kavasoglu, N. & Oktik, S. (2008). Simulation for capacitance correction from Nyquist plot of complex impedance–voltage characteristics. Solid-State Electron., 52(6), 990-996.
[45] Stiles, M. D. & Penn, D. R. (2000). Calculation of spin-dependent interface resistance. Phys. Rev. B, 61(5), 3200.
[46] Chen, H.-S. & Li, S.-S. (1992). A model for analyzing the interface properties of a semiconductor-insulator-semiconductor structure. I. Capacitance and conductance techniques. IEEE Trans. Electron Devices, 39(7), 1740-1746.
[47] Wu, X. & Yang, E. S. (1989). Interface capacitance in metal‐semiconductor junctions. J. Appl. Phys., 65(9), 3560-3567.
[48] Donnelly, J. P. & Milnes, A. G. (1967). The capacitance of p-n heterojunctions including the effects of interface states. IEEE Trans. Electron Devices, 14(2), 63-68.
[49] Sigmon, T. W., Chu, W. K., Lugujjo, E. & Mayer, J. W. (1974). Stoichiometry of thin silicon oxide layers on silicon. Appl. Phys. Lett., 24(3), 105-107.
[50] Maszara, W. P. (1991). Silicon‐On‐Insulator by Wafer Bonding: A Review. J. Electrochem. Soc., 138(1), 341-347.
[51] Grove, A. S. & Fitzgerald, D. J. (1966). Surface effects on p-n junctions: Characteristics of surface space-charge regions under non-equilibrium conditions. Solid-State Electron., 9(8), 783-806.
[52] Choo, S. C. (1968). Carrier generation-recombination in the space-charge region of an asymmetrical p-n junction. Solid-State Electron., 11(11), 1069-1077.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96020-
dc.description.abstract  半導體中的電荷載子,包括自由電荷載子、摻雜物、空缺和其他帶電缺陷,在影響半導體器件的性能和功能方面發揮著關鍵作用。獲取電荷載子濃度分佈對於許多應用至關重要,包括元件性能分析、設計優化、製程控制、缺陷分析以及模擬半導體在各種運行條件下的行為。儘管其居有相當的重要性,準確獲得電荷載子濃度分佈存在相當大的挑戰性,其原因源自於檢測和識別不同類型電荷載子的複雜性,例如電子、電洞、摻雜物和結構性帶電位。
  本研究引入了一種新穎的方法,該方法結合了實驗和模擬技術,提供了在電流傳導條件下半導體中電荷載子濃度的詳細信息。研究的系統為考慮電子、電洞與摻雜物的蕭特基接面元件,並期望能更進一步擴展到涵蓋更多種類的電荷載子類型。實驗裝置的設計為於半導體兩側製造蕭特基接面與歐姆接面,以建立一個電流垂直通過平面之系統,並對蕭特基接面附近空間電荷區進行電容測量,以計算該區域的總電荷。
  模擬通過求解包括泊松方程和漂移-擴散方程在內的常微分方程組來確定空間電荷區內的電荷載子分佈。通過計算取得的電位分佈和電荷載子濃度分佈與實驗電容測量值高度匹配,驗證了模擬條件的合理性。
  本研究所提出的方法為剖析半導體中的電荷載子提供了一種有前景的方法,克服了檢測結構性帶電缺陷以及分析不同電荷載子貢獻之限制。研究中展示的電容量測提供了一條探討電荷載子的新途徑,以期能夠更全面的理解半導體中的電荷動態。
zh_TW
dc.description.abstract  Charged species in semiconductors, including free charge carriers, dopants, vacancies, and other charged defects, play a critical role in influencing the performance and functionality of semiconductor devices. Obtaining the charge carrier concentration profile is essential for numerous applications, including component performance analysis, design optimization, process control, defect analysis, and simulating semiconductor behavior under various operating conditions. Despite its importance, achieving an accurate charge carrier concentration profile presents significant challenges due to the complexity of detecting and identifying different types of charge carriers, such as electrons, holes, dopants, and structurally charged sites.
  This study introduces a novel method that integrates both experimental and simulation techniques to provide detailed information on charge carrier concentrations in semiconductors under current-carrying conditions. The research focuses on a Schottky junction device involving electrons, holes, and dopants, with the aim of extending the study to encompass a broader range of charge carrier types. The experimental setup involved depositing a Schottky junction and an Ohmic junction onto a semiconductor to create a through-plane structure device. Capacitance measurements of the space charge region near the Schottky junction interface, which are influenced by the depletion of free charge carriers, were used to calculate the total charge in this region.
  Simulations were conducted to determine the charge carrier distribution within the space charge region by solving simultaneous ordinary differential equations, including Poisson’s equation and the drift-diffusion equation. The calculated electric potential profile and charge carrier concentration profile closely matched the experimental capacitance measurements, confirming the accuracy of the simulation conditions.
  The proposed method offers a promising approach for profiling charge carriers in semiconductors, overcoming limitations related to detecting structurally charged defects and isolating the contributions of different charge species. Capacitance spectroscopy, as demonstrated in this study, provides a new pathway for characterizing charge species, paving the way for a more comprehensive understanding of charge dynamics in semiconductors in the near future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:39:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:39:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of content
摘要 i
Abstract ii
Chapter 1 Introduction 1
1-1 Semiconductor materials 1
1-1-1 Energy band structure 1
1-1-2 Defect structure and defect state 2
1-2 Defect characterization 6
1-2-1 Secondary ion mass spectroscopy 6
1-2-2 X-ray photoelectron spectroscopy 7
1-2-3 Spreading resistance profiling 8
1-3 Alternating current measurement 10
1-3-1 Introduction to alternating current measurement 10
1-3-2 Electrochemistry impedance spectroscopy 10
1-3-3 AC admittance measurement 15
1-4 Space charge region 18
1-4-1 Space charge region characteristics 18
1-4-2 Metal – insulator – semiconductor structure 19
1-4-3 Schottky junction 21
1-4-4 Ohmic junction 23
1-4-5 space charge region categories 24
Chapter 2 Theory 26
2-1 Governing equations of free charge carrier distribution 26
2-1-1 Poisson’s equation 26
2-1-2 Drift – diffusion equation 28
2-2 Defect distribution characterization 31
2-2-1 Defect concentration versus energy level 31
2-2-2 Temperature effect of defect 39
2-2-3 Defect concentration profile 40
2-3 Equations and parameters in simulation 42
2-4 Boundary conditions 43
2-5 Potential profile and charge carrier concentration profile 44
2-6 Simulated capacitance calculation 45
Chapter 3 Experiment 46
3-1 Device structure 46
3-2 Electrical measurement 48
Chapter 4 Results and Discussions 50
4-1 Junction characterizations 50
4-1-1 Titanium – silicon junction 50
4-1-2 Gold – silicon junction 51
4-2 I-V curve of the model system 52
4-3 Impedance Nyquist plot 53
4-4 Space charge region resistance 55
4-5 Capacitance of the space charge region 56
4-6 Potential profile and charge carrier concentration profile 57
4-6-1 Drift – diffusion equation 57
4-7 Current flux contribution 61
4-8 Space charge region width calculation 63
4-9 Space charge capacitance comparison 65
4-10 Discussion of deviations 67
4-10-1 Effect of non-ideal interface 67
4-10-2 Oxide layer effect 67
4-10-3 Charge carrier recombination 68
4-10-4 Non-uniform dopant concentration 68
Chapter 5 Conclusion 69
References 71
-
dc.language.isoen-
dc.subject蕭特基接面zh_TW
dc.subject電荷載子濃度分布zh_TW
dc.subject缺陷分布鑑定zh_TW
dc.subject電容電壓量測系統zh_TW
dc.subject空間電荷區zh_TW
dc.subjectcapacitance – voltage measurementen
dc.subjectspace charge regionen
dc.subjectcharge carrier concentration profileen
dc.subjectSchottky junctionen
dc.subjectdefect distribution characterizationen
dc.title透過電容及蕭特基接面量測電荷載子分布zh_TW
dc.titleProbing Charge Carrier Profile by Capacitance Spectroscopy: Case Study for Schottky Junctionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐振哲;闕居振;李文亞zh_TW
dc.contributor.oralexamcommitteeCheng-Che Hsu;Chu-Chen Chueh;Wen-Ya Leeen
dc.subject.keyword電荷載子濃度分布,蕭特基接面,空間電荷區,電容電壓量測系統,缺陷分布鑑定,zh_TW
dc.subject.keywordcharge carrier concentration profile,Schottky junction,space charge region,capacitance – voltage measurement,defect distribution characterization,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202403426-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2026-06-30-
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Until 2026-06-30
3.32 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved