請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96019完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭柏呈 | zh_TW |
| dc.contributor.advisor | Bo-Cheng Kuo | en |
| dc.contributor.author | 陳雅婷 | zh_TW |
| dc.contributor.author | Ya-Ting Chen | en |
| dc.date.accessioned | 2024-09-25T16:38:48Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | Adam, K. C. S., Vogel, E. K., & Awh, E. (2020). Multivariate analysis reveals a generalizable human electrophysiological signature of working memory load. Psychophysiology, 57(12), e13691. https://doi.org/10.1111/psyp.13691
Aktürk, T., de Graaf, T. A., Güntekin, B., Hanoğlu, L., & Sack, A. T. (2022). Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS. Scientific Reports, 12(1), 14199. Alekseichuk, I., Turi, Z., De Lara, G. A., Antal, A., & Paulus, W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Current Biology, 26(12), 1513-1521. Alvarez, G. A., & Cavanagh, J. P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. Aru, J., Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G,. Singer, W., Vicente, R. (2015). Untangling cross-frequency coupling in neuroscience. Current Opinion in Neurobiology, 31, 51-61. Asp, I. E., Störmer, V. S., & Brady, T. F. (2021). Greater visual working memory capacity for visually matched stimuli when they are perceived as meaningful. Journal of Cognitive Neuroscience, 33(5), 902-918. https://doi.org/10.1162/jocn_a_01693 Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622-628. Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228-3233. Baddeley, A. D. (1992). Working memory. Science, 255(5044), 556-559. Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829-839. Baddeley, A. D., Hitch, G., & Bower, G. (1974). The psychology of learning and motivation. Working Memory, 8. Bahramisharif, A., Jensen, O., Jacobs, J., & Lisman, J. E. (2018). Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biology, 16(8), e2003805. Bahramisharif, A., van Gerven, M. A., Aarnoutse, E. J., Mercier, M. R., Schwartz, T. H., Foxe, J. J., Ramsey, N. F., Jensen, O. (2013). Propagating neocortical gamma bursts are coordinated by traveling alpha waves. Journal of Neuroscience, 33(48), 18849-18854. Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7-7. Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-854. https://doi.org/10.1126/science.1158023 Becker, M. W., Miller, J. R., & Liu, T. (2013). A severe capacity limit in the consolidation of orientation information into visual short-term memory. Attention, Perception, & Psychophysics, 75(3), 415-425. Belger, A., Puce, A., Krystal, J. H., Gore, J. C., Goldman-Rakic, P., & McCarthy, G. (1998). Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human Brain Mapping, 6(1), 14-32. Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., & Buzsáki, G. (2012). Cross-frequency phase–phase coupling between theta and gamma oscillations in the hippocampus. Journal of Neuroscience, 32(2), 423-435. Bender, M., Romei, V., & Sauseng, P. (2019). Slow theta tACS of the right parietal cortex enhances contralateral visual working memory capacity. Brain Topography, 32, 477-481. Bengson, J. J., & Luck, S. J. (2016). Effects of strategy on visual working memory capacity. Psychonomic Bulletin & Review, 23(1), 265-270. Berens, P. (2009). CircStat: A MATLAB toolbox for circular statistics. Journal of Sstatistical Software, 31, 1-21. Berger, B., Griesmayr, B., Minarik, T., Biel, A. L., Pinal, D., Sterr, A., & Sauseng, P. (2019). Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory. Nature Communications, 10(1), 4242. Berger, H. (1929). Über das elektroenkephalogramm des menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87(1), 527-570. Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969-1974. Bor, D., Cumming, N., Scott, C. E., & Owen, A. M. (2004). Prefrontal cortical involvement in verbal encoding strategies. European Journal of Neuroscience, 19(12), 3365-3370. Bor, D., Duncan, J., Wiseman, R. J., & Owen, A. M. (2003). Encoding strategies dissociate prefrontal activity from working memory demand. Neuron, 37(2), 361-367. Brady, T. F., & Alvarez, G. A. (2015). No evidence for a fixed object limit in working memory: Spatial ensemble representations inflate estimates of working memory capacity for complex objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 921. Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5), 4-4. Brady, T. F., & Störmer, V. S. (2021). The role of meaning in visual working memory: Real-world objects, but not simple features, benefit from deeper processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 942. Brady, T. F., & Störmer, V. S. (2022). The role of meaning in visual working memory: Real-world objects, but not simple features, benefit from deeper processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(7), 942. Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences, 113(27), 7459-7464. Buschman, T. J., Siegel, M., Roy, J. E., & Miller, E. K. (2011). Neural substrates of cognitive capacity limitations. Proceedings of the National Academy of Sciences, 108(27), 11252-11255. https://doi.org/10.1073/pnas.1104666108 Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence(6), 679-698. Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506-515. Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414-421. Cavanagh, J. P. (1972). Relation between the immediate memory span and the memory search rate. Psychological Review, 79(6), 525. Chen, Y.-T., van Ede, F., & Kuo, B.-C. (2022). Alpha oscillations track content-specific working memory capacity. Journal of Neuroscience, 42(38), 7285-7293. Chung, Y. H., Brady, T. F., & Störmer, V. S. (2023). Sequential encoding aids working memory for meaningful objects' identities but not for their colors. Memory & Cognition, 1-13. Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2018). The many characters of visual alpha oscillations. European Journal of Neuroscience, 48(7), 2498-2508. Clayton, M. S., Yeung, N., & Kadosh, R. C. (2015). The roles of cortical oscillations in sustained attention. Trends in Cognitive Sciences, 19(4), 188-195. Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552. https://doi.org/10.1016/j.tics.2003.10.005 Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386(6625), 608-611. Cowan, N. (1998). Attention and memory: An integrated framework. Oxford University Press. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. https://doi.org/10.1017/s0140525x01003922 Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science, 19(1), 51-57. Cowan, N., & Morey, C. C. (2006). Visual working memory depends on attentional filtering. Trends in Cognitive Sciences, 10(4), 139-141. https://doi.org/10.1016/j.tics.2006.02.001 Cristoforetti, G., Majerus, S., Sahan, M. I., Van Dijck, J.-P., & Fias, W. (2022). Neural patterns in parietal cortex and hippocampus distinguish retrieval of start versus end positions in working memory. Journal of Cognitive Neuroscience, 34(7), 1230-1245. Curtis, C. E., & Sprague, T. C. (2021). Persistent activity during working memory from front to back. Frontiers in Neural Circuits, 15, 696060. D'Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 761-772. D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1), 115-142. https://doi.org/10.1146/annurev-psych-010814-015031 Daume, J., Gruber, T., Engel, A. K., & Friese, U. (2017). Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. Journal of Neuroscience, 37(2), 313-322. Daume, J., Kamiński, J., Schjetnan, A. G., Salimpour, Y., Khan, U., Kyzar, M., . . . Mamelak, A. N. (2024). Control of working memory by phase–amplitude coupling of human hippocampal neurons. Nature, 1-9. de Vries, I. E. J., van Driel, J., & Olivers, C. N. L. (2019). Decoding the status of working memory representations in preparation of visual selection. Neuroimage, 191, 549-559. https://doi.org/10.1016/j.neuroimage.2019.02.069 Dell'Acqua, R., Sessa, P., Toffanin, P., Luria, R., & Jolicoeur, P. (2010). Orienting attention to objects in visual short-term memory. Neuropsychologia, 48(2), 419-428. http://www.sciencedirect.com/science/article/B6T0D-4XC9SHT-3/2/54d4be26408235b1847365c59b87014f Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1373), 1245-1255. Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegnér, J., & Compte, A. (2009). Mechanism for top-down control of working memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6802-6807. https://doi.org/10.1073/pnas.0901894106 Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225-234. https://doi.org/10.1016/S0921-884X(96)95711-2 Eimer, M., & Kiss, M. (2010). An electrophysiological measure of access to representations in visual working memory. Psychophysiology, 47(1), 197-200. http://dx.doi.org/10.1111/j.1469-8986.2009.00879.x Endo, N., Saiki, J., Nakao, Y., & Saito, H. (2003). Perceptual judgments of novel contour shapes and hierarchical descriptions of geometrical properties. Shinrigaku Kenkyu: The Japanese Journal of Psychology, 74(4), 346-353. Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12(6), 1127-1133. https://doi.org/10.3758/BF03206454 Erickson, M. A., Smith, D., Albrecht, M. A., & Silverstein, S. (2019). Alpha-band desynchronization reflects memory-specific processes during visual change detection. Psychophysiology, 56(11), e13442. https://doi.org/10.1111/psyp.13442 Ester, E. F., Sprague, T. C., & Serences, J. T. (2015). Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron, 87(4), 893-905. Fahrenfort, J. J., van Driel, J., van Gaal, S., & Olivers, C. N. L. (2018). From ERPs to MVPA Using the Amsterdam Decoding and Modeling Toolbox (ADAM) [Methods]. Frontiers in Neuroscience, 12(368). https://doi.org/10.3389/fnins.2018.00368 Fernández, A., Pinal, D., Díaz, F., & Zurrón, M. (2021). Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiology of Learning and Memory, 183, 107476. Foster, J. J., Bsales, E. M., Jaffe, R. J., & Awh, E. (2017). Alpha-band activity reveals spontaneous representations of spatial position in visual working memory. Current biology, 27(20), 3216-3223. e3216. Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E. (2016). The topography of alpha-band activity tracks the content of spatial working memory. Journal of Neurophysiology, 115(1), 168-177. Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive sciences, 9(10), 474-480. Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron, 88(1), 220-235. https://doi.org/10.1016/j.neuron.2015.09.034 Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capacity limits in visual working memory. Current Opinion in Neurobiology, 20(2), 177-182. https://doi.org/10.1016/j.conb.2010.03.005 Fukuda, K., Mance, I., & Vogel, E. K. (2015). α power modulation and event-related slow wave provide dissociable correlates of visual working memory. Journal of Neuroscience, 35(41), 14009-14016. Fukuda, K., Vogel, E., Mayr, U., & Awh, E. (2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17, 673-679. Greene, A. J., Prepscius, C., & Levy, W. B. (2000). Primacy versus recency in a quantitative model: Activity is the critical distinction. Learning & Memory, 7(1), 48-57. Griffiths, B. J., Mayhew, S. D., Mullinger, K. J., Jorge, J., Charest, I., Wimber, M., & Hanslmayr, S. (2019). Alpha/beta power decreases track the fidelity of stimulus-specific information. eLife, 8, e49562. https://doi.org/10.7554/eLife.49562 Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2017). Decoding dynamic brain patterns from evoked responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of Cognitive Neuroscience, 29(4), 677-697. Guo, X., Li, Z., Zhang, L., & Liu, Q. (2021). Modulation of visual working memory performance via different theta frequency stimulations. Brain Sciences, 11(10), 1358. Hülsemann, M. J., Naumann, E., & Rasch, B. (2019). Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Frontiers in Neuroscience, 13, 421376. Hanslmayr, S., Staudigl, T., & Fellner, M.-C. (2012). Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis [Review]. Frontiers in Human Neuroscience, 6(74). https://doi.org/10.3389/fnhum.2012.00074 Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J., Aschenbrenner-Scheibe, R., Schulze-Bonhage, A., Kahana, M. J. (2003). Gamma oscillations correlate with working memory load in humans. Cerebral Cortex, 13(12), 1369-1374. Hsieh, L., & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85 (Part 2), 721–729. NeuroImage. Hsu, Y.-F., & Hämäläinen, J. A. (2022). Load-dependent alpha suppression is related to working memory capacity for numbers. Brain Research, 1791, 147994. Hu, Z., Barkley, C. M., Marino, S. E., Wang, C., Rajan, A., Bo, K., Samuel, I. B. H., Ding, M. (2019). Working memory capacity is negatively associated with memory load modulation of alpha oscillations in retention of verbal working memory. Journal of Cognitive Neuroscience, 31(12), 1933-1945. Hyafil, A., Giraud, A.-L., Fontolan, L., & Gutkin, B. (2015). Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends in Neurosciences, 38(11), 725-740. Ikkai, A., McCollough, A. W., & Vogel, E. K. (2010). Contralateral delay activity provides a neural measure of the number of representations in visual working memory. Journal of Neurophysiology, 103(4), 1963-1968. Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206. Jensen, O., & Colgin, L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences, 11(7), 267-269. Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877-882. Jensen, O., Kaiser, J., & Lachaux, J.-P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324. Jensen, O., & Lisman, J. E. (1998). An oscillatory short-term memory buffer model can account for data on the Sternberg task. Journal of Neuroscience, 18(24), 10688-10699. Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences, 28(2), 67-72. Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience, 4, 186. Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15(8), 1395-1399. John, E., Easton, P., Isenhart, R., Allen, P., & Gulyashar, A. (1996). Electrophysiological analysis of the registration, storage and retrieval of information in delayed matching from samples. International Journal of Psychophysiology, 24(1-2), 127-144. Johnson, J. S., Sutterer, D. W., Acheson, D. J., Lewis-Peacock, J. A., & Postle, B. R. (2011). Increased alpha-band power during the retention of shapes and shape-location associations in visual short-term memory [Original Research]. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00128 Johnson, M. K., McMahon, R. P., Robinson, B. M., Harvey, A. N., Hahn, B., Leonard, C. J., Luck, S. J., Gold, J. M. (2013). The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia. Neuropsychology, 27(2), 220-229. https://doi.org/10.1037/a0032060 Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The mind and brain of short-term memory. The Annual. Review of Psychology., 59, 193-224. Kamiński, J., Brzezicka, A., & Wróbel, A. (2011). Short-term memory capacity (7±2) predicted by theta to gamma cycle length ratio. Neurobiology of Learning and Memory, 95(1), 19-23. Keogh, R., & Pearson, J. (2014). The sensory strength of voluntary visual imagery predicts visual working memory capacity. Journal of vision, 14(12), 7-7. Kerrén, C., Linde-Domingo, J., Hanslmayr, S., & Wimber, M. (2018). An optimal oscillatory phase for pattern reactivation during memory retrieval. Current Biology, 28(21), 3383-3392. e3386. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63-88. Kuo, B.-C. (2016). Selection history modulates working memory capacity [Original Research]. Frontiers in Psychology, 7(1564). https://doi.org/10.3389/fpsyg.2016.01564 Kuo, B.-C., Nobre, A. C., Scerif, G., & Astle, D. E. (2016). Top-down activation of spatiotopic sensory codes in perceptual and working memory search. Journal of Cognitive Neuroscience, 28(7), 996-1009. https://doi.org/10.1162/jocn_a_00952 Kuo, B.-C., Rao, A., Lepsien, J., & Nobre, A. C. (2009). Searching for targets within the spatial layout of visual short-term memory. Journal of Neuroscience, 29(25), 8032-8038. https://doi.org/10.1523/JNEUROSCI.0952-09.2009 Lecerf, T., & de Ribaupierre, A. (2005). Recognition in a visuospatial memory task: The effect of presentation. European Journal of Cognitive Psychology, 17(1), 47-75. Li, X., O'Sullivan, M. J., & Mattingley, J. B. (2022). Delay activity during visual working memory: A meta-analysis of 30 fMRI experiments. Neuroimage, 255, 119204. Liang, W.-K., Tseng, P., Yeh, J.-R., Huang, N. E., & Juan, C.-H. (2021). Frontoparietal beta amplitude modulation and its interareal cross-frequency coupling in visual working memory. Neuroscience, 460, 69-87. Linde-Domingo, J., Treder, M. S., Kerrén, C., & Wimber, M. (2019). Evidence that neural information flow is reversed between object perception and object reconstruction from memory. Nature Communications, 10(1), 179. Linke, A., Vicente-Grabovetsky, A., Mitchell, D., & Cusack, R. (2011). Encoding strategy accounts for individual differences in change detection measures of VSTM. Neuropsychologia, 49(6), 1476-1486. Linke, A. C., Vicente-Grabovetsky, A., Mitchell, D. J., & Cusack, R. (2011). Encoding strategy accounts for individual differences in change detection measures of VSTM. Neuropsychologia, 49(6), 1476-1486. https://doi.org/10.1016/j.neuropsychologia.2010.11.034 Lisman, J. E., & Buzsaki, G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull, 34(5), 974-980. https://doi.org/10.1093/schbul/sbn060 Lisman, J. E., & Idiart, M. A. (1995). Storage of 7+/-2 short-term memories in oscillatory subcycles. Science, 267(5203), 1512-1515. Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1000-1014. https://doi.org/10.1037/0096-1523.20.5.1000 Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281. https://doi.org/10.1038/36846 Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391-400. Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience & Biobehavioral Reviews, 62, 100-108. https://doi.org/10.1016/j.neubiorev.2016.01.003 Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell'Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512. Luria, R., & Vogel, E. K. (2011). Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia, 49(6), 1632-1639. Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory [Review]. Nature Neuroscience, 17(3), 347-356. https://doi.org/10.1038/nn.3655 Machado, P., Romero, J., Nadal, M., Santos, A., Correia, J., & Carballal, A. (2015). Computerized measures of visual complexity. Acta Psychologica, 160, 43-57. Madan, C. R., Bayer, J., Gamer, M., Lonsdorf, T. B., & Sommer, T. (2018). Visual complexity and affect: Ratings reflect more than meets the eye. Frontiers in Psychology, 8, 2368. Magen, H., & Berger-Mandelbaum, A. (2018). Encoding strategies in self-initiated visual working memory. Memory & Cognition, 46, 1093-1108. Malenínská, K., Rudolfová, V., Šulcová, K., Koudelka, V., Brunovský, M., Horáček, J., & Nekovářová, T. (2021). Is short-term memory capacity (7±2) really predicted by theta to gamma cycle length ratio? Behavioural Brain Research, 414, 113465. Mance, I., Becker, M. W., & Liu, T. (2012). Parallel consolidation of simple features into visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 429. Manohar, S. G., Pertzov, Y., & Husain, M. (2017). Short-term memory for spatial, sequential and duration information. Current Opinion in Behavioral Sciences, 17, 20-26. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190. https://doi.org/10.1016/j.jneumeth.2007.03.024 McElree, B. (2006). Accessing recent events. Psychology of Learning and Motivation, 46, 155-200. McElree, B., & Dosher, B. A. (1993). Serial retrieval processes in the recovery of order information. Journal of Experimental Psychology: General, 122(3), 291. Meltzer, J. A., Zaveri, H. P., Goncharova, I. I., Distasio, M. M., Papademetris, X., Spencer, S. S., Spencer, D. D., Constable, R. T. (2008). Effects of working memory load on oscillatory power in human intracranial EEG. Cerebral Cortex, 18(8), 1843-1855. Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working memory 2.0. Neuron, 100(2), 463-475. https://doi.org/10.1016/j.neuron.2018.09.023 Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81. Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. Cambridge University Press. Morrison, A. B., Conway, A. R., & Chein, J. M. (2014). Primacy and recency effects as indices of the focus of attention. Frontiers in Human Neuroscience, 8, 6. Murdock Jr, B. B. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64(5), 482. Myers, N. E., Stokes, M. G., Walther, L., & Nobre, A. C. (2014). Oscillatory brain state predicts variability in working memory. Journal of Neuroscience, 34(23), 7735-7743. Nee, D. E., & Jonides, J. (2011). Dissociable contributions of prefrontal cortex and the hippocampus to short-term memory: evidence for a 3-state model of memory. Neuroimage, 54(2), 1540-1548. Nobre, A. C., Griffin, I. C., & Rao, A. (2008). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 1, 1-9. Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Physics in Medicine & Biology, 48(22), 3637. Oberauer, K., & Eichenberger, S. (2013). Visual working memory declines when more features must be remembered for each object. Memory & Cognition, 41, 1212-1227. Oberauer, K., & Lin, H.-Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21. Okuhata, S., Kusanagi, T., Kawaguchi, H., & Kobayashi, T. (2012). Sequential memory scanning during sternberg memory task regardless of the different presentation style. 2012 ICME International Conference on Complex Medical Engineering (CME), Kobe, Japan. Okuhata, S., Kusanagi, T., & Kobayashi, T. (2013). Parietal EEG alpha suppression time of memory retrieval reflects memory load while the alpha power of memory maintenance is a composite of the visual process according to simultaneous and successive Sternberg memory tasks. Neuroscience Letters, 555, 79-84. Olson, I. R., & Marshuetz, C. (2005). Remembering “what” brings along “where” in visual working memory. Perception & Psychophysics, 67, 185-194. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 9, Article 156869. https://doi.org/10.1155/2011/156869 Öztekin, I., McElree, B., Staresina, B. P., & Davachi, L. (2009). Working memory retrieval: contributions of the left prefrontal cortex, the left posterior parietal cortex, and the hippocampus. Journal of Cognitive Neuroscience, 21(3), 581-593. Palva, S., Kulashekhar, S., Hämäläinen, M., & Palva, J. M. (2011). Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention. Journal of Neuroscience, 31(13), 5013-5025. Pavlov, Y. G., & Kotchoubey, B. (2021). Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology, n/a(n/a), e13735. https://doi.org/10.1111/psyp.13735 Pavlov, Y. G., & Kotchoubey, B. (2022). Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology, 59(5), e13735. Pfurtscheller, G., Stancak Jr, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. International Journal of Psychophysiology, 24(1-2), 39-46. Pickering, S. J., Gathercole, S. E., Hall, M., & Lloyd, S. A. (2001). Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory. The Quarterly Journal of Experimental Psychology Section A, 54(2), 397-420. Pomper, U., Ditye, T., & Ansorge, U. (2019). Contralateral delay activity during temporal order memory. Neuropsychologia, 129, 104-116. Proskovec, A. L., Heinrichs-Graham, E., & Wilson, T. W. (2019). Load modulates the alpha and beta oscillatory dynamics serving verbal working memory. Neuroimage, 184, 256-265. https://doi.org/10.1016/j.neuroimage.2018.09.022 Proskovec, A. L., Wiesman, A. I., Heinrichs-Graham, E., & Wilson, T. W. (2018). Beta oscillatory dynamics in the prefrontal and superior temporal cortices predict spatial working memory performance. Scientific Reports, 8(1), 8488. Proskovec, A. L., Wiesman, A. I., Heinrichs-Graham, E., & Wilson, T. W. (2019). Load effects on spatial working memory performance are linked to distributed alpha and beta oscillations. Human Brain Mapping, 40(12), 3682-3689. https://doi.org/doi.org/10.1002/hbm.24625 Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bourgeois, B., Madsen, R., Lisman, J. E. (2001). Gating of human theta oscillations by a working memory task. Journal of Neuroscience, 21(9), 3175-3183. Rajji, T. K., Zomorrodi, R., Barr, M. S., Blumberger, D. M., Mulsant, B. H., & Daskalakis, Z. J. (2017). Ordering information in working memory and modulation of gamma by theta oscillations in humans. Cerebral Cortex, 27(2), 1482-1490. Ratcliffe, O., Shapiro, K., & Staresina, B. P. (2022). Fronto-medial theta coordinates posterior maintenance of working memory content. Current Biology, 32(10), 2121-2129. e2123. Ricker, T. J., & Cowan, N. (2014). Differences between presentation methods in working memory procedures: a matter of working memory consolidation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 417. Riddle, J., Scimeca, J. M., Cellier, D., Dhanani, S., & D’Esposito, M. (2020). Causal evidence for a role of theta and alpha oscillations in the control of working memory. Current Biology, 30(9), 1748-1754. e1744. Riley, M. R., & Constantinidis, C. (2016). Role of prefrontal persistent activity in working memory. Frontiers in systems neuroscience, 9, 181. Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16-25. Roux, F., Wibral, M., Mohr, H. M., Singer, W., & Uhlhaas, P. J. (2012). Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. Journal of Neuroscience, 32(36), 12411-12420. Sapkota, R. P., Pardhan, S., & van der Linde, I. (2016). Spatiotemporal proximity effects in visual short-term memory examined by target–nontarget analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(8), 1304. Sasaki, T. (2009). Individual differences in working memory capacity in recency effects: from the recall process. Psychological Reports, 104(2), 545-548. Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022. Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top‐down processing in a working memory task. Human Brain Mapping, 26(2), 148-155. Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A., Glennon, M., Gerloff, C., Birbaumer, N., Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19(21), 1846-1852. Scheeringa, R., Petersson, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., & Bastiaansen, M. C. M. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage, 44(3), 1224-1238. https://doi.org/10.1016/j.neuroimage.2008.08.041 Song, J.-H., & Jiang, Y. (2006). Visual working memory for simple and complex features: An fMRI study. Neuroimage, 30(3), 963-972. St. John, A. M., Kibbe, M., & Tarullo, A. R. (2019). A systematic assessment of socioeconomic status and executive functioning in early childhood. Journal of Experimental Child Psychology, 178, 352-368. https://doi.org/10.1016/j.jecp.2018.09.003 Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced γ-band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience, 18(11), 4244-4254. Tamura, M., Spellman, T. J., Rosen, A. M., Gogos, J. A., & Gordon, J. A. (2017). Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task. Natural Communication, 8(1), 2182. https://doi.org/10.1038/s41467-017-02108-9 Theeuwes, J., Kramer, A. F., & Irwin, D. E. (2011). Attention on our mind: The role of spatial attention in visual working memory. Acta Psychologica, 137(2), 248-251. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751-754. Tort, A. B., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 104(2), 1195-1210. Tort, A. B., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta–gamma coupling increases during the learning of item–context associations. Proceedings of the National Academy of Sciences, 106(49), 20942-20947. Treder, M. S. (2020). MVPA-light: a classification and regression toolbox for multi-dimensional data. Frontiers in Neuroscience, 14, 289. Tsujimoto, T., Shimazu, H., & Isomura, Y. (2006). Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. Journal of Neurophysiology, 95(5), 2987-3000. Tuladhar, A. M., Huurne, N. t., Schoffelen, J.-M., Maris, E., Oostenveld, R., & Jensen, O. (2007). Parieto-occipital sources account for the increase in alpha activity with working memory load. Human Brain Mapping, 28(8), 785-792. https://doi.org/10.1002/hbm.20306 Umemoto, A., Scolari, M., Vogel, E. K., & Awh, E. (2010). Statistical learning induces discrete shifts in the allocation of working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1419-1429. https://doi.org/10.1037/a0019324 van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. The Journal of Neuroscience, 28(8), 1816-1823. https://doi.org/10.1523/jneurosci.1853-07.2008 van Ede, F. (2018). Mnemonic and attentional roles for states of attenuated alpha oscillations in perceptual working memory: A review. European Journal of Neuroscience, 48(7), 2509-2515. van Ede, F., Jensen, O., & Maris, E. (2017). Supramodal theta, gamma, and sustained fields predict modality-specific modulations of alpha and beta oscillations during visual and tactile working memory. Journal of Cognitive Neuroscience, 29(8), 1455-1472. https://doi.org/10.1162/jocn_a_01129 van Ede, F., Köster, M., & Maris, E. (2012). Beyond establishing involvement: quantifying the contribution of anticipatory α- and β-band suppression to perceptual improvement with attention. Journal of Neurophysiology, 108(9), 2352-2362. https://doi.org/10.1152/jn.00347.2012 Van Vugt, M. K., Schulze-Bonhage, A., Litt, B., Brandt, A., & Kahana, M. J. (2010). Hippocampal gamma oscillations increase with memory load. Journal of Neuroscience, 30(7), 2694-2699. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503. Von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38(3), 301-313. Vosskuhl, J., Huster, R. J., & Herrmann, C. S. (2015). Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Frontiers in Human Neuroscience, 9, 257. Wang, S., Rajsic, J., & Woodman, G. F. (2019). The contralateral delay activity tracks the sequential loading of objects into visual working memory, unlike lateralized alpha oscillations. Journal of Cognitive Neuroscience, 31(11), 1689-1698. Wolinski, N., Cooper, N. R., Sauseng, P., & Romei, V. (2018). The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biology, 16(3), e2005348. Xu, Y. (2007). The role of the superior intraparietal sulcus in supporting visual short-term memory for multifeature objects. Journal of Neuroscience, 27(43), 11676-11686. Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91-95. https://doi.org/10.1038/nature04262 Xu, Y., & Jeong, S. K. (2015). The contribution of human superior intraparietal sulcus to visual short-term memory and perception. Mechanisms of sensory working memory: Attention and performance XXV, 1, 33-42. Yang, R., Dunbar, C., Sonesra, A., Park, S., Pham, T., Samaco, R. C., Foster, B. L., Maheshwari, A. (2020). Right lateralized posterior parietal theta-gamma coupling during sustained attention in mice. BioRxiv, 2020.2006. 2011.147330. Yeh, L.-C., Yeh, Y.-Y., & Kuo, B.-C. (2019). Spatially specific attention mechanisms are sensitive to competition during visual search. Journal of Cognitive Neuroscience, 31(8), 1248-1259. https://doi.org/10.1162/jocn_a_01418 %M 31037989 Zakrzewska, M. Z., & Brzezicka, A. (2014). Working memory capacity as a moderator of load-related frontal midline theta variability in Sternberg task. Frontiers in Human Neuroscience, 8, 399. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96019 | - |
| dc.description.abstract | 工作記憶讓個體得以短暫地維持多個項目資訊,以引導後續的目標導向行為。工作記憶的其中一項主要特性為容量限制,雖然過去研究經常探討工作記憶容量個體差異的神經基礎,對於個體而言,工作記憶容量可能會受到記憶項目的特性所影響。本論文使用腦電圖和腦磁圖,探討在延遲反應工作記憶作業中,不同的記憶材料(英文字母、規則圖形和抽象圖形)和呈現模式(同時呈現或順序性呈現)如何影響高或低工作記憶負荷的工作記憶表現和神經振盪活動。研究一的行為結果顯示,相較於簡單物體(字母和規則圖形),複雜物體(抽象圖形)的工作記憶容量在較低的工作記憶負荷就達到容量限制,導致簡單物體較複雜物體呈現隨負荷差異較大的工作記憶容量差異。腦電圖的結果和行為測量的結果一致,顯示在工作記憶維持階段,簡單物體較複雜物體呈現較大的負荷相依(高負荷相對於低負荷)的後側腦區alpha power下降。這些結果顯示 alpha 振盪以內容特定的方式追蹤工作記憶容量,不只反映了儲存項目的數目,也反映了記憶材料的特性。研究二中,腦電圖的結果顯示工作記憶維持階段負荷相依的 alpha振盪活動會受到刺激呈現模式的影響,同時呈現模式相較於順序呈現模式較大的後側腦區alpha power下降。此外,順序性呈現在記憶提取階段的N3rs振幅反映了行為的新近效應。多變量模式分析顯示,在中央順序呈現模式中,目標物的序列順序資訊可從記憶搜尋的神經活動中被解碼,且在解譯分析中的嘗試次分類保真度可以預測嘗試次的反應時間。這些結果顯示蘊含在記憶登錄時刺激呈現模式中的空間和順序資訊得以繼續影響後續記憶維持和提取的歷程。在研究三中,行為和腦磁圖的資料複製研究一的結果。感測器層次的結果追蹤了行為測量,在工作記憶維持階段,簡單刺激(英文字母)相較於複雜刺激(抽象圖形)有較大的負荷相依的 alpha power下降和gamma power增加。此外,神經來源定位支持先前的研究結果,顯示枕葉區和後側頂葉區域可能是內容特定工作記憶容量的相關腦區。最後,左側海馬迴theta-gamma的相位-振幅聯結強度可能反映了內容特定的工作記憶容量。這些結果提供了記憶材料會調節不同頻帶的神經振盪活動間協調的神經證據。總結而言,此論文闡明了刺激材料和呈現模式如何調節工作記憶處理時的神經活動,以及不同頻帶的振盪活動在工作記憶維持階段如何互動和協調。 | zh_TW |
| dc.description.abstract | Working memory (WM) enables individuals to maintain information of multiple items for a brief period, guiding goal-directed behaviours. One key feature of WM is its capacity limit. Although the neural basis of WM capacity is often studied by examining individual differences, capacity may also vary depending on the properties of memoranda for a given individual. This dissertation investigates how different memory materials (English letters, regular shapes or abstract shapes) and presentation modes (simultaneous or sequential) influence WM performance and oscillatory activities using electroencephalography (EEG) and magnetoencephalography (MEG) in the delayed response tasks with high and low WM load. In Study I, the behavioural results showed that WM capacity for complex objects (i.e., abstract shapes) reached a plateau at a lower set size compared to simple objects (i.e., English letters and regular shapes), resulting in a larger difference for capacity measures for simple objects relative to complex objects. Our EEG data mirrored the behavioural measures in capacity, showing a larger load-dependent (high versus low WM load) decrease in posterior alpha (8-13 Hz) power for simple objects than complex objects during WM maintenance. These findings suggest that alpha oscillations track WM capacity in a content-specific manner, reflecting not only the number of stored items but also the property of memory material. In Study II, the EEG results demonstrated that the load-dependent alpha oscillatory activity was sensitive to the stimulus presentation mode, as manifested by a larger attenuation of posterior alpha power during WM maintenance when stimuli were presented simultaneously during encoding compared to when presented sequentially. Additionally, the behavioural recency effect was reflected in N3rs amplitudes during WM retrieval for the sequential presentations. Multivariate pattern analysis revealed that the information of serial position of the target during WM encoding can be decoded from neural activity during WM search, and the trial-wise classification fidelity of target position in the decoding analysis predicts the trial-wise RTs in the center-sequential presentation. These findings suggest that the spatial and the ordinal information embedded in the stimulus presentation during encoding continues to affect processing during subsequent WM maintenance and retrieval. In Study III, our behavioural and MEG results at the sensor level replicated the findings from Study I. Consistent with capacity measures, we found a more pronounced load-dependent (high versus low WM load) decrease in alpha (8-13 Hz) power and an increase in gamma (30-100 Hz) power for simple objects (i.e., letters) than complex objects (i.e., abstract shapes) during WM maintenance. Furthermore, the source localisation supported the prior findings that the occipital and the posterior parietal regions may be the locus related to the content-specific WM capacity. Finally, our source-level data demonstrated that the coupling strength of theta-gamma PAC in the left hippocampus may reflect content-specific WM capacity. The findings provided neural evidence that memory material modulates the coordination between oscillatory activities of various frequency bands. Together, this dissertation sheds light on how memory materials and presentation modes modulate neural activities during WM processing, and how oscillatory activities at different frequency bands interact and orchestrate during WM maintenance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:38:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:38:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 1. General Introduction 1 1.1. WM Capacity Limits and the Related Hypotheses 2 1.2. Neural Correlates of WM and Its Capacity 2 1.3. Between-Individual Difference for WM Capacity Limits 8 1.4. Within-individual Difference for WM Capacity Limits — WM Capacity May be Modulated by the Property of Memory Materials 10 1.5. WM Performance and WM-related Neural Activity May be Modulated by the Presentation Mode of Stimuli 11 1.6. Cross-Frequency Coupling and WM Maintenance of Multi-Items 12 1.7. Research Aims 17 2. Study I. Alpha Oscillations Track Content-Specific Working Memory Capacity 21 2.1. Introduction 21 2.2. Methods 24 2.3. Results 35 2.4. Discussion 49 2.5. Interim Conclusion 56 3. Study II. Modulation of Presentation Mode and Mnemonic Load on Alpha Oscillations in Working Memory 57 3.1. Introduction 57 3.2. Methods 61 3.3. Results 76 3.4. Discussion 90 3.5. Interim Conclusion 100 4. Study III. Theta-Gamma Coupling Reflects WM Capacity Depending on Memory Materials 101 4.1. Introduction 101 4.2. Methods 104 4.3. Results 121 4.4. Discussion 142 4.5. Interim Conclusion 150 5. General Conclusion 153 6. Reference 167 Curriculum Vitae 199 | - |
| dc.language.iso | en | - |
| dc.title | 記憶材料與呈現模式調節工作記憶負荷相依的神經活動 | zh_TW |
| dc.title | Memory Materials and Presentation Modes Modulate Load-Dependent Neural Activities in Working Memory | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 阮啟弘;許禕芳;葉怡玉;鄭嘉雄 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Hung Juan;Yi-Fang Hsu;Yei-Yu Yeh;Chia-Hsiung Cheng | en |
| dc.subject.keyword | 工作記憶,alpha 振盪,腦磁圖,腦電圖,跨頻帶連結,相位-振幅聯結,theta-gamma 聯結, | zh_TW |
| dc.subject.keyword | working memory,alpha oscillation,magnetoencephalography,electroencephalography,cross-frequency coupling,phase-amplitude coupling,theta-gamma coupling, | en |
| dc.relation.page | 202 | - |
| dc.identifier.doi | 10.6342/NTU202404128 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 心理學系 | - |
| dc.date.embargo-lift | 2028-07-31 | - |
| 顯示於系所單位: | 心理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2028-07-31 | 4.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
