請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96006完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐丞志 | zh_TW |
| dc.contributor.advisor | Cheng-Chih Hsu | en |
| dc.contributor.author | 林泓君 | zh_TW |
| dc.contributor.author | Hung-Chun Lin | en |
| dc.date.accessioned | 2024-09-25T16:34:55Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-02 | - |
| dc.identifier.citation | 1. Li, D.; Wang, P.; Wang, P.; Hu, X.; Chen, F., The gut microbiota: A treasure for human health. Biotechnol. Adv. 2016, 34 (7), 1210-1224.
2. Fan, Y.; Pedersen, O., Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19 (1), 55-71. 3. Bottacini, F.; van Sinderen, D.; Ventura, M., Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem. J. 2017, 474 (24), 4137-4152. 4. Wong, C. B.; Odamaki, T.; Xiao, J. Z., Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol. Rev. 2020, 44 (3), 369-385. 5. Derrien, M.; Turroni, F.; Ventura, M.; van Sinderen, D., Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol. 2022, 30 (10), 940-947. 6. Henrick, B. M.; Rodriguez, L.; Lakshmikanth, T.; Pou, C.; Henckel, E.; Arzoomand, A.; Olin, A.; Wang, J.; Mikes, J.; Tan, Z.; Chen, Y.; Ehrlich, A. M.; Bernhardsson, A. K.; Mugabo, C. H.; Ambrosiani, Y.; Gustafsson, A.; Chew, S.; Brown, H. K.; Prambs, J.; Bohlin, K.; Mitchell, R. D.; Underwood, M. A.; Smilowitz, J. T.; German, J. B.; Frese, S. A.; Brodin, P., Bifidobacteria-mediated immune system imprinting early in life. Cell 2021, 184 (15), 3884-3898.e11. 7. Koppel, N.; Maini Rekdal, V.; Balskus, E. P., Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356 (6344). 8. Lyu, Q.; Chen, R. A.; Chuang, H. L.; Zou, H. B.; Liu, L.; Sung, L. K.; Liu, P. Y.; Wu, H. Y.; Chang, H. Y.; Cheng, W. J.; Wu, W. K.; Wu, M. S.; Hsu, C. C., Bifidobacterium alleviate metabolic disorders via converting methionine to 5'-methylthioadenosine. Gut Microbes 2024, 16 (1), 2300847. 9. He, B. L.; Xiong, Y.; Hu, T. G.; Zong, M. H.; Wu, H., Bifidobacterium spp. as functional foods: A review of current status, challenges, and strategies. Crit. Rev. Food Sci. Nutr. 2023, 63 (26), 8048-8065. 10. Zuo, F.; Chen, S.; Marcotte, H., Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol. Adv. 2020, 45, 107654. 11. Zuo, F.; Marcotte, H., Advancing mechanistic understanding and bioengineering of probiotic lactobacilli and bifidobacteria by genome editing. Curr. Opin. Biotechnol. 2021, 70, 75-82. 12. Knott, G. J.; Doudna, J. A., CRISPR-Cas guides the future of genetic engineering. Science 2018, 361 (6405), 866-869. 13. Ramachandran, G.; Bikard, D., Editing the microbiome the CRISPR way. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2019, 374 (1772), 20180103. 14. Anzalone, A. V.; Koblan, L. W.; Liu, D. R., Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38 (7), 824-844. 15. Banno, S.; Nishida, K.; Arazoe, T.; Mitsunobu, H.; Kondo, A., Deaminase-mediated multiplex genome editing in Escherichia coli. Nat. Microbiol. 2018, 3 (4), 423-429. 16. Tong, Y.; Whitford, C. M.; Robertsen, H. L.; Blin, K.; Jørgensen, T. S.; Klitgaard, A. K.; Gren, T.; Jiang, X.; Weber, T.; Lee, S. Y., Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc. Natl. Acad. Sci. USA 2019, 116 (41), 20366-20375. 17. Wang, L.; Xue, W.; Yan, L.; Li, X.; Wei, J.; Chen, M.; Wu, J.; Yang, B.; Yang, L.; Chen, J., Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 2017, 27 (10), 1289-1292. 18. Jin, W. B.; Li, T. T.; Huo, D.; Qu, S.; Li, X. V.; Arifuzzaman, M.; Lima, S. F.; Shi, H. Q.; Wang, A.; Putzel, G. G.; Longman, R. S.; Artis, D.; Guo, C. J., Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 2022, 185 (3), 547-562.e22. 19. Wang, Y.; Wang, D.; Wang, X.; Tao, H.; Feng, E.; Zhu, L.; Pan, C.; Wang, B.; Liu, C.; Liu, X.; Wang, H., Highly Efficient Genome Engineering in Bacillus anthracis and Bacillus cereus Using the CRISPR/Cas9 System. Front. Microbiol. 2019, 10, 1932. 20. Hidalgo-Cantabrana, C.; Goh, Y. J.; Pan, M.; Sanozky-Dawes, R.; Barrangou, R., Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proc. Natl. Acad. Sci. USA 2019, 116 (32), 15774-15783. 21. Zheng, L.; Tan, Y.; Hu, Y.; Shen, J.; Qu, Z.; Chen, X.; Ho, C. L.; Leung, E. L.; Zhao, W.; Dai, L., CRISPR/Cas-Based Genome Editing for Human Gut Commensal Bacteroides Species. ACS Synth. Biol. 2022, 11 (1), 464-472. 22. Pan, M.; Morovic, W.; Hidalgo-Cantabrana, C.; Roberts, A.; Walden, K. K. O.; Goh, Y. J.; Barrangou, R., Genomic and epigenetic landscapes drive CRISPR-based genome editing in Bifidobacterium. Proc. Natl. Acad. Sci. USA 2022, 119 (30). 23. O'Connell Motherway, M.; O'Driscoll, J.; Fitzgerald, G. F.; Van Sinderen, D., Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb. Biotechnol. 2009, 2 (3), 321-32. 24. O'Callaghan, A.; Bottacini, F.; O'Connell Motherway, M.; van Sinderen, D., Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 2015, 16, 832. 25. Roberts, R. J.; Belfort, M.; Bestor, T.; Bhagwat, A. S.; Bickle, T. A.; Bitinaite, J.; Blumenthal, R. M.; Degtyarev, S.; Dryden, D. T.; Dybvig, K.; Firman, K.; Gromova, E. S.; Gumport, R. I.; Halford, S. E.; Hattman, S.; Heitman, J.; Hornby, D. P.; Janulaitis, A.; Jeltsch, A.; Josephsen, J.; Kiss, A.; Klaenhammer, T. R.; Kobayashi, I.; Kong, H.; Krüger, D. H.; Lacks, S.; Marinus, M. G.; Miyahara, M.; Morgan, R. D.; Murray, N. E.; Nagaraja, V.; Piekarowicz, A.; Pingoud, A.; Raleigh, E.; Rao, D. N.; Reich, N.; Repin, V. E.; Selker, E. U.; Shaw, P. C.; Stein, D. C.; Stoddard, B. L.; Szybalski, W.; Trautner, T. A.; Van Etten, J. L.; Vitor, J. M.; Wilson, G. G.; Xu, S. Y., A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 2003, 31 (7), 1805-12. 26. Beaulaurier, J.; Schadt, E. E.; Fang, G., Deciphering bacterial epigenomes using modern sequencing technologies. Nat. Rev. Genet. 2019, 20 (3), 157-172. 27. Bottacini, F.; Morrissey, R.; Roberts, R. J.; James, K.; van Breen, J.; Egan, M.; Lambert, J.; van Limpt, K.; Knol, J.; Motherway, M. O.; van Sinderen, D., Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve. Nucleic Acids Res. 2018, 46 (4), 1860-1877. 28. Park, M. J.; Park, M. S.; Ji, G. E., Improvement of electroporation-mediated transformation efficiency for a Bifidobacterium strain to a reproducibly high level. J. Microbiol. Methods 2019, 159, 112-119. 29. Grimm, V.; Gleinser, M.; Neu, C.; Zhurina, D.; Riedel, C. U., Expression of fluorescent proteins in bifidobacteria for analysis of host-microbe interactions. Appl. Environ. Microbiol. 2014, 80 (9), 2842-50. 30. Shao, Z.; Rao, G.; Li, C.; Abil, Z.; Luo, Y.; Zhao, H., Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth. Biol. 2013, 2 (11), 662-9. 31. Rodríguez-García, A.; Combes, P.; Pérez-Redondo, R.; Smith, M. C.; Smith, M. C., Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res. 2005, 33 (9), e87. 32. Wang, W.; Li, X.; Wang, J.; Xiang, S.; Feng, X.; Yang, K., An engineered strong promoter for streptomycetes. Appl. Environ. Microbiol. 2013, 79 (14), 4484-92. 33. Bai, C.; Zhang, Y.; Zhao, X.; Hu, Y.; Xiang, S.; Miao, J.; Lou, C.; Zhang, L., Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl. Acad. Sci. USA 2015, 112 (39), 12181-6. 34. Zhao, Y.; Li, G.; Chen, Y.; Lu, Y., Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules 2020, 10 (5). 35. Arroyo-Olarte, R. D.; Bravo Rodríguez, R.; Morales-Ríos, E., Genome Editing in Bacteria: CRISPR-Cas and Beyond. Microorganisms 2021, 9 (4). 36. Gentry, E. C.; Collins, S. L.; Panitchpakdi, M.; Belda-Ferre, P.; Stewart, A. K.; Carrillo Terrazas, M.; Lu, H. H.; Zuffa, S.; Yan, T.; Avila-Pacheco, J.; Plichta, D. R.; Aron, A. T.; Wang, M.; Jarmusch, A. K.; Hao, F.; Syrkin-Nikolau, M.; Vlamakis, H.; Ananthakrishnan, A. N.; Boland, B. S.; Hemperly, A.; Vande Casteele, N.; Gonzalez, F. J.; Clish, C. B.; Xavier, R. J.; Chu, H.; Baker, E. S.; Patterson, A. D.; Knight, R.; Siegel, D.; Dorrestein, P. C., Reverse metabolomics for the discovery of chemical structures from humans. Nature 2024, 626 (7998), 419-426. 37. Foley, M. H.; O'Flaherty, S.; Barrangou, R.; Theriot, C. M., Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 2019, 15 (3), e1007581. 38. Wahlström, A.; Sayin, S. I.; Marschall, H. U.; Bäckhed, F., Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24 (1), 41-50. 39. Collins, S. L.; Stine, J. G.; Bisanz, J. E.; Okafor, C. D.; Patterson, A. D., Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat. Rev. Microbiol. 2023, 21 (4), 236-247. 40. Quinn, R. A.; Melnik, A. V.; Vrbanac, A.; Fu, T.; Patras, K. A.; Christy, M. P.; Bodai, Z.; Belda-Ferre, P.; Tripathi, A.; Chung, L. K.; Downes, M.; Welch, R. D.; Quinn, M.; Humphrey, G.; Panitchpakdi, M.; Weldon, K. C.; Aksenov, A.; da Silva, R.; Avila-Pacheco, J.; Clish, C.; Bae, S.; Mallick, H.; Franzosa, E. A.; Lloyd-Price, J.; Bussell, R.; Thron, T.; Nelson, A. T.; Wang, M.; Leszczynski, E.; Vargas, F.; Gauglitz, J. M.; Meehan, M. J.; Gentry, E.; Arthur, T. D.; Komor, A. C.; Poulsen, O.; Boland, B. S.; Chang, J. T.; Sandborn, W. J.; Lim, M.; Garg, N.; Lumeng, J. C.; Xavier, R. J.; Kazmierczak, B. I.; Jain, R.; Egan, M.; Rhee, K. E.; Ferguson, D.; Raffatellu, M.; Vlamakis, H.; Haddad, G. G.; Siegel, D.; Huttenhower, C.; Mazmanian, S. K.; Evans, R. M.; Nizet, V.; Knight, R.; Dorrestein, P. C., Global chemical effects of the microbiome include new bile-acid conjugations. Nature 2020, 579 (7797), 123-129. 41. Rimal, B.; Collins, S. L.; Tanes, C. E.; Rocha, E. R.; Granda, M. A.; Solanki, S.; Hoque, N. J.; Gentry, E. C.; Koo, I.; Reilly, E. R.; Hao, F.; Paudel, D.; Singh, V.; Yan, T.; Kim, M. S.; Bittinger, K.; Zackular, J. P.; Krausz, K. W.; Desai, D.; Amin, S.; Coleman, J. P.; Shah, Y. M.; Bisanz, J. E.; Gonzalez, F. J.; Vanden Heuvel, J. P.; Wu, G. D.; Zemel, B. S.; Dorrestein, P. C.; Weinert, E. E.; Patterson, A. D., Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 2024, 626 (8000), 859-863. 42. Hirayama, Y.; Sakanaka, M.; Fukuma, H.; Murayama, H.; Kano, Y.; Fukiya, S.; Yokota, A., Development of a double-crossover markerless gene deletion system in Bifidobacterium longum: functional analysis of the α-galactosidase gene for raffinose assimilation. Appl. Environ. Microbiol. 2012, 78 (14), 4984-94. 43. Zuo, F.; Zeng, Z.; Hammarström, L.; Marcotte, H., Inducible Plasmid Self-Destruction (IPSD) Assisted Genome Engineering in Lactobacilli and Bifidobacteria. ACS Synth. Biol. 2019, 8 (8), 1723-1729. 44. Hidalgo-Cantabrana, C.; Crawley, A. B.; Sanchez, B.; Barrangou, R., Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum. Front. Microbiol. 2017, 8, 1851. 45. Han, X.; Chang, L.; Chen, H.; Zhao, J.; Tian, F.; Ross, R. P.; Stanton, C.; van Sinderen, D.; Chen, W.; Yang, B., Harnessing the endogenous Type I-C CRISPR-Cas system for genome editing in Bifidobacterium breve. Appl. Environ. Microbiol. 2024, e0207423. 46. Li, J.; Song, X.; Xiong, Z.; Wang, G.; Xia, Y.; Yang, Y.; Ai, L., Establishment of CRISPR-Cas9 system in Bifidobacteria animalis AR668. Microb. Cell Fact. 2023, 22 (1), 112. 47. Yasui, K.; Kano, Y.; Tanaka, K.; Watanabe, K.; Shimizu-Kadota, M.; Yoshikawa, H.; Suzuki, T., Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res. 2009, 37 (1), e3. 48. Johnston, C. D.; Cotton, S. L.; Rittling, S. R.; Starr, J. R.; Borisy, G. G.; Dewhirst, F. E.; Lemon, K. P., Systematic evasion of the restriction-modification barrier in bacteria. Proc. Natl. Acad. Sci. USA 2019, 116 (23), 11454-11459. 49. Yang, P.; Yang, J.; Lin, T.; Liu, Q.; Yin, Y.; Chen, D.; Yang, S., Efficient Genome Editing in Most Staphylococcus aureus by Using the Restriction-Modification System Silent CRISPR-Cas9 Toolkit. ACS Synth. Biol. 2023, 12 (11), 3340-3351. 50. McCarty, N. S.; Graham, A. E.; Studená, L.; Ledesma-Amaro, R., Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 2020, 11 (1), 1281. 51. Volke, D. C.; Martino, R. A.; Kozaeva, E.; Smania, A. M.; Nikel, P. I., Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nat. Commun. 2022, 13 (1), 3026. 52. Roberts, R. J.; Vincze, T.; Posfai, J.; Macelis, D., REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015, 43 (Database issue), D298-9. 53. Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W. T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C. C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C. C.; Yang, Y. L.; Humpf, H. U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; P, C. A. B.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O'Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P. M.; Phapale, P.; Nothias, L. F.; Alexandrov, T.; Litaudon, M.; Wolfender, J. L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D. T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. O.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N., Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34 (8), 828-837. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96006 | - |
| dc.description.abstract | 腸道微生物群中的雙歧桿菌屬(Bifidobacterium)被視為益生菌,與人類健康息息相關,不僅能夠改善腸道健康,還能增強免疫力。為了深入探討雙歧桿菌是如何影響人類宿主、釐清是否有特定分子在此扮演重要角色,針對雙歧桿菌特定基因和代謝路徑的調控至關重要。然而,雙歧桿菌內限制修飾(RM)系統會將外來未甲基化的DNA切除,造成轉形(transformation)效率大幅降低,導致難以在雙歧桿菌屬中開發基因工程技術。本篇論文中,我們成功在雙歧桿菌屬中建立了一系列CRISPR-Cas9基因鹼基編輯器(cytosine base editor systems, cBEST),藉由精準調控鹼基編輯器和sgRNA的表現量來編輯雙歧桿菌屬中特定的基因。為了解決轉形效率差的問題,我們在龍根菌(Bfidobacterium longum NCIMB 8809)以及青春雙歧桿菌(Bifidobacterium adolescentis DSM 20083)中利用cBEST技術消除限制酶或甲基化特定DNA序列來躲避限制修飾系統,我們成功將轉型效率提高至三十萬倍,而基因編輯成功率則提高至100%。接著,為了驗證cBEST方法能精準調控特定的代謝路徑,我們透過分析不同變異株的甲硫胺酸(methionine)循環路徑,了解DNA甲基化與甲硫腺苷(5’-methylthioadenosine)調控的關係。我們也成功在不同雙歧桿菌屬中編輯膽鹽水解酶(bsh),並透過LC-MS/MS定量分析,證明我們能精準調控雙歧桿菌屬的膽酸代謝路徑。整體而言,我們成功利用CRISPR-Cas9基因編輯技術在雙歧桿菌屬中精準調控代謝途徑,並提供策略去躲避限制修飾系統,我們相信此方法必能成為研究腸道微生物強而有力的工具。 | zh_TW |
| dc.description.abstract | Intestinal microbiota members of the Bifidobacterium genus are increasingly recognized as probiotic potential and therapeutics applications to improve human health. However, the paucity of genetic tools and the prevalence of restriction modification (RM) systems limit the genetic manipulation in Bifidobacterium. In this study, we established a series of CRISPR/Cas9 cytosine base editor systems (cBESTs) with fine tuning base editor and sgRNA expression that are portable across multiple Bifidobacteria. We showed that bypassing RM systems by either eliminating restriction endonucleases or matching DNA methylation patterns in B. longum NCIMB 8809 and B. adolescentis DSM 20083 significantly improved both transformation (up to 300,000-fold) and editing efficiencies (up to 100%). Furthermore, we successfully manipulated methionine cycle pathway to elucidate the correlation between DNA methylation and 5’-methylthioadenosine regulation through MetK-deficient and RM-disrupted strains. Finally, we achieved the genetic knockout of the conserved bile salt hydrolase (bsh) gene in B. longum NCIMB 8809, B. longum DSM 20219 and B. infantis DSM 20088, effectively deactivating bile acids deconjugation. In summary, the ability to efficiently engineer Bifidobacterium genomes will definitely open new avenues for research and applications towards improving human health. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:34:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:34:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract v 圖次 ix 表次 xii Chapter 1. Introduction 1 1-1. Bifidobacterium 1 1-2. CRISPR-Based Genome Editing Methods for Bacteria 2 1-3. Restriction Modification Systems 4 1-4. Research Objectives 6 Chapter 2. Materials and Methods 7 2-1. Chemicals and Reagents 7 2-2. Bacterial Strains and Culturing 7 2-3. Protospacer Design for Gene Knockout 7 2-4. Electroporation of Bifidobacterium Strains 8 2-5. Determination of Transformation Efficiencies 10 2-6. Validation of Genome Editing and Determination of Genome Editing Efficiencies as well as Gene Editing Windows 10 2-7. Plasmid Curing from Bifidobacterium Transformants 11 2-8. mCherry Reporter Assay for Promoter Screening and Characterization 11 2-9. Bacterial Plate Cultures for Monitoring Methionine Cycle Pathway 12 2-10. Metabolomics Using LC-QE Analysis for Bacterial Plate Cultures 13 2-11. Targeted Methionine Derived Metabolites Using LC-QqQ Analysis 14 2-12. Bacterial Cultures and Quantification Methods for Bile Acids Production 17 2-13. Statistical Analysis 20 Chapter 3. Results 21 3-1. Promoter Characterization in Bifidobacteria 21 3-2. Cytosine Base Editor Systems (cBESTs) in B. longum NCIMB 8809 24 3-3. Enhanced Transformation and Gene Editing Efficiencies in RM-Disrupted Strains Derived from B. longum NCIMB 8809 and B. adolescentis DSM 20088 28 3-4. Monitoring Methionine Cycle Pathway in RM-Disrupted Strains 36 3-5. Unique RM Systems across Bifidobacterium Strains 41 3-6. Highly Efficient and Streamlined Genome Editing in RM-Disrupted Strains 43 3-7. Identical cBEST Constructs for Metabolic Regulations in Bifidobacterium spp. 48 Chapter 4. Discussion & Conclusion 52 Chapter 5. References 56 Chapter 6. Supporting Information 63 | - |
| dc.language.iso | en | - |
| dc.title | 針對雙歧桿菌屬開發基因編輯技術以調控代謝途徑:破壞限制修飾系統促進基因編輯效率 | zh_TW |
| dc.title | Development of CRISPR-Cas9 Base Editing Tools for Metabolically Engineerable Bifidobacteria: Disruption of Restriction-Modification Systems Facilitates Gene Editing Efficiency | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱忠瀚;林建達;張明姿 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Han Chu;Jian-Da Lin;Mingzi M. Zhang | en |
| dc.subject.keyword | 基因編輯,CRISPR-Cas9,雙歧桿菌,限制修飾系統,DNA甲基化,甲硫腺苷,膽鹽水解酶, | zh_TW |
| dc.subject.keyword | Genome editing,CRISPR-Cas9,Bifidobacterium,Restriction-modification systems,DNA methylation,5’-methylthioadenosine,Bile salt hydrolase, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202404344 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-09-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-09-01 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 11.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
