請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96004完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭原忠 | zh_TW |
| dc.contributor.advisor | Yuan-Chung Cheng | en |
| dc.contributor.author | 尤俊皓 | zh_TW |
| dc.contributor.author | Jun-Hao Yu | en |
| dc.date.accessioned | 2024-09-25T16:34:17Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-06 | - |
| dc.identifier.citation | [1] Levering, L. M.; Sierra-Hernandez, M. R.; Allen, H. C. Observation of Hydronium Ions at the air- aqueous acid Interface: vibrational spectroscopic studies of aqueous HCl, HBr, and HI. J. Phys. Chem. C 2007, 111, 8814–8826.
[2] Sherman, S. L.; Fischer, K. C.; Garand, E. Conformational changes induced by methyl side-chains in protonated tripeptides containing glycine and alanine residues. J. Phys. Chem. A 2022, 126, 4036–4045. [3] Li, J.-W.; Morita, M.; Takahashi, K.; Kuo, J.-L. Features in vibrational spectra in- duced by Ar-tagging for H3O+ Arm, m= 0–3. J. Phys. Chem. A 2015, 119, 10887– 10892. [4] Kim,Y.S.;Hochstrasser,R.M.Chemicalexchange2DIRofhydrogen-bondmaking and breaking. PNAS 2005, 102, 11185–11190. [5] Fournier, J. A.; Carpenter, W. B.; Lewis, N. H.; Tokmakoff, A. Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem 2018, 10, 932–937. [6] Zheng, J.; Kwak, K.; Fayer, M. Ultrafast 2D IR vibrational echo spectroscopy. Acc. Chem. Res. 2007, 40, 75–83. [7] Khalil, M.; Demirdöven, N.; Tokmakoff, A. Coherent 2D IR spectroscopy: Molec- ular structure and dynamics in solution. J. Phys. Chem. A 2003, 107, 5258–5279. [8] Zheng, J.; Kwak, K.; Asbury, J.; Chen, X.; Piletic, I. R.; Fayer, M. D. Ultrafast dynamics of solute-solvent complexation observed at thermal equilibrium in real time. Sci. 2005, 309, 1338–1343. [9] Maiti, K. S. Ultrafast N–H vibrational dynamics of hydrogen-bonded cyclic amide reveal by 2DIR spectroscopy. Chem. Phys. 2018, 515, 509–512. [10] Feng,C.-J.;Tokmakoff,A.Thedynamicsofpeptide-waterinteractionsindialanine: An ultrafast amide I 2D IR and computational spectroscopy study. J. Chem. Phys. 2017, 147. [11] Greve, C.; Nibbering, E. T.; Fidder, H. Hydrogen-bonding-induced enhancement of Fermi resonances: A linear IR and nonlinear 2D-IR study of aniline-d5. J. Phys. Chem. B 2013, 117, 15843–15855. [12]Hamm,P.;Zanni,M.Conceptsandmethodsof2Dinfraredspectroscopy;Cambridge University Press, 2011. [13] Wu, T.; Yang, L.; Zhang, R.; Shao, Q.; Zhuang, W. Modeling the thermal unfolding 2DIR spectra of a β-hairpin peptide based on the implicit solvent MD simulation. J. Phys. Chem. A 2013, 117, 6256–6263. [14] Carr, J.; Buchanan, L.; Schmidt, J.; Zanni, M.; Skinner, J. Structure and dynam- ics of urea/water mixtures investigated by vibrational spectroscopy and molecular dynamics simulation. J. Phys. Chem. B 2013, 117, 13291–13300. [15] Gelin, M. F.; Egorova, D.; Domcke, W. Efficient method for the calculation of time- and frequency-resolved four-wave mixing signals and its application to photon-echo spectroscopy. J. Chem. Phys. 2005, 123, 164112. [16] Wong, M. T.; Cheng, Y.-C. A quantum Langevin equation approach for two- dimensional electronic spectra of coupled vibrational and electronic dynamics. J. Chem. Phys. 2021, 154, 154107. [17] Fournier, J. A.; Johnson, C. J.; Wolke, C. T.; Weddle, G. H.; Wolk, A. B.; John- son, M. A. Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster. Sci. 2014, 344, 1009–1012. [18] Lin,C.-K.;Huang,Q.-R.;Hayashi,M.;Kuo,J.-L.Anabinitioanharmonicapproach to IR, Raman and SFG spectra of the solvated methylammonium ion. Phys. Chem. Chem. Phys 2021, 23, 25736–25747. [19] Fermi, E. Über den ramaneffekt des kohlendioxyds. J. Phys. 1931, 71, 250–259. [20] Nydegger,M.W.;Rock,W.;Cheatum,C.M.2DIRspectroscopyoftheC–Dstretch- ing vibration of the deuterated formic acid dimer. Phys. Chem. Chem. Phys 2011, 13, 6098–6104. [21] Olesen, S. G.; Gausco, T. L.; Weddle, G. H.; Hammerum, S.; Johnson, M. A. Vibra- tional predissociation spectra of the Ar-tagged [CH4 H3O+] binary complex: spec- troscopic signature of hydrogen bonding to an alkane. Mol. Phys. 2010, 108, 1191– 1197. [22] McCoy, A. B.; Guasco, T. L.; Leavitt, C. M.; Olesen, S. G.; Johnson, M. A. Vibra- tional manifestations of strong non-Condon effects in the H3O+X3 (X= Ar, N2, CH4,H2O) complexes: A possible explanation for the intensity in the“association band" in the vibrational spectrum of water. Phys. Chem. Chem. Phys 2012, 14, 7205–7214. [23] Tan, J. A.; Li, J.-W.; Chiu, C.-c.; Liao, H.-Y.; Huynh, H. T.; Kuo, J.-L. Tuning the vibrational coupling of H3O+ by changing its solvation environment. Phys. Chem. Chem. Phys 2016, 18, 30721–30732. [24] Huang, Q.-R.; Nishigori, T.; Katada, M.; Fujii, A.; Kuo, J.-L. Fermi resonance in solvated H3O+: A counter-intuitive trend confirmed via a joint experimental and theoretical investigation. Phys. Chem. Chem. Phys 2018, 20, 13836–13844. [25] Huang, Q.-R.; Li, Y.-C.; Nishigori, T.; Katada, M.; Fujii, A.; Kuo, J.-L. Vibrational coupling in solvated H3O+: Interplay between Fermi resonance and combination band. J. Phys. Chem. Lett. 2020, 11, 10067–10072. [26] Weber, D. CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure. Z. Naturforsch. B 1978, 33, 1443–1445. [27] Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956–13008. [28] Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic —inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 1–16. [29] Glaser, T.; Müller, C.; Sendner, M.; Krekeler, C.; Semonin, O. E.; Hull, T. D.; Yaffe, O.; Owen, J. S.; Kowalsky, W.; Pucci, A., et al. Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 2015, 6, 2913–2918. [30] Pérez-Osorio, M. A.; Milot, R. L.; Filip, M. R.; Patel, J. B.; Herz, L. M.; John- ston, M. B.; Giustino, F. Vibrational properties of the organic–inorganic halide perovskite CH3NH3PbI3 from theory and experiment: factor group analysis, first- principles calculations, and low-temperature infrared spectra. J. Phys. Chem. C 2015, 119, 25703–25718. [31] Schuck, G.; Többens, D. M.; Koch-Müller, M.; Efthimiopoulos, I.; Schorr, S. In- frared spectroscopic study of vibrational modes across the orthorhombic–tetragonal phase transition in methylammonium lead halide single crystals. J. Phys. Chem. C 2018, 122, 5227–5237. [32] Bakulin, A. A.; Selig, O.; Bakker, H. J.; Rezus, Y. L.; Müller, C.; Glaser, T.; Lovrin- cic, R.; Sun, Z.; Chen, Z.; Walsh, A., et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. The journal of physical chemistry letters 2015, 6, 3663–3669. [33] Selig, O.; Sadhanala, A.; Muller, C.; Lovrincic, R.; Chen, Z.; Rezus, Y. L.; Frost, J. M.; Jansen, T. L.; Bakulin, A. A. Organic cation rotation and immobiliza- tion in pure and mixed methylammonium lead-halide perovskites. J. Am. Chem. Soc. 2017, 139, 4068–4074. [34] Jackson, J. M.; Brucia, P. L.; Messina, M. An approach towards a simple quantum Langevin equation. Chem. Phys. Lett. 2011, 511, 471–481. [35] Ford, G.; Kac, M. On the quantum Langevin equation. J. Stat. Phys. 1987, 46, 803– 810. [36] Ford, G. W.; Lewis, J. T.; O'Connell, R. Quantum langevin equation. Phys. Rev. A 1988, 37, 4419. [37] Edler, J.; Hamm, P. Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping? J. Chem. Phys. 2003, 119, 2709–2715. [38]DeMarco,L.;Ramasesha,K.;Tokmakoff,A.ExperimentalevidenceofFermireso- nances in isotopically dilute water from ultrafast broadband IR spectroscopy. J. Phys. Chem. B 2013, 117, 15319–15327. [39]Rodgers,J.M.;Abaskharon,R.M.;Ding,B.;Chen,J.;Zhang,W.;Gai,F.Fermires- onance as a means to determine the hydrogen-bonding status of two infrared probes. Phys. Chem. Chem. Phys 2017, 19, 16144–16150. [40] Costard, R.; Tyborski, T.; Fingerhut, B. P. Anharmonicities and coherent vibrational dynamics of phosphate ions in bulk H2 O. Phys. Chem. Chem. Phys 2015, 17, 29906– 29917. [41] Cheng, Y.-C.; Fleming, G. R. Coherence quantum beats in two-dimensional elec- tronic spectroscopy. J. Phys. Chem. A 2008, 112, 4254–4260. [42] Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P. Subpicosecond conformational dynam- ics of small peptides probed by two-dimensional vibrational spectroscopy. PNAS 2001, 98, 11254–11258. [43] Lindner, J.; Vöhringer, P.; Pshenichnikov, M. S.; Cringus, D.; Wiersma, D. A.; Mostovoy, M. Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 2006, 421, 329–333. [44] Dahms, F.; Costard, R.; Nibbering, E. T.; Elsaesser, T. Ultrafast vibrational energy flow in water monomers in acetonitrile. Chem. Phys. Lett. 2016, 652, 50–55. [45] Seifert, G.; Patzlaff, T.; Graener, H. Comprehensive investigation of vibrational re- laxation of non-hydrogen-bonded water molecules in liquids. J. Chem. Phys. 2006, 125, 154506. [46] Kwak, K.; Park, S.; Finkelstein, I. J.; Fayer, M. D. Frequency-frequency correla- tion functions and apodization in two-dimensional infrared vibrational echo spec- troscopy: A new approach. J. Chem. Phys. 2007, 127. [47] Light, J.; Hamilton, I.; Lill, J. Generalized discrete variable approximation in quan- tum mechanics. J. Chem. Phys. 1985, 82, 1400–1409. [48] Carter, S.; Bowman, J. M.; Handy, N. C. Extensions and tests of “multimode": a code to obtain accurate vibration/rotation energies of many-mode molecules. Theor. Chem. Acc. 1998, 100, 191–198. [49] Dickinson, A.; Certain, P. Calculation of matrix elements for one-dimensional quantum-mechanical problems. J. Chem. Phys. 1968, 49, 4209–4211. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96004 | - |
| dc.description.abstract | 紅外二維光譜為近二十年成為研究凝態中振動模資訊及微觀環境的化學工具。在模擬方法方面,目前仰賴分子動力學模擬,來得到無細節波包資訊之二維光譜。本研究之主題為得到精確的振動波包動態的情況下,模擬二維紅外光譜。吾人的方法是結合量子朗之萬方程式(quantum Langevin equation)、微擾理論(perturbation theory)和得到的非簡諧振動態的第一原理計算。並在以獨立震盪體(independent oscillators)模型描述系統環境耦合的物理模型為基礎,再搭配高斯波包近似法(Gaussian wavepacket approximation)後,得到量子薛丁格朗之萬方程式。而吾人將此模擬技術應用在有費米共振(Fermi resonance)現象的系統上。費米共振現象是在紅外光譜上具有特徵的現象,主要源自於振動模之間非簡諧耦合。在關於費米共振系統在紅外二維光譜之研究中,討論費米共振之光譜特徵的研究是較於缺乏的。故在這份研究中,吾人將會使用此二維紅外光譜模擬技術,來研究在二維光譜上費米共振的光譜特徵。在水合氫離子系統中,吾人發現方形四重譜線(square quartet)和量子拍(quantum beating)是費米共振的光譜特徵。除此之外,氣相二維紅外光譜在偵測近紅外光區能態的能力也被仔細討論。接下來在甲基銨離子的研究中,吾人發現費米共振可作為偵測有機-無機混合型鈣鈦礦中甲基銨離子所感受到的微觀環境,像是甲基銨離子和鉛與鹵素晶格間的相互作用力。最後,吾人研究如何將馬可夫假設的模擬技術推展到非馬可夫假設的情況,使模擬方法更接近現實中的物理現象。 | zh_TW |
| dc.description.abstract | Two-dimensional infrared (2DIR) spectroscopy has become a powerful tool for probing micoscopic dynamics in the condensed phase over the past two decades. Theoretically, the modern method to simulate 2DIR spectra combines moleclular dynamics simulation and response function calculation. However, this approach often depends on empirical parameters and Newton model mechanism. Thus, the exact treatment of coherent and dissipative dynamics is lacking. In this work, we introduce a dynamical method for the simulation of 2DIR spectra including full coherent quantum dynamics of a molecular system and dissipation involved by the surrounding environment, and then demonstrate the effectiveness of the method by simulating 2DIR spectra of solvated hydronium systems and sol- vated methylaommonium systems. The dynamical method combines quantum Langevin equation (QLE) and a perturbation scheme that extract phase-matching signals by propagating auxiliary wavefunctions. We present the derivation of the QLE using a linear system-bath coupling model, and show that the quantum Schrödinger-Langevin equation (QSLE) can be written as a Schrödinger equation with the addition of a friction operator by adopting a Gaussian wavepacket picture. This approach explicitly treat the wavepacket dynamics, including coherent and dissipative dynamics, evolving on the complex potential energy surface. Subsequently, we demonstrate the effectiveness of our method by simulating 2DIR spectra of molecular systems with Fermi resonance phenomenon.
We first demonstrate the QSLE simulation of 2DIR spectra on Ar- and N2-tagged hydronium system, which exhibits Fermi resonance, and we are interested in revealing 2DIR spectral signatures of Fermi resonance on these systems. The Fermi resonance is a unique feature on infrared spectra that stems from the anharmonic coupling between vibrational modes. However, the discussion of spectral signiture on 2DIR spectra of the Fermi resonance remains under developed. Our simulation reveals that square quartets and the beatings of 2DIR peaks can provide decisive evidence for Fermi resonance in the Ar-tagged system. Moreover, the potential of gas-phase 2DIR spectroscopy is disclosed in probing the states in the near-IR region. Secondly, we apply the QSLE method to the simulation of 2DIR spectra of hydrogen bromide- and chloride- tagged methylammonium (MA), which mimic the micro-environment within the organic-inorganic perovskite (MAPbX3, X is halogen). The simulation indicates a physical insight in which the Fermi resonance occurs in N-H stretching region is sensitive to the intermolecular interactions. Finally, we conduct the examination of our theoretical method with the non-Markovian friction operator. To validate the new approach, we simulate the dissipative dynamics, infrared and 2DIR spectra of a vibrational mode in an independent oscillator model. The results show that the dissipative dynamics induced by explicit system-bath coupling are manifested in our approach. Therefore, this study demonstrate the effectiveness of QSLE in 2DIR spectroscopic simulation, which is useful for assigning complex 2DIR spectra and provide physical insights. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:34:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:34:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要v Abstract vii Contents xi List of Figures xv List of Tables xix Denotation xxi Chapter 1 Introduction 1 1.1 Infrared spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 2DIR spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 2DIR Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Theoretical simulation . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Molecular systems and Fermi resonance . . . . . . . . . . . . . . . . 8 1.3.1 Molecular clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Fermi resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3 Hydronium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.4 Methylammonium system . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Overview of this work . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 2 Quantum Schrödinger-Langevin Equation Approach 15 2.1 Derivation of the quantum Langevin equation . . . . . . . . . . . . . 15 2.2 Quantum Schrödinger-Langevin equation approach . . . . . . . . . . 18 2.2.1 Gaussian wave packet approximation . . . . . . . . . . . . . . . . . 19 2.2.2 The rate of vibrational relaxation and decoherence . . . . . . . . . . 22 2.3 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 26 Chapter 3 Theoretical Method for the Simulation of Linear and Two-dimensional Infrared Spectroscopy 27 3.1 Linear spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Two-dimensional infrared spectroscopy . . . . . . . . . . . . . . . . 29 Chapter 4 Ar-tagged and N2-tagged Hydronium Clusters 35 4.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Vibrational energy and linear IR Spectrum . . . . . . . . . . . . . . . 35 4.2.1 Energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.2 Linear IR spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 2DIR spectra of N2-tagged hydronium . . . . . . . . . . . . . . . . . 40 4.4 2DIR spectra of Ar-tagged hydronium . . . . . . . . . . . . . . . . . 43 4.4.1 Stretching region . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4.2 2DIR signatures of Fermi resonance . . . . . . . . . . . . . . . . . 44 4.4.2.1 Square quartet pattern of ESA signals . . . . . . . . . . 44 4.4.2.2 Quantum beatings . . . . . . . . . . . . . . . . . . . . 47 4.4.3 Stretching-Bending Cross Region . . . . . . . . . . . . . . . . . . . 50 4.5 The effective Hamiltonian extracted from 2DIR spectra . . . . . . . . 52 Chapter 5 HBr-tagged and HCl-tagged Methylammonium Clusters 57 5.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Linear spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3 Comparision between experimental and theoretical spectra . . . . . . 59 5.4 2DIR spectra of (HBr)3-tagged MA . . . . . . . . . . . . . . . . . . 62 5.4.1 Bending region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.2 Stretching region . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.5 2DIR spectra of (HCl)3-tagged MA and (HBr)(HCl)2-tagged MA . . 69 5.5.1 Bending region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.5.2 Stretching region . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Chapter 6 Non-Markovian Quantum Langevin Equation Approach 77 6.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.2 Linear coupling model . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.2.1 Dissipative dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.2 Linear spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.3 Independent oscillator model . . . . . . . . . . . . . . . . . . . . . 84 6.3 2DIR spectra in one vibrational mode . . . . . . . . . . . . . . . . . 85 References 95 Appendix A — The detailed description in constucting the effective Hamiltonian 103 Appendix B — Matrices of effective Hamiltonians and dipole opertators 107 B.1 Ar-tagged Hydronium cluster . . . . . . . . . . . . . . . . . . . . . 107 B.1.1 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 107 B.2 N2-tagged Hydronium cluster . . . . . . . . . . . . . . . . . . . . . 109 B.2.1 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 109 B.3 (HBr3)-tagged methylammonium cluster . . . . . . . . . . . . . . . . 111 B.3.1 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 111 B.4 (HCl3)-tagged methylammonium cluster . . . . . . . . . . . . . . . . 114 B.4.1 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 114 B.5 (HBr1)(HCl2)-tagged methylammonium cluster . . . . . . . . . . . . 117 B.5.1 Effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 117 Appendix C — Time-dependent perturbation theory 121 | - |
| dc.language.iso | en | - |
| dc.title | 應用量子薛丁格朗之萬方程式的研究在費米共振系統上之二維紅外光譜 | zh_TW |
| dc.title | Application of the Quantum Schrödinger-Langevin Equation Approach to Two-Dimensional Infrared Spectroscopy of Fermi Resonance Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林倫年;郭哲來 | zh_TW |
| dc.contributor.oralexamcommittee | Michitoshi Hayashi ;Jer-Lai Kuo | en |
| dc.subject.keyword | 量子朗之萬方程式,二維紅外光譜,費米共振,波包動態學,量子拍, | zh_TW |
| dc.subject.keyword | quantum Langevin equation,two-dimensional infrared spectroscopy,Fermi resonance,wavepacket dynamics,quantum beating, | en |
| dc.relation.page | 124 | - |
| dc.identifier.doi | 10.6342/NTU202404353 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-09-06 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf | 18.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
