Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪zh_TW
dc.contributor.advisorChia-Hung Houen
dc.contributor.author吳柏璋zh_TW
dc.contributor.authorPo-Chang Wuen
dc.date.accessioned2024-09-25T16:32:45Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-09-10-
dc.identifier.citationALSamman, M.T., Sotelo, S., Sánchez, J., Rivas, B.L., 2023. Arsenic oxidation and its subsequent removal from water: An overview. Sep. Purif. Technol. 309, 123055.
An, N., Guo, C., Li, W., Wei, M., Liu, L., Meng, C., Sun, D., Lei, Y., Hu, Z., Zhao, L., 2024. Electropolymerization nanoarchitectonics of polyaminoanthraquinone/carbon cloth flexible electrode with nano-spines array structure for high-performance supercapacitor. J. Energy Storage 75, 109558.
Arco-Lázaro, E., Agudo, I., Clemente, R., Bernal, M.P., 2016. Arsenic (V) adsorption-desorption in agricultural and mine soils: effects of organic matter addition and phosphate competition. Environ. Pollut. 216, 71−79.
Askari, M., Rajabzadeh, S., Tijing, L., Shon, H.K., 2024. Advances in capacitive deionization (CDI) systems for nutrient recovery from wastewater: Paving the path towards a circular economy. Desalination 117695.
Babar, P.T., Lokhande, A.C., Pawar, B.S., Gang, M.G., Jo, E., Go, C., Suryawanshi, M.P., Pawar, S.M., Kim, J.H, 2018. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl. Surf. Sci. 427, 253−259.
Bain, E.J., Calo, J.M., Spitz-Steinberg, R., Kirchner, J., Axén, J., 2010. Electrosorption/electrodesorption of arsenic on a granular activated carbon in the presence of other heavy metals. Energy Fuels 24(6), 3415−3421.
Bard, A.J., Jordan, J., Parsons, R., 1985. Standard Potentials in Aqueous Solution. Marcel Dekker, Inc.: New York.
Béjar, J., Álvarez-Contreras, L., Ledesma-García, J., Arjona, N., Arriaga, L. G., 2019. Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media. J. Electroanal. Chem. 847, 113190.
Beralus, J.-M., Ruiz-Rosas, R., Cazorla-Amorós, D., Morallón, E., 2014. Electroadsorption of arsenic from natural water in granular activated carbon. Front. Mater. 1, 28.
Bian, Z., Das, S., Wai, M. H., Hongmanorom, P., Kawi, S., 2017. A review on bimetallic nickel‐based catalysts for CO2 reforming of methane. Chemphyschem 18(22), 3117−3134.
Chen, T.H., Yeh, K.H., Lin, C.F., Lee, M., Hou, C.H., 2022. Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: From tap water purification to wastewater reclamation for water sustainability. Resour. Conserv. Recycl. 177, 106012.
Chen, Y.W., Chen, J.F., Lin, C.H., Hou, C.H., 2019. Integrating a supercapacitor with capacitive deionization for direct energy recovery from the desalination of brackish water. Appl. Energy 252, 113417.
Choong, T.S., Chuah, T., Robiah, Y., Koay, F.G., Azni, I., 2007. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1−3), 139−166.
Cuong, D.V., Hou, C.H., 2022. Nickel hexacyanoferrate incorporated with reduced graphene oxide for highly efficient intercalation desalination. Sep. Purif. Technol. 295, 121351.
Cuong, D.V., Wu, P.C., Chen, L.I., Hou, C.H., 2021. Active MnO2/biochar composite for efficient As (III) removal: Insight into the mechanisms of redox transformation and adsorption. Water Res. 188, 116495.
Cuong, D.V., Wu, P.C., Liou, S.Y.H., Hou, C.H., 2022. An integrated active biochar filter and capacitive deionization system for high-performance removal of arsenic from groundwater. J. Hazard. Mater. 423, 127084.
Dai, M., Xia, L., Song, S., Peng, C., Rangel-Mendez, J.R., Cruz-Gaona, R., 2018. Electrosorption of As(III) in aqueous solutions with activated carbon as the electrode. Appl. Surf. Sci. 434, 816−821.
Dai, X., Compton, R.G., 2006. Detection of As (III) via oxidation to As (V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper. Analyst 131(4), 516−521.
Della Noce, R., Eugénio, S., Silva, T.M., Carmezim, M.J., Montemor, M.D.F., 2015. α-Co(OH)2/carbon nanofoam composite as electrochemical capacitor electrode operating at 2 V in aqueous medium. J. Power Sources 288, 234−242.
Dinh, V.C., Hiep, N.M., Hoa, T.T.H., Nguyen, V.A., Hou, C.H., Fan, C.S., Van Truc, N., 2023. Development of a capacitive deionization stack with highly porous oxygen-doped carbon electrodes for brackish water desalination in remote coastal areas. Mater. Chem. Phys. 307, 128165.
Elisadiki, J., King'ondu, C.K., 2020. Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review. J. Electroanal. Chem. 878, 114588.
Fan, C.S., Liou, S.Y.H., Hou, C.H., 2017. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere 184, 924−931.
Fan, C.S., Tseng, S.C., Li, K.C., Hou, C.H., 2016. Electro-removal of arsenic (III) and arsenic (V) from aqueous solutions by capacitive deionization. J. Hazard. Mater. 312, 208−215.
Fang, Y., Liu, Q., Song, Y., Cai, H., Yang, Y., Yang, Z., Li, H., 2023. Highly efficient in-situ purification of Fe (II)-rich high-arsenic groundwater under anoxic conditions: Promotion mechanisms of PMS on oxidation and adsorption. Chem. Eng. J. 453, 139915.
Ferguson, J.F., Gavis, J., 1972. A review of the arsenic cycle in natural waters. Water Res. 6(11), 1259−1274.
Ficklin, W.H., 1983. Separation of arsenic (III) and arsenic (V) in ground waters by ion-exchange. Talanta 30(5), 371−373.
Fu, L., Liu, Z., Liu, Y., Han, B., Hu, P., Cao, L., Zhu, D., 2005. Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. Adv. Mater. 17(2), 217−221.
Gao, M., Liu, X., Irfan, M., Shi, J., Wang, X., Zhang, P., 2018. Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. Int. J. Hydrogen Energy. 43(3), 1805−1815.
Gao, X., Landon, J., Neathery, J. K., Liu, K., 2013. Modification of carbon xerogel electrodes for more efficient asymmetric capacitive deionization. J. Electrochem. Soc. 160(9), E106.
Ge, J., Guha, B., Lippincott, L., Cach, S., Wei, J., Su, T.L., Meng, X., 2020. Challenges of arsenic removal from municipal wastewater by coagulation with ferric chloride and alum. Sci. Total Environ. 725, 138351.
Gumpu, M.B., Mani, G.K., Nesakumar, N., Kulandaisamy, A.J., Babu, K.J., Rayappan, J.B.B., 2016. Electrocatalytic nanocauliflower structured fluorine doped CdO thin film as a potential arsenic sensor. Sens. Actuators B: Chem. 234, 426−434.
Hai, A., Alqassem, B., Bharath, G., Rambabu, K., Othman, I., Haija, M.A., Banat, F., 2020. Cobalt and nickel ferrites based capacitive deionization electrode materials for water desalination applications. Electrochim. Acta 363, 137083.
Hallaj, R., Akhtari, K., Salimi, A., Soltanian, S., 2013. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method. Appl. Surf. Sci. 276, 512−520.
Hasnat, M.A., Hasan, M.M., Tanjila, N., Alam, M.M., Rahman, M.M., 2017. pH dependent kinetic insights of electrocatalytic arsenite oxidation reactions at Pt surface. Electrochim. Acta 225, 105−113.
He, D., Wong, C.E., Tang, W., Kovalsky, P., Waite, T.D., 2016. Faradaic reactions in water desalination by batch-mode capacitive deionization. Environ. Sci. Technol. Lett. 3(5), 222–226.
He, Y., Dong, C., He, S., Li, H., Sun, X., Cheng, Y., Zhou, G., Xu, L., 2021. Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage. Nano Res. 14, 4014–4024.
Hsu, K.H., Froines, J.R., Chen, C.J., 1997. Studies of arsenic ingestion from drinking-water in northeastern Taiwan: chemical speciation and urinary metabolites. In: Abernathy, C.O., Calderon, R.L., Chappell, W.R. (Eds.), Arsenic: Exposure and Health Effects. Springer Netherlands, Dordrecht, pp. 190–209.
International Agency for Research on Cancer (IARC), 1987. Overall Evaluations of Carcinogenicity; an Updating of IARC Monographs. International Agency for Research on Cancer, Lyon, France.
International Agency for Research on Cancer (IARC), 2004. Working Group on the Evaluation of Carcinogenic Risks to Humans. Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr. Eval. Carcinog. Risks Hum. 84, 1–477.
Jiang, T.J., Guo, Z., Liu, J.H., Huang, X.J., 2016. Gold electrode modified with ultrathin SnO2 nanosheets with high reactive exposed surface for electrochemical sensing of As (III). Electrochim. Acta 191, 142–148.
Juchen, P.T., Ruotolo, L.A., 2023. Roles of mass transfer and cell architecture in electrochemical desalination performance using polyglycerol activated carbon electrodes. Chem. Eng. J. 452, 139226.
Kang, J., Kim, T., Shin, H., Lee, J., Ha, J.I., Yoon, J., 2016. Direct energy recovery system for membrane capacitive deionization. Desalination, 398, 144−150.
Kempahanumakkagari, S., Deep, A., Kim, K.H., Kailasa, S.K., Yoon, H.O., 2017. Nanomaterial-based electrochemical sensors for arsenic-A review. B Biosens Bioelectron 95, 106–116.
Kim, E., Kim, M., Li, S., Song, Y.E., Maile, N., Jang, M., Son, S.W., Jae, J., Kim, H.-I., Kim, J.R., 2024. Electrodeposited polyaniline on graphite felt (PANI/GF) improves start-up time and acetate productivity of microbial electrosynthesis cell. J. Power Sources 612, 234776.
Kim, K., Cotty, S., Elbert, J., Chen, R., Hou, C.H., Su, X., 2020. Asymmetric redox‐polymer interfaces for electrochemical reactive separations: synergistic capture and conversion of arsenic. Adv. Mater. 32(6), 1906877.
Kim, T., Yoon, J., 2015. CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC Adv. 5(2), 1456−1461.
Kobya, M., Soltani, R.D.C., Omwene, P.I., Khataee, A., 2020. A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environ. Technol. Inno. 17, 100519.
Kuo, T.L., 1964. Arsenic content of artesian well water in an endemic area of chronic arsenic poisoning. Rep. Inst. Pathol. Natl. Taiwan Univ., 20, 7−13.
Kurz, E.E.C., Hellriegel, U., Figoli, A., Gabriele, B., Bundschuh, J., Hoinkis, J., 2021. Small-scale membrane-based arsenic removal for decentralized applications–Developing a conceptual approach for future utilization. Water Res. 196, 116978.
Lang, X.Y., Fu, H.Y., Hou, C., Han, G.F., Yang, P., Liu, Y.B., Jiang, Q., 2013. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4(1), 1−8.
Laxman, K., Kimoto, D., Sahakyan, A., Dutta, J., 2018. Nanoparticulate dielectric overlayer for enhanced electric fields in a capacitive deionization device. ACS Appl. Mater. Interfaces 10(6), 5941−5948.
Lee, N., Liu, M.L., Wu, M.C., Chen, T.H., Hou, C.H., 2021. The effect of redox potential on the removal characteristic of divalent cations during activated carbon-based capacitive deionization. Chemosphere 274, 129762.
Li, P., Damron, J.T., Veith, G.M., Bryantsev, V.S., Mahurin, S.M., Popovs, I., Jansone‐Popova, S., 2021. Bifunctional ionic covalent organic networks for enhanced simultaneous removal of chromium (VI) and arsenic (V) oxoanions via synergetic ion exchange and redox process. Small 17(46), 2104703.
Li, S.J., Du, J.M., Zhang, J.P., Zhang, M.J., Chen, J., 2014. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2. Microchim. Acta 181(5−6), 631−638.
Liang, Y., Yao, W., Duan, J., Chu, M., Sun, S., Li, X., 2021. Nickel cobalt bimetallic metal-organic frameworks with a layer-and-channel structure for high-performance supercapacitors. J. Energy Storage 33, 102149.
Liu, E., Lee, L.Y., Ong, S.L., Ng, H.Y., 2020a. Treatment of industrial brine using Capacitive Deionization (CDI) towards zero liquid discharge–Challenges and optimization. Water Res. 183, 116059.
Liu, N.L., Chen, L.I., Tsai, S.W., Hou, C.H., 2020b. Enhanced desalination of electrospun activated carbon fibers with controlled pore structures in the electrosorption process. Environ. Sci. Water Res. Technol. 6(2), 312−320.
Liu, N.L., Sun, S.H., Hou, C.H., 2019. Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization. Separation and purification technology 215, 403−409.
Liu, Q.C., Xu, J.J., Chang, Z.W., Zhang, X.B., 2014. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li–O2 battery. J. Mater. Chem. A 2(17), 6081–6085.
Liu, Y.H., Hsi, H.C., Li, K.C., Hou, C.H., 2016. Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization. ACS Sustain. Chem. Eng. 4(9), 4762−4770.
Liu, Z., Chen, X., Xia, Z., Wang, Q., Huang, J., Wang, T., Zhu, B., Su, B., 2023. A self-powered electro-coagulation system afforded by flexible electromagnetic flag wind generators for efficient removal of arsenic from water. Nano Energy 114, 108648.
Lu, T., Liu, Y., Xu, X., Pan, L., Alothman, A.A., Shapter, J., Wang, Y., Yamauchi, Y., 2021. Highly efficient water desalination by capacitive deionization on biomass-derived porous carbon nanoflakes. Sep. Purif. Technol. 256, 117771.
Ministry of Environment (MOENV), 2019. Inquiry platform for potential range of arsenic concentration in groundwater. https://sgw.moenv.gov.tw/AsQryMap/AsQueryMap.aspx
Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S., De Paula, E.C., Amaral, M.C.S., 2021. Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Process Saf. Environ. Prot.148, 604−623.
Nie, P., Hu, B., Shang, X., Xie, Z., Huang, M., Liu, J., 2020. Highly efficient water softening by mordenite modified cathode in asymmetric capacitive deionization. Sep. Purif. Technol. 250, 117240.
Nordstrom, D.K., 2002. Worldwide occurrences of arsenic in ground water. Science 296(5576), 2143−2145.
Patel, K.S., Pandey, P.K., Martín-Ramos, P., Corns, W.T., Varol, S., Bhattacharya, P., Zhu, Y., 2023. A review on arsenic in the environment: contamination, mobility, sources, and exposure. RSC Adv. 13(13), 8803−8821.
Phan, T.S., Sane, A.R., de Vasconcelos, B.R., Nzihou, A., Sharrock, P., Grouset, D., Minh, D.P., 2018. Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Appl. Catal. B: Environ. 224, 310–321.
Podgorski, J., Berg, M., 2020. Global threat of arsenic in groundwater. Science, 368(6493), 845–850.
Porada, S., Zhao, R., Van Der Wal, A., Presser, V., Biesheuvel, P., 2013. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58(8), 1388−1442.
Qiu, Z., Shao, X., Chen, Y., Pan, J., Qiu, F., Zhang, T., 2022. Enhanced water permeability and rejection of As (III) in groundwater by nanochannels and active center formed in nanofibrillated celluloses UF membranes with ZIF-8. J. Membr. Sci. 646, 120255.
Rahaman, M.S., Rahman, M.M., Mise, N., Sikder, M.T., Ichihara, G., Uddin, M.K., Kurasaki, M., Ichihara, S., 2021. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 289, 117940.
Raju, N.J., 2022. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environ. Res. 203, 111782.
Rathore, D., Banerjee, A., Pande, S., 2022. Bifunctional tungsten-doped Ni(OH)2/NiOOH nanosheets for overall water splitting in an alkaline medium. ACS Appl. Nano Mater. 5(2), 2664−2677.
Rivera, J.F., Pignot-Paintrand, I., Pereira, E., Rivas, B.L., Moutet, J.C., 2013. Electrosynthesized iridium oxide-polymer nanocomposite thin films for electrocatalytic oxidation of arsenic (III). Electrochim. Acta 110, 465−473.
Rogers, T.K., Guo, S., Arrazolo, L., Garcia-Segura, S., Wong, M.S., Verduzco, R., 2021. Catalytic capacitive deionization for adsorption and reduction of aqueous nitrate. ACS ES&T Water 1(10), 2233−2241.
Salimi, A., Mamkhezri, H., Hallaj, R., Soltanian, S. 2008. Electrochemical detection of trace amount of arsenic (III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sens. Actuators B Chem. 129(1), 246−254.
Sánchez, J.A., Rivas, B.L., Pooley, S.A., Basaez, L., Pereira, E., Pignot-Paintrand, I., Bucher, C., Royal, G., Saint-Aman, E., Moutet, J.C., 2010. Electrocatalytic oxidation of As (III) to As (V) using noble metal–polymer nanocomposites. Electrochim. Acta 55(17), 4876−4882.
Sánchez-Sánchez, M.C., Navarro, R.M., Fierro, J.L.G., 2007. Ethanol steam reforming over Ni/La–Al2O3 catalysts: Influence of lanthanum loading. Catal. Today 129(3−4), 336−345.
Santos, C., Lado, J.J., García-Quismondo, E., Rodríguez, I.V., Palma, J., Anderson, M. A., Vilatela, J.J., 2018. Interconnected metal oxide CNT fibre hybrid networks for current collector-free asymmetric capacitive deionization. J. Mater. Chem. A 6(23), 10898−10908.
Sellers, R.M., 1980. Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst 105(1255), 950−954.
Shaji, E., Santosh, M., Sarath, K.V., Prakash, P., Deepchand, V., Divya, B.V., 2021. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 12(3), 101079.
Shankar, S., Shanker, U., Shikha., 2014. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014(1), 304524.
Shao, Q., Yang, H., Luo, Y., Yang, P., Long, L., Chen, Y., Liu, Z., Wu, F., Xie, P., Ma, J., 2023. Novel activation of sulfite by perovskite CaCu3Ti4O12 for As (III) oxidation: Kinetics and mechanism. Chem. Eng. J. 463, 142399.
Sharma, V.K., Sohn, M., 2009. Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ. Int. 35(4), 743–759.
Shen, Y.Y., Hsu, C.C., Tsai, S.W., Hou, C.H., 2021a. Enhanced electrosorption selectivity of phosphate using an anion-exchange resin-coated activated carbon electrode. J. Colloid Interface Sci. 600, 199−208.
Shen, Y.Y., Sun, S.H., Tsai, S.W., Chen, T.H., Hou, C.H., 2021b. Development of a membrane capacitive deionization stack for domestic wastewater reclamation: A pilot-scale feasibility study. Desalination 500, 114851.
Shen, Y.Y., Wu, S.W., Hou, C.H., 2021c. Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution. J. Colloid Interface Sci. 586, 819−829.
Shi, W., Ma, J., Gao, F., Dai, R., Su, X., Wang, Z., 2023. Metal–Organic Framework with a Redox-Active Bridge Enables Electrochemically Highly Selective Removal of Arsenic from Water. Environ. Sci. Technol. 57(15), 6342–6352.
Shih, Y.J., Chen, Z.S., Chen, C.L., Huang, Y.H., Huang, C.P., 2022. Enhancing arsenic (III) removal by integrated electrocatalytic oxidation and electrosorption reactions on nano-textured bimetal composite of iron oxyhydroxide and manganese dioxide polymorphs (α-, γ-, β-, and ε-MnxFe1−xO). Appl. Catal. B: Environ. 317, 121757.
Shih, Y.J., Hsu, C.H., 2021. Kinetics and highly selective N2 conversion of direct electrochemical ammonia oxidation in an undivided cell using NiCo oxide nanoparticle as the anode and metallic Cu/Ni foam as the cathode. Chem. Eng. J. 409, 128024.
Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochemistry 17(5), 517−568.
Smith, A.H., Lopipero, P.A., Bates, M.N., Steinmaus, C.M., 2002. Arsenic epidemiology and drinking water standards. Science 296(5576), 2145−2146.
Song, P., Yang, Z., Zeng, G., Yang, X., Xu, H., Wang, L., Xu, R., Xiong, W., Ahmad, K., 2017. Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review. Chem. Eng. J. 317, 707−725.
Song, Z., Garg, S., Ma, J., Waite, T.D., 2019. Modified double potential step chronoamperometry (DPSC) method for As (III) electro-oxidation and concomitant As (V) adsorption from groundwaters. Environ. Sci. Technol. 53(16), 9715−9724.
Song, Z., Garg, S., Ma, J., Waite, T.D., 2020. Selective arsenic removal from groundwaters using redox-active polyvinylferrocene-functionalized electrodes: role of oxygen. Environ. Sci. Technol. 54(19), 12081–12091.
Srimuk, P., Su, X., Yoon, J., Aurbach, D., Presser, V., 2020. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5(7), 517−538.
Su, X., Kushima, A., Halliday, C., Zhou, J., Li, J., Hatton, T.A., 2018. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat. Commun. 9(1), 4701.
Sun, K., Tebyetekerwa, M., Wang, C., Wang, X., Zhang, X., Zhao, X.S., 2023. Electrocapacitive deionization: mechanisms, electrodes, and cell designs. Adv. Funct. Mater. 33(18), 2213578.
Suss, M., Porada, S., Sun, X., Biesheuvel, P., Yoon, J., Presser, V., 2015. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8(8), 2296−2319.
Szinicz, L., Forth, W., 1988. Effect of As2O3 on gluconeogenesis. Arch. Toxicol. 61, 444–449.
Tang, W., He, D., Zhang, C., Kovalsky, P., Waite, T.D., 2017. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res. 120, 229–237.
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9−10), 1051−1069.
Tsai, S.W., Cuong, D.V., Hou, C.H., 2022. Selective capture of ammonium ions from municipal wastewater treatment plant effluent with a nickel hexacyanoferrate electrode. Water Res. 221, 118786.
Tseng, W.P., Chu, H., How, S.W., Fong, J.M., Lin, C.S., Yeh, S.H.U., 1968. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer Inst. 40(3), 453–463.
United States Environmental Protection Agency (USEPA), 2001. National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring. Fed. Reg. 66(14), 69–76.
Wan, W., Pepping, T.J., Banerji, T., Chaudhari, S., Giammar, D.E., 2011. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res. 45(1), 384−392.
Wang, C., Qiu, Y., Wang, C., Xu, Y., Ren, L.F., Shao, J., 2024. Efficient groundwater defluorination over a wide concentration gradient through capacitive deionization with a three-layer structured membrane coating electrode. J. Hazard. Mater. 462, 132703.
Wang, C., Xue, S., Xu, Y., Li, R., Qiu, Y., Wang, C., Ren, L.F., Shao, J., 2024b. Novel electrocatalytic capacitive deionization with catalytic electrodes for selective phosphonate degradation: Performance and mechanism. Water Res. 256, 121614.
Wang, L., Yu, H., Zhang, Q., Li, Y., Jia, W., Hou, C., Wang, H., 2021. NiCo–NiCoO2/carbon hollow nanocages for non-enzyme glucose detection. Electrochim. Acta 381, 138259.
Wang, W., Yang, Y., Liu, Y., Zhang, Z., Dong, W., Lei, Z., 2015. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation. J. Power Sources 273, 631–637.
Wang, X.H., Hong, Q.L., Zhang, Z.N., Ge, Z.X., Zhai, Q.G., Jiang, Y.C., Chen, Y., Li, S.N., 2022. Two-dimensional nickel–cobalt bimetallic hydroxides towards urea electrooxidation. Appl. Surf. Sci. 604, 154484.
World Health Organization (WHO), 2022. Guidelines for drinking-water quality: incorporating the first and second addenda.
Wouters, J.J., Tejedor-Tejedor, M.I., Lado, J.J., Perez-Roa, R., Anderson, M.A., 2018. Influence of metal oxide coatings, carbon materials and potentials on ion removal in capacitive deionization. J. Electrochem. Soc. 165(5), E148.
Wu, P.C., Cuong, D.V., Wu, J.C., Liou, S.Y.H., Hou, C.H., 2023. Harnessing in-situ electrocatalytic oxidation with a cobalt oxide decorated nanocomposite electrode for efficient arsenic removal in capacitive deionization. Chem. Eng. J. 474, 145887.
Wu, T., Wang, G., Dong, Q., Zhan, F., Zhang, X., Li, S., Qiao, H., Qiu, J., 2017. Starch derived porous carbon nanosheets for high-performance photovoltaic capacitive deionization. Environ. Sci. Technol. 51(16), 9244–9251.
Xiong, Y., Liu, X., Zhang, T.C., Yuan, S., 2021. MnO2/TiO2 nanotube array-coated titanium substrates as anodes for electrocatalytic oxidation of As(III) in aqueous solution. ACS Appl. Nano Mater. 4(7), 7404−7415.
Xu, Y., Dong, Y., Wang, X., Wang, Y., Jiao, L., Yuan, H., Li, J., 2015. Electrochemical performances of cobalt oxide–carbon nanotubes electrodes via different methods as negative material for alkaline rechargeable batteries. RSC Adv. 5(90), 73410−73415.
Yan, X., Li, K., Lyu, L., Song, F., He, J., Niu, D., Chen, X., 2016. From Water Oxidation to Reduction: Transformation from NixCo3–xO4 Nanowires to NiCo/NiCoOx Heterostructures. ACS Appl. Mater. Interfaces. 8(5), 3208–3214.
Yang, F., He, Y., Rosentsvit, L., Suss, M.E., Zhang, X., Gao, T., Liang, P., 2021. Flow-electrode capacitive deionization: a review and new perspectives. Water Res. 117222.
Yang, J., Liu, H., Martens, W.N., Frost, R.L., 2010. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114(1), 111−119.
Yang, K., Abu-Reesh, I.M., He, Z., 2023. Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system. J. Hazard. Mater. 442, 130126.
Yen, G.C., Duh, P.D., Tsai, H.L., 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79(3), 307–313.
Yin, H., Liu, L., Ma, J., Zhang, C., Qiu, G., 2023. Efficient removal of As (III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system. Water Res. 120734.
Yuan, R., Jiang, M., Gao, S., Wang, Z., Wang, H., Boczkaj, G., Li, Z., 2020. 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chem. Eng. J. 380, 122447.
Zama, E.F., Li, G., Tang, Y.T., Reid, B.J., Ngwabie, N.M., Sun, G.X., 2022. The removal of arsenic from solution through biochar-enhanced precipitation of calcium-arsenic derivatives. Environ. Pollut. 292, 118241.
Zhang, Q., Xie, Y., Ling, F., Song, Z., Li, D., Lu, Y., Tang, X., Li, Y., Zhou, X., 2022. Bimetallic nickel-cobalt oxides: A comprehensive insight into Ni/Co ratio, intrinsic structure and electrochemical behaviors. Vacuum 196, 110764.
Zhang, X., Fan, W., Zhao, S., Cao, R., Li, C., 2019. An efficient, bifunctional catalyst for lithium–oxygen batteries obtained through tuning the exterior Co2+/Co3+ ratio of CoOx on N-doped carbon nanofibers. Catal. Sci. Technol. 9(8), 1998−2007.
Zhang, X., Zuo, K., Zhang, X., Zhang, C., Liang, P., 2020. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ. Sci. Water Res. Technol. 6(2), 243−257.
Zhang, Z., Li, J., Meng, N., Song, S., Zhu, Q., Li, D., Gong, L., Ding, Y., Zhang, R., Shi, X., 2024. Simultaneously-efficient electro-sorption of Pb (II), Cu (II) and Cd (II) by Cu2+ modified superactive carbons. Sep. Purif. Technol. 338, 126604.
Zhao, T., Jiang, H., Ma, J., 2011. Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J. Power Sources 196(2), 860−864.
Zhou, W., Rajic, L., Meng, X., Nazari, R., Zhao, Y., Wang, Y., Gao, J., Qin, Y., Alshawabkeh, A.N., 2019. Efficient H2O2 electrogeneration at graphite felt modified via electrode polarity reversal: Utilization for organic pollutants degradation. Chem. Eng. J. 364, 428−439.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95999-
dc.description.abstract地下水中的砷污染是全球亟待解決的問題,無論在發展中國家或已開發國家都造成了嚴重影響,故迫切需要高效且節能的除砷技術。然而,由於不帶電荷的三價砷親和力較低,使得現有技術在去除微量砷濃度與轉化三價砷為五價砷的過程中仍面臨諸多限制。針對這些挑戰,近年的除砷研究受電化學儲能技術的啟發,提出了新的解決策略,包括通過優化放電階段的電壓控制來促進三價砷的氧化效率,或開發具高砷親和力的電極材料來增強對三價砷的電催化活性。基於當前研究在電極材料與電化學程序的突破,我們進一步設計了新穎的電極材料,並提出創新的電化學輔助程序,旨在提高砷的去除與轉化效率。具體而言,我們開發了單金屬鈷氧化物與雙金屬鎳鈷氧化物修飾的奈米複合電極,並提出電輔助自鹼化及無氧化劑程序,為砷去除提供了更具創新性和有效性的解決方案。
在第一部分,我們通過將鈷氧化物奈米顆粒修飾在活性碳電極上,開發了雙功能鈷氧化物/活性碳奈米複合電極,成功實現三價砷的原位電催化氧化以及五價砷的高效電吸附。此鈷氧化物/活性碳電極具有540.2 m2 g−1的高比表面積,且展現出良好的導電性與電催化活性。應用在電容去離子技術中,三價砷的去除效率隨著pH上升而提高。特別是在pH 10的條件下,其電吸附容量達到0.75 mg g−1,且能源消耗低至0.12 kWh m−3。在充電/放電循環期間,三價砷氧化為五價砷的轉化效率達67%,生成的五價砷則可通過電吸附機制去除,從而大幅提升總砷的去除效率。此外,通過十次循環操作的實驗驗證,奈米複合電極展現優異的持久與再生性能,突顯其在實際應用中處理含砷地下水的可行性。
在第二部分,我們設計了雙金屬鎳鈷氧化物/活性碳奈米複合電極,通過電沉積方法將鎳和鈷氧化物修飾在活性碳上,以增強電化學除砷效率。由電化學特性分析的結果顯示,鎳鈷氧化物/活性碳電極中的鎳與鈷氧化物具備協同效應,能改善電子傳輸效率,並增強三價砷的電催化活性。應用在電容去離子技術中,施加1.2 V及pH 8的初始條件下,電吸附容量達到0.73 mg g−1,能源消耗僅為0.069 kWh m−3,表現明顯優於單金屬氧化物電極。三價砷的轉化效率也受到pH影響,在pH 10時,最高達75%的三價砷可氧化為五價砷。此外,由模擬地下水中進行多次循環實驗證實了該電極的穩定性與再生能力,顯示其在長期除砷應用中的潛力。
在第三部分,我們提出了電輔助自鹼化及無氧化劑程序,該程序實現了90.3%的砷去除效率,將陰極室內的三價砷濃度從150 µg L−1降至低於5 µg L−1。三價砷在陰極室經由鹼化解離成砷含氧陰離子,同時經由原位生成的過氧化氫氧化為五價砷。估計近80%的三價砷遷移至陽極室係歸因於過氧化氫的氧化,約20%則歸因於pH提升帶來的鹼化作用。在1.2至1.5 V的電壓條件下,過氧化氫的最高累積濃度達到10.9 mg L−1,從而在pH 4至10的寬廣範圍內增強砷的去除效率,最終實現高達97.0%的三價砷氧化為五價砷的轉化效率,且能源消耗最低僅為0.013 kWh m−3。此外,砷透過原位電氧化和電吸附作用被穩定地固定在陽極上,這將有助於後續廢棄物的處置。
本論文的研究成果強調了電極材料的精進與電化學程序的改良在砷污染地下水整治中的潛力與原創性,為環境工程領域貢獻了具實際應用價值的高效且低耗能解決方案。
zh_TW
dc.description.abstractArsenic contamination in groundwater is a growing threat at the global level, emphasizing the urgent need for advanced, high-efficiency, low-energy remediation alternatives. With regards this, recent advances in arsenic remediation techniques, which involve ideas from electrochemical energy storage systems, have emerged responding to the problems of trace arsenic removal and detoxification. They encompass designing of electrode materials with increased arsenic affinity to improve As(III) electrocatalytic activity and controlling the voltage on discharge in improving As(III) oxidation. Building on these advancements in both electrochemical processes and electrode materials, this study presents novel electrode designs and introduces an innovative electrochemically-assisted process aimed at improving arsenic removal and conversion efficiency. Specifically, the research focuses on nanocomposite electrodes modified with monometallic cobalt oxide and bimetallic nickel-cobalt oxide, as well as the development of an electro-assisted self-alkalization and oxidant-free process (ESOP), providing a more effective and innovative solution for arsenic remediation.
In the first part, we present a novel approach to incorporate cobalt oxide (CoOx) nanoparticles with activated carbon (AC), referred to as a bifunctional nanocomposite CoOx/AC electrode, and thereby achieve the simultaneous in-situ electrocatalytic oxidation of As(III) and the efficient electrosorption of As(V). The electrochemical measurements of the CoOx/AC electrode, which had a high specific surface area of 540.2 m2 g−1, demonstrated good electrical conductivity and electrocatalytic activity toward the As(III) oxidation reaction. Asymmetric CDI experiments with the CoOx/AC electrodes were performed at 1.2 V in batch-mode for different pH values. It is indicated that elevated pH can enhance the As(III) removal efficiency. Compared to the AC electrode, the CoOx/AC electrode had a considerably higher electrosorption capacity of 0.75 mg g−1 with a low energy consumption of 0.12 kWh m−3 at pH 10. To obtain insight into the mechanisms, the As(III)/As(V) concentrations and distribution were investigated in a charging-discharging cycle. When the CoOx/AC electrode was used as the anode, the electrocatalytic conversion of As(III) into As(V) was significantly enhanced from 43% to 67%, and then the generated As(V) could be electroadsorbed by electrical double-layer charging, thereby achieving an improvement in As(III) removal. Finally, the single-pass asymmetric CDI operated at ten consecutive charging-discharging cycles further demonstrated the great feasibility of using the CoOx/AC electrode to promote the in-situ electrocatalytic oxidation of As(III) for remediation of arsenic-contaminated groundwater.
In the second part, we engineered the Ni1Co1/AC nanocomposite electrode by electrodepositing nickel and cobalt oxides onto activated carbon (AC) to enhance the electrochemical removal of arsenic. Electrochemical measurements of the Ni1Co1/AC electrode, which contained Ni(OH)2/NiOOH and Co3O4, demonstrated that nickel and cobalt oxides showed synergistic interactions in enhancing electron transport and the As(III) electrocatalytic activity. Meanwhile, asymmetric CDI experiments at 1.2 V in the batch mode using Ni1Co1/AC electrode have shown an excellent As removal capacity of 0.73 mg g−1 with low energy consumption of 0.069 kWh m−1 at pH 8, way superior to that obtained on monometallic electrodes of Ni2/AC and Co2/AC. The capacity of As(III) removal increased with increasing pH; at pH 10, a maximum efficiency in the conversion of As(III) to As(V) was realized at 75%, which suggested effective in-situ electrocatalytic oxidation. Mechanistic results also indicated that the nickel and cobalt oxides were involved in the in-situ electrocatalytic oxidation of As(III) into As(V), thus improving the overall efficiency of arsenic removal. Long-term stability and regeneration of the electrode were investigated in simulated groundwater in a single-pass mode. It is evident from these findings that the bimetallic Ni-Co oxides modified AC electrode can be quite powerful and efficient in the removal of arsenic from contaminated groundwaters.
In the third part, an electro-assisted self-alkalization and oxidant-free processes cell was developed and investigated. It was found that the ESOP removed 90.3% of arsenic and reduced the As(III) concentration from 150 µg L−1 to less than 5 µg L−1 in its cathode chamber. The As removal involved migration of As(III) and As(V) from the cathode to the anode driven by electrical current. In the ESOP cathode, As(III) was dissociated to As(III) oxyanions via alkalization and then oxidized into As(V) by H2O2. Nearly 80% of As(III) migration could be attributed to the oxidation by H2O2 and approximately 20% dissociation by pH alkalization. The voltage-controlled conditions (1.2−1.5 V) achieved a peak cumulative H2O2 concentration of 10.9 mg L−1. The ESOP demonstrated a high As(III) oxidation to As(V) conversion efficiency of 97.0% as well as a low energy cost of 0.013 kWh m−3 at 1.2 V. The migrated arsenic was stabilized onto the anode electrode through in-situ electro-oxidation of As(III) and electrosorption of As(III, V); this would help with the post-treatment waste disposal. Those results have provided important insights into an electrochemical approach for highly efficient arsenic detoxification.
As per these findings, there exists the high potential to sustainably depollute arsenic contamination in groundwater within a reasonable energy budget thereby enhancing their usability and offering valuable perspectives in environmental engineering.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:32:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:32:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENT I
中文摘要 III
ABSTRACT V
CONTENTS IX
LIST OF FIGURES XIII
LIST OF TABLES XIX
LIST OF SYMBOLS AND ABBREVIATIONS XXI
DECLARATION OF PUBLICATIONS XXV
CHAPTER 1: INTRODUCTION 1
1.1. Background 1
1.2. Research objective 3
1.3. Organization of thesis 5
CHAPTER 2: LITERATURE REVIEW 9
2.1. Arsenic contamination in groundwater and its challenges 9
2.1.1. Global concerns and health impacts 9
2.1.2. Arsenic speciation and toxicity 13
2.1.3. Conventional methods and limitations 15
2.2. Electrochemical separation method for arsenic removal 17
2.2.1. Principle and scope of capacitive deionization 17
2.2.2. Electrosorption and electro-oxidation processes 19
2.3. Enhanced in-situ electrocatalytic oxidation and electrosorption of arsenic 22
2.3.1. Advanced functional nanomaterials 22
2.3.2. Bifunctional metal oxide nanomaterials 24
2.4. Electro-assisted intensification of arsenic removal via integrated alkalization and oxidation processes 27
CHAPTER 3: MATERIALS AND METHODS 31
3.1. Chemicals 31
3.2. Material preparation 31
3.2.1. Preparation of activated carbon electrode 31
3.2.2. Synthesis of cobalt oxide/activated carbon composite electrode 32
3.2.3. Synthesis of mono-/bimetallic oxides nanocomposite electrode 32
3.3. Material characterizations 33
3.3.1. Physicochemical measurements 33
3.3.2. Electrochemical measurements 34
3.4. Experimental setup 34
3.4.1. Asymmetric capacitive deionization (CDI) 34
3.4.2. Electro-assisted self-alkalization and oxidant-free processes (ESOP) 36
3.5. Key performance indicators 39
CHAPTER 4: IN-SITU ELECTROCATALYTIC OXIDATION WITH A COBALT OXIDE DECORATED NANOCOMPOSITE ELECTRODE FOR EFFICIENT ARSENIC REMOVAL 43
4.1. Pore and surface characteristics 43
4.2. Electrochemical properties of the CoOx/AC nanocomposite electrode 46
4.3. As(V) and As(III) removal characteristics 47
4.4. Effect of pH on As(III) removal 49
4.5. Proposed mechanism of As(III) removal using the CoOx/AC bifunctional composite electrode 52
4.6. Application of composite electrode in the treatment of simulated As-contaminated groundwater 55
4.7. Summary 60
CHAPTER 5: BIMETALLIC NI-CO OXIDE NANOCOMPOSITE ELECTRODE FOR ENHANCED IN-SITU ELECTROCATALYTIC OXIDATION OF AS(III) 63
5.1. Physicochemical characteristics 63
5.2. Electrochemical characteristics 67
5.3. As(III) electrooxidation and As(III/V) electrosorption 69
5.4. Mechanism of As(III) in-situ electrocatalytic oxidation by Ni-Co oxides 73
5.5. Demonstration for simulated As-contaminated groundwater 75
5.6. Summary 79
CHAPTER 6: ELECTROCHEMICALLY-ASSISTED INTENSIFICATION OF AS(III) REMOVAL THROUGH ALKALIZATION AND OXIDATION 81
6.1. Enhanced As(III) removal by the ESOP 81
6.2. Enhanced dissociation and conversion of As(III) via applied voltage 83
6.3. Effect of initial pH on As(III/V) migration and detoxification 86
6.4. Fates of arsenic in the anode 89
6.5. Importance of H2O2 oxidation to arsenic removal 91
6.6. Perspectives 94
6.7. Summary 98
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 99
7.1. Conclusions 99
7.2. Recommendations 100
REFERENCE 103
LIST OF PUBLICATION 119
-
dc.language.isoen-
dc.title電化學輔助去除砷:整合陰極與陽極的法拉第反應zh_TW
dc.titleElectrochemically-assisted arsenic removal: integrated cathodic and anodic Faradaic reactionsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee林逸彬;李公哲;李孟珊;劉于榕zh_TW
dc.contributor.oralexamcommitteeYi-Pin Lin;Kung-Cheh Li;Mengshan Lee;Yu-Jung Liuen
dc.subject.keyword同步鹼化與氧化,原位電催化氧化,電吸附,砷含氧陰離子,砷固定化,zh_TW
dc.subject.keywordSimultaneous alkalization and oxidation,In-situ electrocatalytic oxidation,Electrosorption,Arsenic oxyanions,Arsenic immobilization,en
dc.relation.page120-
dc.identifier.doi10.6342/NTU202404331-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf22.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved