Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95998
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周呈霙zh_TW
dc.contributor.advisorCheng-Ying Chouen
dc.contributor.author張翰斌zh_TW
dc.contributor.authorHan-Bin Changen
dc.date.accessioned2024-09-25T16:32:26Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-09-06-
dc.identifier.citationAdeva, J. J. G. (2012). Simulation modelling of nectar and pollen foraging by honeybees. Biosystems Engineering, 112(4):304–318.
Adjare, S. O. (1990). Beekeeping in Africa. Rome: Food and Agriculture Organisation of the United Nations, 1st ed. edition.
Babic, Z., Pilipovic, R., Risojevic, V., and Mirjanic, G. (2016). Pollen bearing honey bee detection in hive entrance video recorded by remote embedded system for pollinationmonitoring. ISPRS Annals of the Photogrammetry, Remote Sensing and SpatialInformation Sciences, 3:51–57.
Benahmed, H. K., Bensaad, M. L., and Chaib, N. (2022). Detection and tracking of honeybees using yolo and strongsort. In 2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), pages 18–23. IEEE.
Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016). Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP), pages 3464–3468. IEEE.
Boenisch, F., Rosemann, B., Wild, B., Dormagen, D., Wario, F., and Landgraf, T. (2018). Tracking all members of a honey bee colony over their lifetime using learned models of correspondence. Frontiers in Robotics and AI, 5:35.
Camazine, S. (1993). The regulation of pollen foraging by honey bees: how foragers assess the colony’s need for pollen. Behavioral Ecology and Sociobiology, 32:265–272.
Chen, C., Yang, E.-C., Jiang, J.-A., and Lin, T.-T. (2012). An imaging system for monitoring the in-and-out activity of honey bees. Computers and Electronics in Agriculture, 89:100–109.
Duff, S. and Furgala, B. (1986). Pollen trapping honey bee colonies in minnesota. part ii: Effect on foraging activity, honey production, honey moisture content, and nitrogen content of adult workers. American Bee Journal, 126:686–689.
Eban-Rothschild, A. D. and Bloch, G. (2008). Differences in the sleep architecture of forager and young honeybees (apis mellifera). Journal of Experimental Biology, 211(15):2408–2416.
Eckert, C., Winston, M., and Ydenberg, R. (1994). The relationship between population size, amount of brood, and individual foraging behavior in the honey bee, apis melliferal. Oecologia, 97:248–255.
Goodman, R. (1974). The rate of brood rearing in the effect of pollen trapping on honeybee colonies. Australasian Beekeeper, 76:39–41.
Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J.-F., Aupinel, P., Aptel, J., Tchamitchian, S., and Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079):348–350.
Hrassnigg, N. and Crailsheim, K. (1998). Adaptation of hypopharyngeal gland development to the brood status of honeybee (apis mellifera l.) colonies. Journal of Insect Physiology, 44(10):929–939.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Ultralytics YOLO.
Katsarov, G. and Petkova, O. (1975). The effects of partial pollen removal [trapping] on the development and productivity of honeybee colonies in the central rhodope region. Zhivotnovudni Nauki, 12:127–133.
Keller, I., Fluri, P., and Imdorf, A. (2005). Pollen nutrition and colony development in honey bees: part 1. Bee World, 86(1):3–10.
Laere, O. v. and Martens, N. (1971). The effect of an artificial reduction of protein stores on the foraging activity of a honeybee colony. Apidologie, 1:197–204.
Nelson, D., McKenna, D., and Zumwalt, E. (1987). The effect of continuous pollen trapping on sealed brood, honey production and gross income in northern alberta. American Bee Journal, 127:648–650.
Ngo, T. N., Rustia, D. J. A., Yang, E.-C., and Lin, T.-T. (2021). Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system. Computers and Electronics in Agriculture, 187:106239.
Ngo, T. N., Wu, K.-C., Yang, E.-C., and Lin, T.-T. (2019). A real-time imaging system for multiple honey bee tracking and activity monitoring. Computers and Electronics in Agriculture, 163:104841.
Pahl, M., Zhu, H., Tautz, J., and Zhang, S. (2011). Large scale homing in honeybees. PloSone, 6(5):e19669.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32.
Peng, J., Liu, Y., Tang, S., Hao, Y., Chu, L., Chen, G., Wu, Z., Chen, Z., Yu, Z., Du, Y.,et al. (2022). Pp-liteseg: A superior real-time semantic segmentation model. arXivpreprint arXiv:2204.02681.
Rodriguez, I. F., Megret, R., Acuna, E., Agosto-Rivera, J. L., and Giray, T. (2018). Recognition of pollen-bearing bees from video using convolutional neural network. In 2018 IEEE Winter Conference on Applications of Computer vision (WACV), pages 314–322. IEEE.
Schmickl, T. and Crailsheim, K. (2001). Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages. Journal of Comparative Physiology A, 187:541–547.
Seeley, T. D. (1983). Division of labor between scouts and recruits in honeybee foraging. Behavioral Ecology and Sociobiology, 12:253–259.
Shaw, J. A., Nugent, P. W., Johnson, J., Bromenshenk, J. J., Henderson, C. B., and Debnam, S. (2011). Long-wave infrared imaging for non-invasive beehive population assessment. Optics Express, 19(1):399–408.
Stojnić, V., Risojević, V., and Pilipović, R. (2018). Detection of pollen bearing honey bees in hive entrance images. In 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), pages 1–4. IEEE.
Vanholder, H. (2016). Efficient inference with tensorrt. In GPU Technology Conference, volume 1, pages 1–24.
Webster, T., Thorp, R., Briggs, D., Skinner, J., and Parisian, T. (1985). Effects of pollen traps on honey bee (hymenoptera: Apidae) foraging and brood rearing during almond and prune pollination. Environmental Entomology, 14(6):683–686.
Winston, M. L. (1991). The biology of the honey bee. Harvard University Press.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple online and realtime tracking with a deep association metric. In 2017 IEEE International Conference on Image Processing (ICIP), pages 3645–3649. IEEE.
Yang, C. and Collins, J. (2019). Deep learning for pollen sac detection and measurement on honeybee monitoring video. In 2019 International Conference on Image and Vision Computing New Zealand (IVCNZ), pages 1–6. IEEE.
Yang, C., Collins, J., and Beckerleg, M. (2018). A model for pollen measurement using video monitoring of honey bees. Sensing and Imaging, 19:1–29.
Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., and Wang, X. (2022). Bytetrack: Multi-object tracking by associating every detection box. In European Conference on Computer Vision, pages 1–21. Springer.
陳秋(2010). 蜜蜂覓食行為監測與分析影像系統之研究. 碩士論文, 臺灣大學生物產業機電工程學研究所, 台北.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95998-
dc.description.abstract近年來,受氣候變遷和環境污染影響,蜜蜂養殖的年損失率逐年增加。因此,對蜂群活動力和花粉覓食行為的監測日益受到蜂產業管理的重視。蜜蜂的進出巢活動及其花粉覓食行為是該領域研究的關鍵資訊。然而,傳統的人工觀察巢內進出活動及使用花粉捕捉器來收集蜂箱花粉量的方法非常耗費人力。因此,本研究提出了一套創新的蜜蜂觀察盒,用於收集蜜蜂巢內進出的影像,以及一個能夠同時計數蜜蜂進出數量與花粉攜帶量的蜜蜂計數演算法。該演算法結合了YOLOv8物件偵測模型、PP-LiteSeg 語義分割模型和ByteTrack 追蹤演算法。經過測試,此蜜蜂計數演算法在MAPE 上達到5.43% 的計數表現,且與人工計數結果的相關性達到0.9909。此外,通過識別每隻蜜蜂攜帶的花粉面積,每小時自動計數的花粉總面積與花粉陷阱收集的花粉總重量之間的相關性達到0.9506。
本研究提出了一種新穎的蜂群監控方法,它使研究人員能高效且節省勞力的自動監測蜜蜂進出巢數據,以深入研究蜜蜂的覓食行為。這種監控方法基於不僅可用於監測蜜蜂的巢內進出活動,還能以基於影像監測的方式量測蜜蜂的花粉採集量。
zh_TW
dc.description.abstractIn recent years, due to climate change and environmental pollution, the annual loss rate of beekeeping has been climbing. As a result, monitoring the activity and foraging behavior of honeybee colonies has become increasingly important for honeybee management. Among these, the activity of honeybees entering and leaving the beehive and honey pollen foraging behavior is critical information in related honeybee research areas. However, traditional methods of manually observing beehive entering-and-leaving activity and collecting pollen amounts from pollen traps are labor-intensive. Therefore, this research designs a novel honeybee observation box for capturing honeybee videos. Additionally, this research proposes an innovative honeybee counting algorithm for simultaneously counting the honeybee numbers entering and leaving the beehive and the amount of pollen they bear. This honeybee counting algorithm is composed of the YOLOv8 object detection model, the PP-LiteSeg semantic segmentation model, and the ByteTrack tracking algorithm. After testing, this honeybee counting algorithm achieved an automatic counting performance with a MAPE of 5.43% and showed a high correlation (r=0.9909) with manual counts. Additionally, by identifying the area of pollen carried by each honeybee, the total predicted pollen area has a high correlation (r=0.9506) with the total measured pollen weight collected from pollen traps.
This research offers a novel method for monitoring honeybee colonies, providing researchers with efficient and labor-saving automated monitoring data to further study honeybee foraging behavior. This monitoring method not only allows for tracking honeybee activity but also enables the measurement of pollen foraging amounts from honeybees.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:32:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:32:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Literature Review 5
2.1 Tag-based Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Image-based Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Honeybee detection and pollen image segmentation . . . . . . . . . 7
2.2.2 Count of honeybee entering and leaving beehive . . . . . . . . . . . 8
2.3 Comparison of Related Research . . . . . . . . . . . . . . . . . . . . 9
Chapter 3 Materials and Methods 11
3.1 Entry-and-exit Observing System . . . . . . . . . . . . . . . . . . . 11
3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Honeybee Entry-and-exit Counting Algorithm . . . . . . . . . . . . 17
3.3.1 Honeybee detection model . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Tracking and counting honeybee entering and leaving . . . . . . . . 22
3.3.3 Pollen segmentation model . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Model Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Model Training and Testing . . . . . . . . . . . . . . . . . . . . . . 27
Chapter 4 Results and Discussion 29
4.1 Models Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1 Honeybee detection models . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Pollen segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Entry-and-Exit Counting Accuracy . . . . . . . . . . . . . . . . . . 40
4.3 Models Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Impact of model performance . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Impact of counting algorithm performance . . . . . . . . . . . . . . 45
4.4 Correlation Analysis between Pollen Weight and Image Area . . . . . 46
Chapter 5 Conclusion 53
References 55
-
dc.language.isoen-
dc.title應用深度學習追蹤蜜蜂進出巢活動與花粉計數zh_TW
dc.titleApplication of Deep Learning to Track Honeybee Beehive Entry and Exit Activity with Pollen Countingen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊恩誠;江昭皚;王人正zh_TW
dc.contributor.oralexamcommitteeEn-Cheng Yang;Joe-Air Jiang;Jen-Cheng Wangen
dc.subject.keyword蜜蜂覓食行為,物件檢測,深度學習,zh_TW
dc.subject.keywordObject detection,Deep learning,Honeybee foraging behavior,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202401148-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-09-06-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
17.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved