Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95995
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王建凱zh_TW
dc.contributor.advisorChien-Kai Wangen
dc.contributor.author周峮毅zh_TW
dc.contributor.authorQun-Yi Zhouen
dc.date.accessioned2024-09-25T16:31:28Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-09-11-
dc.identifier.citation[1] Adams, J. D., Kim, U., & Soh, H. T. (2008). Multitarget magnetic activated cell sorter. Proceedings of the National Academy of Sciences, 105(47), 18165-18170.
[2] Anderson, J. D., & Wendt, J. (1995). Computational fluid dynamics (Vol. 206, p. 332). New York: McGraw-hill.
[3] Andersson, H., & Van den Berg, A. (2003). Microfluidic devices for cellomics: a review. Sensors and actuators B: Chemical, 92(3), 315-325.
[4] Bonner, W. A., Hulett, H. R., Sweet, R. G., & Herzenberg, L. A. (1972). Fluorescence activated cell sorting. Review of Scientific Instruments, 43(3), 404-409.
[5] Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of computation, 22(104), 745-762.
[6] Chorin, A. J. (1997). A numerical method for solving incompressible viscous flow problems. Journal of computational physics, 135(2), 118-125.
[7] Coutanceau, M., & Bouard, R. (1977). Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid Mechanics, 79(2), 231-256.
[8] Cross, S. E., Jin, Y. S., Rao, J., & Gimzewski, J. K. (2020). Nanomechanical analysis of cells from cancer patients. In Nano-enabled medical applications (pp. 547-566). Jenny Stanford Publishing.
[9] Davis, J. A., Inglis, D. W., Morton, K. J., & Austin, R. H. (2006). Deterministic Hydrodynamics: Taking Blood Apart. The Proceedings of the National Academy of Sciences, 103(40), 14779–14784
[10] Di Carlo, D. (2009). Inertial Microfluidics. Lab on a Chip, 9, 3038–3046.
[11] Di Carlo, D., Irimia, D., Tompkins, R. G., & Toner , M. (2007). Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels. The Proceedings of the National Academy of Sciences, 104(48), 18892–18897.
[12] Faustino, V., Catarino, S. O., Lima, R., & Minas, G. (2016). Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of biomechanics, 49(11), 2280-2292.
[13] Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature, 463(7280), 485-492.
[14] Fornberg, B. (1980). A numerical study of steady viscous flow past a circular cylinder. Journal of Fluid Mechanics, 98(4), 819-855.
[15] Franci, A., Onate, E., & Carbonell, J. M. (2016). Unified Lagrangian formulation for solid and fluid mechanics and FSI problems. Computer Methods in Applied Mechanics and Engineering, 298, 520-547.
[16] Froese, B. D., & Wiens, J. (2013, July). MatIB/UserGuide.Pdf at Master. Github. https://github.com/eldila/MatIB/blob/master/UserGuide.pdf
[17] Furdui, V. I., & Harrison, D. J. (2004). Immunomagnetic T Cell Capture from Blood for PCR Analysis Using Microfluidic Systems. Lab on a Chip, 4, 614–618.
[18] Gale, B. K., Jafek, A. R., Lambert, C. J., Goenner, B. L., Moghimifam, H., Nze, U. C., & Kamarapu, S. K. (2018). A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions, 3(3), 60.
[19] Gascoyne, P. R. C., Wang, X. B., Huang, Y., & Becker, F. F. (1997). Dielectrophoretic Separation of Cancer Cells from Blood. IEEE Transactions on Industry Applications, 33(3), 670–678.
[20] Ghia, U. K. N. G., Ghia, K. N., & Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of computational physics, 48(3), 387-411.
[21] Gossett, D. R., Weaver, W. M., Mach, A. J., Hur, S. C., Tse, H. T. K., Lee, W., ... & Di Carlo, D. (2010). Label-free cell separation and sorting in microfluidic systems. Analytical and bioanalytical chemistry, 397, 3249-3267.
[22] Griebel, M., Dornseifer, T., & Neunhoeffer, T. (1998). Numerical simulation in fluid dynamics: a practical introduction. Society for Industrial and Applied Mathematics.
[23] Hu, H. H., Patankar, N. A., & Zhu, M. (2001). Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. Journal of Computational Physics, 169(2), 427-462.
[24] Hughes, T. J., Liu, W. K., & Zimmermann, T. K. (1981). Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer methods in applied mechanics and engineering, 29(3), 329-349.
[25] Hur, S. C., Henderson-MacLennan, N. K., McCabe, E. R., & Di Carlo, D. (2011). Deformability-based cell classification and enrichment using inertial microfluidics. Lab on a Chip, 11(5), 912-920.
[26] Ii, S., Sugiyama, K., Takeuchi, S., Takagi, S., & Matsumoto, Y. (2011). An implicit full Eulerian method for the fluid–structure interaction problem. International Journal for Numerical Methods in Fluids, 65(1‐3), 150-165.
[27] Johnson, A. A., & Tezduyar, T. E. (1999). Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23(2), 130-143.
[28] Kamakoti, R., & Shyy, W. (2004). Fluid-Structure Interaction for Aeroelastic Applicartions. Progress in Aerospace Sciences, 40(8), 535–538.
[29] Kamensky , D., Hsu, M. C., Schillinger, D., Evans, J. A., Aggarwal, A., Bazilevs , yuri , Sacks, M. S., & Hughes, T. J. R. (2015). An Immersogeometric Variational Framework for Fluid–Structure Interaction: Application to Bioprosthetic Heart Valves. Computer Methods in Applied Mechanics and Engineering, 284(1), 1005–1053.
[30] Lai, M. C., & Peskin, C. S. (2000). An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. Journal of computational Physics, 160(2), 705-719.
[31] Lekka, M., Gil, D., Pogoda, K., Dulińska-Litewka, J., Jach, R., Gostek, J., ... & Laidler, P. (2012). Cancer cell detection in tissue sections using AFM. Archives of biochemistry and biophysics, 518(2), 151-156.
[32] Lim, C. T., Zhou, E. H., & Quek, S. T. (2006). Mechanical models for living cells—a review. Journal of biomechanics, 39(2), 195-216.
[33] Linnick, M. N., & Fasel, H. F. (2005). A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. Journal of Computational Physics, 204(1), 157-192.
[34] Liu, W. K., & Ma, D. C. (1982). Computer Implementation Aspects for Fluid–Structure Interaction Problems. Computer Methods in Applied Mechanics and Engineering, 31(2), 129–148.
[35] Liu, W. K., Liu, Y., Farrell, D., Zhang, L., Wang, X. S., Fukui, Y., ... & Hsu, H. (2006). Immersed finite element method and its applications to biological systems. Computer methods in applied mechanics and engineering, 195(13-16), 1722-1749.
[36] Liu, Y. (2017). The Immersed Interface Method for Flow Around Non-Smooth Boundaries and Its Parallelization. Southern Methodist University.
[37] Mach, A. J., & Di Carlo, D. (2010). Continuous Scalable Blood Filtration Device Using Inertial Microfluidics. Biotechnology and Bioengineering, 107(2), 302–311.
[38] Moukalled, F., Mangani, L., Darwish, M., Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method (pp. 103-135). Springer International Publishing.
[39] Nayer, G. D., Kalmbach, A., Breuer, M., Sicklinger, S., & Wüchner, R. (2014). Flow Past a Cylinder with a Flexible Splitter Plate: A Complementary Experimental–Numerical Investigation and a New FSI Test Case (FSI-PfS-1a). Computers & Fluids, 99(22), 18–43.
[40] Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1), 12-49.
[41] Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of computational physics, 25(3), 220-252.
[42] Peskin, C. S. (2002). The immersed boundary method. Acta numerica, 11, 479-517.
[43] Reddy, J. N. (1993). An introduction to the finite element method. New York, 27, 14.
[44] Reddy, J. N., & Gartling, D. K. (2010). The finite element method in heat transfer and fluid dynamics. CRC press.
[45] Reichel, F., Goswami, R., Girardo, S., & Guck, J. (2024). High-throughput viscoelastic characterization of cells in hyperbolic microchannels. Lab on a Chip, 24(9), 2440-2453.
[46] Rosales-Cruzaley, E., Cota-Elizondo, P. A., Sánchez, D., & Lapizco-Encinas, B. H. (2013). Sperm Cells Manipulation Employing Dielectrophoresis. Bioprocess and Biosystems Engineering, 36, 1353–1362.
[47] Russell, D., & Wang, Z. J. (2003). A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191(1), 177-205.
[48] Seibold, B. (2008). A compact and fast Matlab code solving the incompressible Navier-Stokes equations on rectangular domains mit18086 navierstokes. m. Massachusetts Institute of Technology.
[49] Takashi, N., & Hughes, T. J. (1992). An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Computer methods in applied mechanics and engineering, 95(1), 115-138.
[50] Toutant, A. (2018). Numerical simulations of unsteady viscous incompressible flows using general pressure equation. Journal of Computational Physics, 374, 822-842.
[51] Tsutsui, H., & Ho, C. M. (2009). Cell Separation by Non-Inertial Force Fields in Microfluidic Systems. Mechanics Research Communications, 36(1), 92–103.
[52] Von Karman, T. (1911). Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1911, 509-517.
[53] Warkiani, M. E., Tay, A. K. ping, Guan, G., & Han, J. (2015). Membrane-Less Microfiltration Using Inertial Microfluidics. Scientific Reports, 5, 11018.
[54] Wiens, J. K., & Stockie, J. M. (2015). An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver. Journal of Computational Physics, 281, 917-941.
[55] Xia, Y., & Whitesides, G. M. (1998). Soft lithography. Angewandte Chemie International Edition, 37(5), 550-575.
[56] Xu, S., & Wang, Z. J. (2006). An immersed interface method for simulating the interaction of a fluid with moving boundaries. Journal of Computational Physics, 216(2), 454-493.
[57] Yeo, L. Y., Chang, H. C., Chan, P. P., & Friend, J. R. (2011). Microfluidic devices for bioapplications. small, 7(1), 12-48.
[58] Yusof, J. M. (1996). Interaction of massive particles with turbulence. Cornell University.
[59] Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067.
[60] 詹冠緯. (2022). 浸潤參考映射技術於流固耦合力學解析研究. 國立臺灣大學機械工程學系學位論文, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95995-
dc.description.abstract在微流體工程應用中,系統元件常用於細胞培養與分選實驗,其流道設計通常具有不規則、彎曲、截面積變化等複雜幾何形狀,並根據實驗目的而有所不同,本論文研究旨在針對具複雜幾何微流體元件之固液耦合問題,開發數值計算與模擬分析技術,從而建立微流體元件實驗的數位孿生。
研究架構上,以計算流體力學 (Computational Fluid Dynamics) 為流場求解核心,並使用水平集函數準確描述元件計算場域內的複雜流場邊界,且以直接強制法 (Direct-Forcing Method) 施加流場限制條件;微流體中固體材料設定為完全沉浸於流場之彈性纖維模型,通過沉浸邊界法 (Immersed Boundary Method) 中的連體力學理論,建立拉格朗日–歐拉混合 (Lagrangian-Eulerian) 的固液耦合機制,並由於直接強制法與沉浸邊界法的流場資訊皆能於交錯網格 (Staggered Grid) 中,透過有限差分法 (Finite Difference Method) 離散,因此具有完美的相容性。
本論文研究方法為基於非貼體網格 (Non-Body Fitted Mesh) 的固液耦合數值計算架構,除能考慮具複雜幾何形狀之流場邊界,特點在於流體與固體網格相互獨立生成並共存於計算場域內,得以各自直接建模,且流場網格於求解過程中,不必隨固體產生巨量變形而重新構建 (Re-Mesh),因而在計算效率上具有一定優勢。期能以本論文之理論與計算力學研究成果,為微流體系統工程研究提供一精準的預測技術與設計工具。
zh_TW
dc.description.abstractIn the applications of microfluidic engineering, system components are often utilized in cell culture and sorting experiments. These components typically feature complex geometries, including irregularities, curvatures, and variations in cross-sectional areas, which vary based on the experimental objectives. This thesis aims to develop numerical computation and simulation analysis techniques for liquid-solid coupling issues in microfluidic devices with complex geometries, thereby establishing a digital twin for microfluidic device experiments.
The research framework centers on computational fluid dynamics (CFD) for solving the flow field. It employs the level set function to accurately describe the complex flow field boundaries within the computational domain and applies the direct-forcing method to impose flow field constraints. The solid materials in the microfluidics are modeled as elastic fibers fully immersed in the flow field. The coupling mechanism between the fluid and the solid is established through the Lagrangian-Eulerian framework of the immersed boundary method, which is based on continuum mechanics theory. Given that both the direct-forcing method and the immersed boundary method's flow field information can be discretized using the finite difference method on a staggered grid, they exhibit perfect compatibility.
This thesis adopts a liquid-solid coupling numerical computation framework based on non-body fitted mesh. It not only considers the complex geometries of the flow field boundaries but also features independent generation and coexistence of fluid and solid meshes within the computational domain, allowing for direct modeling of each. During the solving process, the fluid mesh does not need to be reconstructed (re-meshed) despite significant deformations of the solid, thus offering a computational efficiency advantage. It is hoped that the theoretical and computational mechanics research results of this thesis will provide precise predictive techniques and design tools for microfluidic system engineering research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:31:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:31:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目次 vii
圖次 x
表次 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景 2
1.3 文獻回顧 5
1.3.1 微流體元件製造 5
1.3.2 流固耦合數值方法 5
1.3.3 微流道細胞分選 6
1.4 研究架構 6
第二章 流場之數值計算技術 8
2.1 控制方程式 10
2.1.1 動量方程式 10
2.1.2 連續方程式 11
2.1.3 座標描述 11
2.2 數值求解流程 12
2.3 空間離散 16
2.3.1 有限差分法 16
2.3.2 交錯網格 17
2.3.3 差分方案 21
2.3.4 虛擬網格 23
2.4 邊界條件 24
2.4.1 狄利克雷邊界條件 26
2.4.2 諾伊曼邊界條件 28
2.5 流場可視化 29
2.6 MATLAB程式架構 30
2.6.1 建構系統矩陣 31
2.6.2 流場計算驗證 35
2.6.3 計算例演示 39
第三章 流固交界面與耦合原理 42
3.1 場域定義與座標描述 42
3.2 計算求解策略 43
3.3 無因次化分析 44
3.4 直接強制法 45
3.4.1 定義與求解流程 46
3.4.2 網格體積比例計算 48
3.4.3 誤差與收斂性分析 55
3.4.4 計算例演示 58
3.5 沉浸邊界法 65
3.5.1 流固耦合力學解析 65
3.5.2 流固資訊傳遞機制 67
3.5.3 時間步進機制 70
3.5.4 流固耦合計算驗證 71
3.5.5 計算例演示 73
第四章 複雜幾何微流體元件固液耦合應用 76
4.1 流固模型與參數設定 76
4.2 細胞輸送與橫向遷移 81
4.2.1 等角度漸擴流道流場分析 82
4.2.2 比較不同纖維初始位置 85
4.3 十字交錯細胞分選 90
4.3.1 十字交錯流道流場分析 90
4.3.2 比較不同纖維初始位置 93
4.4 癌細胞與腫瘤細胞分選 96
4.4.1 曲線漸擴流道流場分析 96
4.4.2 比較不同纖維直徑 99
4.5 細胞與微粒變形量測 102
4.5.1 曲線漸縮流道流場分析 102
4.5.2 比較不同纖維彈簧常數 106
4.5.3 比較不同纖維直徑 110
第五章 結論與未來展望 113
5.1 結論 113
5.2 未來展望 114
參考文獻 115
-
dc.language.isozh_TW-
dc.title應用沉浸邊界法於具複雜幾何微流體元件之固液耦合計算力學研究zh_TW
dc.titleStudy on Liquid-Solid Coupling Computational Mechanics of Microfluidic Devices with Complex Geometric Using the Immersed Boundary Methoden
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee董奕鍾;陳壁彰;劉建豪;蔡協澄zh_TW
dc.contributor.oralexamcommitteeYi-Chung Tung;Bi-Chang Chen;Chien-Hao Liu;Hsieh-Chen Tsaien
dc.subject.keyword微流體元件,固體力學,流體力學,流固耦合,沉浸邊界法,zh_TW
dc.subject.keywordMicrofluidic devices,Solid mechanics,Fluid dynamics,Fluid-structure interaction,Immersed boundary method,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202404352-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-09-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-113-1.pdf10.6 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved