請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95989完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭修偉 | zh_TW |
| dc.contributor.advisor | Hsiu-Wei Cheng | en |
| dc.contributor.author | 李耕鴻 | zh_TW |
| dc.contributor.author | Geng-Hong Li | en |
| dc.date.accessioned | 2024-09-25T16:29:41Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-13 | - |
| dc.identifier.citation | [1] Yu Fu, Jun Li, Hong Luo, Cuiwei Du, and Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. Journal of Materials Science&Technology, 80:217–233, 2021.
[2] CAC Souza, DV Ribeiro, and CS Kiminami. Corrosion resistance of Fe-Cr-based amorphous alloys: An overview. Journal of non-crystalline solids, 442:56–66, 2016. [3] Weiting Yu, Marc D Porosoff, and Jingguang G Chen. Review of pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chemical reviews, 112(11):5780–5817, 2012. [4] Nian-Tzu Suen, Sung-Fu Hung, Quan Quan, Nan Zhang, Yi-Jun Xu, and Hao Ming Chen. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 46(2):337–365, 2017. [5] TianyuLi, Xiao-ZiYuan, LeiZhang, DatongSong, KaiyuanShi, and ChristinaBock. Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium ion batteries. Electrochemical Energy Reviews, 3:43–80, 2020. [6] Philippe Marcus, Vincent Maurice, and H-H Strehblow. Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corrosion science, 50(9):2698–2704, 2008. [7] Meicheng Li, Antoine Seyeux, Frédéric Wiame, Philippe Marcus, and Jolanta Światowska. Insights on the Al-Cu-Fe-Mn intermetallic particles induced pitting corrosion of Al-Cu-Li alloy. Corrosion Science, 176:109040, 2020. [8] V Maurice, LH Klein, and P Marcus. Atomic structure of metastable pits formed on nickel. Electrochemical and Solid-State Letters, 4(1):B1, 2000. [9] WP Yang, D Costa, and P Marcus. Resistance to pitting and chemical composition of passive films of a Fe-17% Cr alloy in chloride-containing acid solution. Journal of the Electrochemical Society, 141(10):2669, 1994. [10] Samuel Jacob Rosenberg. Nickel and its alloys, volume 106. US Department of Commerce, National Bureau of Standards, 1968. [11] SY Persaud, B Langelier, A Korinek, S Ramamurthy, GA Botton, and RC Newman. Characterization of initial intergranular oxidation processes in alloy 600 at a sub nanometer scale. Corrosion Science, 133:36–47, 2018. [12] JR Hayes, JJ Gray, AW Szmodis, and CA Orme. Influence of chromium and molybdenum on the corrosion of nickel-based alloys. Corrosion, 62(06), 2006. [13] N Ebrahimi, JJ Noël, MA Rodríguez, and DW Shoesmith. The self-sustaining propagation of crevice corrosion on the hybrid BC1 Ni–Cr–Mo alloy in hot saline solutions. Corrosion Science, 105:58–67, 2016. [14] N Ebrahimi, MC Biesinger, DW Shoesmith, and JJ Noël. The influence of chromium and molybdenum on the repassivation of nickel-chromium-molybdenum alloys in saline solutions. Surface and Interface Analysis, 49(13):1359–1365, 2017. [15] Petra Keller and Hans-Henning Strehblow. Xps investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5M H2SO4. CorrosionScience, 46(8):1939– 1952, 2004. [16] Martin Bojinov, Iva Betova, Gunilla Fabricius, Timo Laitinen, T Saario, et al. The stability of the passive state of iron–chromium alloys in sulphuric acid solution. Corrosion Science, 41(8):1557–1584, 1999. [17] Xuejie Li, Junsoo Han, Pin Lu, James E Saal, Gregory B Olson, Gerald S Frankel, JohnRScully, and KevinOgle. Communication—dissolution and passivation of an Ni-Cr-Fe-Ru-Mo-W high entropy alloy by elementally resolved electrochemistry. Journal of The Electrochemical Society, 167(6):061505, 2020. [18] Jeffrey D Henderson, Xuejie Li, David W Shoesmith, James J Noël, and Kevin Ogle. Molybdenum surface enrichment and release during transpassive dissolution of Ni based alloys. Corrosion Science, 147:32–40, 2019. [19] Kevin Ogle. Atomic emission spectroelectrochemistry: real-time rate measurements of dissolution, corrosion, and passivation. Corrosion, 75(12):1398–1419, 2019. [20] B Beverskog and IJCS Puigdomenech. Revised Pourbaix diagrams for nickel at 25–300 c. Corrosion Science, 39(5):969–980, 1997. [21] Marcel Pourbaix. Atlas of electrochemical equilibria in aqueous solutions. NACE, 1966. [22] Alicja Łukaszczyk, Jacek Banaś, Marcin Pisarek, Antoine Seyeux, Philippe Marcus, and Jolanta Światowska. Effect of cr content on corrosion resistance of low-cr alloy steels studied by surface and electrochemical techniques. Electrochem, 2(4):546–562, 2021. [23] WP Yang, D Costa, and P Marcus. Chemical composition, chemical states, and resistance to localized corrosion of passive films on an fe-17% cr alloy. Journal of the Electrochemical Society, 141(1):111, 1994. [24] Xiang-Xi Ye, Hua Ai, Zhi Guo, Hefei Huang, Li Jiang, Jianqiang Wang, Zhijun Li, and Xingtai Zhou. The high-temperature corrosion of Hastelloy n alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS. Corrosion Science, 106:249–259, 2016. [25] Kai-Chi Chuang, Yu-Yen Chang, Ching-Yu Chiang, Yun-Chung Liu, Hao-Hsuan Hung, Ko-Kai Tseng, Jien-Wei Yeh, and Hsiu-Wei Cheng. Corrosion of plasma sputtering medium entropy alloy thin film: A multidisciplinary perspective. Corrosion Science, 216:111020, 2023. [26] B Beverskog and I Puigdomenech. Revised Pourbaix diagrams for iron at 25–300 c. Corrosion Science, 38(12):2121–2135, 1996. [27] Marcel Pourbaix. Electrochemical corrosion of metallic biomaterials. Biomaterials, 5(3):122–134, 1984. [28] Shuwei Guo, Donghai Xu, Yu Liang, Yanhui Li, Jianqiao Yang, Gang Chen, and Digby D Macdonald. Corrosion characteristics of typical Ni–Cr alloys and Ni–Cr–Mo alloys in super critical water: are view. Industrial & Engineering Chemistry Research, 59(42):18727–18739, 2020. [29] J Horvath and HH Uhlig. Critical potentials for pitting corrosion of Ni, Cr-Ni, Cr-Fe, and related stainless steels. Journal of the Electrochemical society, 115(8):791, 1968. [30] Chunduo Dai, Tianliang Zhao, Cuiwei Du, Zhiyong Liu, and Dawei Zhang. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys. Journal of Materials Science & Technology, 46:64–73, 2020. [31] Dominik Dworschak, Ko-Kai Tseng, Jien-Wei Yeh, Hsiu-Wei Cheng, and Markus Valtiner. Bottom-up characterization of electrochemical passivity from simple binary alloys to high entropy alloys. Electrochimica Acta, 405:139804, 2022. [32] S Haupt and H-H Strehblow. A combined surface analytical and electrochemical study of the formation of passive layers on FeCr alloys in 0.5 M H2SO4. Corrosion Science, 37(1):43–54, 1995. [33] Maomin Shi, Zhonghong Li, Yahong Yuan, Tianli Yue, Jianlong Wang, Ronghua Li, and Jinghong Chen. In situ oxidized magnetite membranes from 316L porous stainless steel via a two-stage sintering process for hexavalent chromium [Cr (vi)] removal from aqueous solutions. Chemical Engineering Journal, 265:84–92, 2015. [34] KyungJin Park and HyukSang Kwon. Effects of Mn on the localized corrosion behavior of Fe–18Cr alloys. Electrochimica Acta, 55(9):3421–3427, 2010. [35] Heon-Young Ha, Min-Ho Jang, and Tae-Ho Lee. Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23 wt% Cr-based alloys. Electrochimica Acta, 191:864–875, 2016. [36] Luntao Wang, Dimitri Mercier, Sandrine Zanna, Antoine Seyeux, Mathilde LaurentBrocq, Loic Perriere, Ivan Guillot, and Philippe Marcus. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS. Corrosion Science, 167:108507, 2020. [37] Zuocheng Wang, Antoine Seyeux, Sandrine Zanna, Vincent Maurice, and Philippe Marcus. Chloride-induced alterations of the passive film on 316L stainless steel and blocking effect of pre-passivation. Electrochimica Acta, 329:135159, 2020. [38] C Duret-Thual, D Costa, WP Yang, and P Marcus. The role of thiosulfates in the pitting corrosion of Fe-17Cr alloys in neutral chloride solution: Electrochemical and XPS study. Corrosion Science, 39(5):913–933, 1997. [39] Yunzhu Shi, Liam Collins, Nina Balke, Peter K Liaw, and Bin Yang. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution. Applied Surface Science, 439:533–544, 2018. [40] Madjid Sarvghad-Moghaddam, Reza Parvizi, Ali Davoodi, Mohsen HaddadSabzevar, and Amin Imani. Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM–EDS and AFM–SKPFM. Corrosion science, 79:148–158, 2014. [41] Javier Sánchez, José Fullea, Carmen Andrade, Juan J Gaitero, and Antonio Porro. AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution. Corrosion science, 50(7):1820–1824, 2008. [42] Jhen-Rong Chen and Wen-Ta Tsai. In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM. Electrochimica Acta, 56(4):1746–1751, 2011. [43] Jérôme Paillier, Christine Mickel, Petre Flaviu Gostin, and Annett Gebert. Characterization of corrosion phenomena of Zr–Ti–Cu–Al–Ni metallic glass by SEM and TEM. Materials characterization, 61(10):1000–1008, 2010. [44] Yinsheng He, Keun-Bong Yoo, Joong Cheul Park, Byung-Ho Lee, Jeong-Bong Yoon, Jung-Gu Kim, and Keesam Shin. TEM study the corrosion behavior of the low alloy steels developed for flue gas desulfurization system. Materials Characterization, 142:540–549, 2018. [45] KKHSS Asami, K Hashimoto, and S Shimodaira. An XPS study of the passivity of a series of iron—chromium alloys in sulphuric acid. Corrosion Science, 18(2):151– 160, 1978. [46] Alison J Davenport, Andrew J Dent, Mehdi Monir, Joshua A Hammons, S Majid Ghahari, Paul D Quinn, and Trevor Rayment. XANES study of the chemistry of molybdenum in artificial corrosion pits in 316L stainless steel. Journal of the Electrochemical Society, 158(5):C111, 2011. [47] MW Kendig, AJ Davenport, and HS Isaacs. The mechanism of corrosion inhibition by chromate conversion coatings from X-ray absorption near edge spectroscopy (XANES). Corrosion Science, 34(1):41–49, 1993. [48] G Kuri, C Degueldre, J Bertsch, and CN Borca. Structural characterization study of nickel ferrite particles dispersed in a corrosion product deposit layer. Applied Surface Science, 257(4):1300–1305, 2010. [49] Elise Gardin, Sandrine Zanna, Antoine Seyeux, Audrey Allion-Maurer, and Philippe Marcus. XPS and ToF-SIMS characterization of the surface oxides on lean duplex stainless steel–global and local approaches. Corrosion Science, 155:121–133, 2019. [50] VA Ignatova, St Van Dyck, R Grötzschel, and W Möller. XPS depth profiling of oxide scales of stainless steels formed in high-temperature aqueous conditions. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 38(4):396–400, 2006. [51] Craig Moore, Jeremy Moon, and Dev Chidambaram. Using sputtering parameters to mitigate argon ion sputtering induced reduction of nickel in XPS. Applied Surface Science, 659:159876, 2024. [52] S Hofmann, G Zhou, J Kovac, S Drev, SY Lian, B Lin, Y Liu, and JY Wang. Preferential sputtering effects in depth profiling of multilayers with sims, XPS and AES. Applied Surface Science, 483:140–155, 2019. [53] Olga Kasian, Simon Geiger, Karl JJ Mayrhofer, and Serhiy Cherevko. Electrochemical on-line ICP-MS in electrocatalysis research. The chemical record, 19(10):2130– 2142, 2019. [54] D Hamm, K Ogle, C-OA Olsson, S Weber, and D Landolt. Passivation of Fe–Cr alloys studied with ICP-AES and EQCM. Corrosion Science, 44(7):1443–1456, 2002. [55] K Ogle and S Weber. Anodic dissolution of 304 stainless steel using atomic emission spectroelectrochemistry. Journal of The Electrochemical Society, 147(5):1770, 2000. [56] Jun Li and David Lampner. In-situ AFM study of pitting corrosion of cu thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 154(1-2):227– 237, 1999. [57] Ali Davoodi, Jinshan Pan, Christofer Leygraf, and Stefan Norgren. Integrated AFM and SECM for in situ studies of localized corrosion of al alloys. Electrochimica Acta, 52(27):7697–7705, 2007. [58] El-Sayed M Sherif, RM Erasmus, and JD Comins. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions. Electrochimica Acta, 55(11):3657–3663, 2010. [59] ShengxiLiandLHHihara. In situ Raman spectroscopic study of NaCl particle-induced marine atmospheric corrosion of carbon steel. Journal of the Electrochemical Society, 159(4):C147, 2012. [60] MC Biesinger, C Brown, JR Mycroft, RD Davidson, and NS McIntyre. X-ray photoelectron spectroscopy studies of chromium compounds. Surface and interface analysis: an international journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 36(12):1550–1563, 2004. [61] Mark C Biesinger, Brad P Payne, Andrew P Grosvenor, Leo WM Lau, Andrea R Gerson, and Roger St C Smart. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7):2717–2730, 2011. [62] AP Grosvenor, BA Kobe, Mark C Biesinger, and NS McIntyre. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 36(12):1564–1574, 2004. [63] M Pl Seah and WA Dench. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surface and interface analysis, 1(1):2–11, 1979. [64] Hiroshi Shinotsuka, Shigeo Tanuma, Cedric J Powell, and David R Penn. Calculations of electron inelastic mean free paths. x. data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm. Surface and Interface Analysis, 47(9):871–888, 2015. [65] Shigeo Tanuma, Cedric J Powell, and David R Penn. Calculations of electron inelastic mean free paths. v. data for 14 organic compounds over the 50–2000 eV range. Surface and interface analysis, 21(3):165–176, 1994. [66] Cedric J Powell, A Jablonski, Shigeo Tanuma, and David R Penn. Effects of elastic and inelastic electron scattering on quantitative surface analyses by AES and XPS. Journal of Electron Spectroscopy and Related Phenomena, 68:605–616, 1994. [67] Robert M Powell, Robert W Puls, Sharon K Hightower, and David A Sabatini. Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environmental Science & Technology, 29(8):1913–1922, 1995. [68] Pâmella Vasconcelos Borges Pinho, Alain Chartier, Jean-Baptiste Moussy, Denis Menut, and Frédéric Miserque. Crystal field effects on the photoemission spectra in Cr2O3 thin films: From multiplet splitting features to the local structure. Materialia, 12:100753, 2020. [69] PâmellaVasconcelosBorgesPinho, AlainChartier, FrédéricMiserque, DenisMenut, and Jean-Baptiste Moussy. Impact of epitaxial strain on crystal field splitting of αCr2O3 (0001) thin films quantified by X-ray photoemission spectroscopy. Materials Research Letters, 9(4):163–168, 2021. [70] Frank MF de Groot, JC Fuggle, BT Thole, and GA Sawatzky. 2p x-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field. Physical Review B, 42(9):5459, 1990. [71] DJ Newman and Betty Ng. The superposition model of crystal fields. Reports on Progress in Physics, 52(6):699, 1989. [72] Ke Zhang, Miao Du, Lei Haoa, Jianping Meng, Jining Wang, Jing Mi, and Xiaopeng Liu. Highly corrosion resistant and sandwich-like Si3N4/Cr-CrNx/Si3N4 coatings used for solar selective absorbing applications. ACS Applied Materials & Interfaces, 8(49):34008–34018, 2016. [73] Barbara Zydorczak, Peter M May, Danielle P Meyrick, David Bátka, and Glenn Hefter. Dissolution of cr2o3 (s) and the behavior of chromium in concentrated NaOH solutions. Industrial & engineering chemistry research, 51(51):16537–16543, 2012. [74] Je-Hun Jang and Susan L Brantley. Investigation of Wustite (FeO) dissolution: Implications for reductive dissolution of ferric oxides. Environmental science & technology, 43(4):1086–1090, 2009. [75] Katy J McKenzie and Frank Marken. Direct electrochemistry of nanoparticulate Fe2O3 in aqueous solution and adsorbed onto tin-doped indium oxide. Pure and applied chemistry, 73(12):1885–1894, 2001. [76] Christian Ludwig and William H Casey. On the mechanisms of dissolution of Bunsenite [NiO(s)] and other simple oxide minerals. Journal of colloid and interface science, 178(1):176–185, 1996. [77] SE Ziemniak and MA Goyette. Nickel (ii) oxide solubility and phase stability in high temperature aqueous solutions. Journalofsolutionchemistry, 33(9):1135–1159, 2004. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95989 | - |
| dc.description.abstract | 理解複雜多元素材料中分子等級的電化學反應機制對於許多應用來說至關重要。在合金鈍化反應中,合金表面形成惰性的三氧化二鉻被認為是提高合金抗腐蝕性的機制。然而,在當前的討論,三氧化二鉻與其他元素的電化學交互作用還未被明確定義,尤其是三氧化二鉻和鐵之間的交互作用。因此,三氧化二鉻的應用受到一定的限制。在研究中,我們使用互補性分析,應用即時感應耦合電漿質譜儀監測以及非即時 X 射線光電子能譜儀來探討關於鉻和鐵的鈍化反應。為了提高表面分析的精確度,我們使用角度解析方法及結合雙陰極 X 光源,包括高能量硬 X 光光電子能譜儀。此方法可達到 12 奈米的非破壞性深度分析,並且分析化學態變化。在晶體場多重態理論下,我們的結果推測形成鉻-鐵混合氧化物結構,在近中性環境中能提供較好的抗腐蝕能力。 | zh_TW |
| dc.description.abstract | Understanding the electrochemical reaction mechanisms at the molecular level in complex multi-principal element materials is crucial for various applications. In alloy passivation reactions, the formation of an inert Cr2O3 surface is a widely accepted mechanism for enhancing alloy corrosion resistance. However, the electrochemical interaction between Cr2O3 and many other elements, particularly Fe, has not been well-defined in the current discussion. As a result, the applicability of the Cr2O3 passive film model is somewhat constrained. In this work, we utilize a complementary analysis strategy by applying in-situ inductively coupled plasma mass spectrometry (ICP-MS) monitoring, and ex-situ X-ray photoelectron spectroscopy (XPS) characterization to investigate the reaction of passive film involving Cr and Fe. To enhance the precision of surface analysis, we employ an angle-resolved approach in conjunction with dual-anode X-ray sources, including HAXPES. This method enables the non-destructive construction of a 12 nm depth profile, revealing variations in chemical states. Considering the crystal field multiplet theory, our results suggest the formation of a Cr-Fe mixed oxide structure that offers a broad potential range of passivity under near-neutral condition. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:29:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:29:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 III
Abstract IV Abstract V Contents VII List of Figures X List of Tables XIV Chapter 1 Introduction 1 1.1 Anti-corrosion materials . . . . . . . . . . . . . . . . . . . . . .1 1.2 The anti-corrosion behavior on chromium compound . . . . . . . . . .2 1.3 Utilizing Pourbaix diagrams to forecast the corrosion behavior of alloys in a solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 The analytical method in corrosion studies . . . . . . . . . . . . . . . .4 1.5 The current challenges . . . . . . . . . . . . . . . . . . . . . . . . . .6 1.6 The highlight of this work . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 2 Experimental Section 10 2.1 Materials and chemicals . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Thin film sample preparation . . . . . . . . . . . . . . . . . . . . . . .11 2.3 Electrochemical flow cell . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 X-ray photoelectron spectroscopy and angle-resolved technique . . . . 12 2.4.1 The principle of X-ray photoelectron . . . . . . . . . . . . . . . . . 12 2.4.2 Measuring and fitting parameters of XPS . . . . . . . . . . . . . . . 15 2.4.3 Angle resolved XPS (ARXPS) . . . . . . . . . . . . . . . . . . . . 18 2.4.4 XPS sputter depth profile . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Inductively coupled plasma mass spectroscopy (ICP-MS) . . . . . . . . 19 2.6 Atomic force microscopy (AFM) . . . . . . . . . . . . . . . . . . . . . 21 2.7 Polarization sequence . . . . . . . . . . . . . . . . . . . . . . . . . 21 Chapter 3 Results 23 3.1 Surface characterization of pristine thin films . . . . . . . . . . . . 23 3.2 Electrochemical activity and surface morphology characterization 29 3.3 ICP-MS and XPS complementary analysis on surface composition . . . 33 3.4 Angle-resolved HAXPES and depth-profiling in passive structure analysis 35 3.4.1 pristine system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 pH 5 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.3 pH 3 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 4 Discussion 40 4.1 The break-down mechanism of Cr2O3 . . . . . . . . . . . . . . . . . . 40 4.2 Formation of Cr-Fe mixed oxide layer . . . . . . . . . . . . . . . . . .41 4.3 Stability analysis of Cr-Fe mixed oxide structures . . . . . . . . . . .43 4.4 The behavior of Ni species during the dissolution process . . . . . . . 45 Chapter 5 Conclusion and Future Outlook 48 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 References 50 | - |
| dc.language.iso | en | - |
| dc.title | 解析鉻和鐵在界面電化學反應中的交互作用:利用 HAXPES 和 ICP-MS 進行互補性分析 | zh_TW |
| dc.title | Deciphering the Interplay between Cr and Fe during Interfacial Electrochemical Processes: A Complementary Analysis Using HAXPES and ICP-MS | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳浩銘;陳俊顯;簡儀欣 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Ming Chen;Chun-Hsien Chen;Yi-Hsin Chien | en |
| dc.subject.keyword | 電化學,中熵合金,腐蝕,pH活性,雙陰極硬X射線光電子能譜學, | zh_TW |
| dc.subject.keyword | Electrochemistry,Medium Entropy Thin Film Alloy,Corrosion,pH-dependent Activity,Dual-Anode Hard X-ray Photoelectron Spectroscopy, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202404369 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-09-13 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2029-09-12 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 6.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
