Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95985
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾明宗zh_TW
dc.contributor.advisorMing-Tsung Chungen
dc.contributor.author謝騏遠zh_TW
dc.contributor.authorChi-Yuan Hsiehen
dc.date.accessioned2024-09-25T16:28:29Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citationAlewijnse, S. R., Stowasser, G., Saunders, R. A., Belcher, A., Crimmen, O. A., Cooper, N., & Trueman, C. N. (2021). Otolith-derived field metabolic rates of myctophids (Family Myctophidae) from the Scotia Sea (Southern Ocean). Marine Ecology Progress Series, 675, 113-131.
Amiot, R., Wang, X., Lécuyer, C., Buffetaut, E., Boudad, L., Cavin, L., Ding, Z., Fluteau, F., Kellner, A. W., & Tong, H. (2010). Oxygen and carbon isotope compositions of middle Cretaceous vertebrates from North Africa and Brazil: ecological and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(2), 439-451.
Andrews, A. J., Orton, D., Onar, V., Addis, P., Tinti, F., & Alexander, M. (2023). Isotopic life‐history signatures are retained in modern and ancient Atlantic bluefin tuna vertebrae. Journal of Fish Biology, 103(1), 118-129.
Anestis, A., Lazou, A., Pörtner, H. O., & Michaelidis, B. (2007). Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293(2), R911-R921.
Barrick, R. E., & Showers, W. J. (1995). Oxygen isotope variability in juvenile dinosaurs (Hypacrosaurus): evidence for thermoregulation. Paleobiology, 21(4), 552-560.
Beamish, F. (1970). Oxygen consumption of largemouth bass, Micropterus salmoides, in relation to swimming speed and temperature. Canadian Journal of Zoology, 48(6), 1221-1228.
Bigman, J. S., Wegner, N. C., & Dulvy, N. K. (2023). Revisiting a central prediction of the Gill Oxygen Limitation Theory: Gill area index and growth performance. Fish and Fisheries, 24(3), 354-366.
Blake, R. E., Chang, S. J., & Lepland, A. (2010). Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature, 464(7291), 1029-1032.
Bridges, C., & Brand, A. (1980). Oxygen consumption and oxygen-independence in marine crustaceans. Marine Ecology Progress Series, 2, 133-141.
Briggs, C., & Post, J. (1997). Field metabolic rates of rainbow trout estimated using electromyogram telemetry. Journal of Fish Biology, 51(4), 807-823.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771-1789.
Burel, C., Person‐Le Ruyet, J., Gaumet, F., Le Roux, A., Severe, A., & Boeuf, G. (1996). Effects of temperature on growth and metabolism in juvenile turbot. Journal of Fish Biology, 49(4), 678-692.
Busst, G. M., & Britton, J. R. (2018). Tissue-specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia, 805, 49-60.
Carlisle, A. B., Goldman, K. J., Litvin, S. Y., Madigan, D. J., Bigman, J. S., Swithenbank, A. M., Kline Jr, T. C., & Block, B. A. (2015). Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark. Proceedings of the Royal Society B: Biological Sciences, 282(1799), 20141446.
Childress, J. (1977). Effects of pressure, temperature and oxygen on the oxygen consumption rate of the midwater copepod Gaussia princeps. Marine Biology, 39, 19-24.
Chung, M.-T., Chen, C.-Y., Shiao, J.-C., Lin, S., & Wang, C.-H. (2020). Temperature-dependent fractionation of stable oxygen isotopes differs between cuttlefish statoliths and cuttlebones. Ecological Indicators, 115, 106457.
Chung, M. T., Chen, C. Y., Shiao, J. C., Shirai, K., & Wang, C. H. (2021a). Metabolic proxy for cephalopods: Stable carbon isotope values recorded in different biogenic carbonates. Methods in Ecology and Evolution, 12(9), 1648-1657.
Chung, M. T., Jørgensen, K. E. M., Trueman, C. N., Knutsen, H., Jorde, P. E., & Grønkjær, P. (2021b). First measurements of field metabolic rate in wild juvenile fishes show strong thermal sensitivity but variations between sympatric ecotypes. Oikos, 130(2), 287-299.
Chung, M. T., Kitagawa, T., Murakami‐Sugihara, N., Tanaka, K., Miki, S., & Shirai, K. (2023). Pre‐treatment methods for stable oxygen and carbon isotope analyses of structural carbonates of bones in marine teleost fishes. Rapid Communications in Mass Spectrometry, 37(19), e9609.
Chung, M. T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E., & Grønkjær, P. (2019). Field metabolic rates of teleost fishes are recorded in otolith carbonate. Communications Biology, 2(1), 24.
Claireaux, G., & Lefrançois, C. (2007). Linking environmental variability and fish performance: integration through the concept of scope for activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1487), 2031-2041.
Clark, T. D., Sandblom, E., & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. Journal of Experimental Biology, 216(15), 2771-2782.
Clarke, T. M., Wabnitz, C. C., Striegel, S., Frölicher, T. L., Reygondeau, G., & Cheung, W. W. (2021). Aerobic growth index (AGI): An index to understand the impacts of ocean warming and deoxygenation on global marine fisheries resources. Progress in Oceanography, 195, 102588.
de Groot, V. A., Trueman, C., & Bates, A. E. (2024). Incorporating otolith-isotope inferred field metabolic rate into conservation strategies. Conservation Physiology, 12(1), coae013.
Deutsch, C., Penn, J. L., & Seibel, B. (2020). Metabolic trait diversity shapes marine biogeography. Nature, 585(7826), 557-562.
Durante, E., Grammer, G., Martino, J., Klaebe, R., Chung, M.-T., Payne, J., & Doubleday, Z. (2024). Developing isotopic proxies to reconstruct the metabolic rates and thermal histories of octopus. Marine Environmental Research, 106543.
Eide, M., Olsen, A., Ninnemann, U. S., & Johannessen, T. (2017). A global ocean climatology of preindustrial and modern ocean δ13C. Global biogeochemical cycles, 31(3), 515-534.
Eliason, E. J., Clark, T. D., Hague, M. J., Hanson, L. M., Gallagher, Z. S., Jeffries, K. M., Gale, M. K., Patterson, D. A., Hinch, S. G., & Farrell, A. P. (2011). Differences in thermal tolerance among sockeye salmon populations. science, 332(6025), 109-112.
Elliott, J. C. (2002). Calcium phosphate biominerals. Reviews in mineralogy and geochemistry, 48(1), 427-453.
Estrada, J. A., Rice, A. N., Natanson, L. J., & Skomal, G. B. (2006). Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology, 87(4), 829-834.
Estupiñán-Montaño, C., Galván-Magaña, F., Sánchez-González, A., Elorriaga-Verplancken, F. R., Delgado-Huertas, A., & Páez-Rosas, D. (2019). Dietary ontogeny of the blue shark, Prionace glauca, based on the analysis of δ13C and δ15N in vertebrae. Marine Biology, 166, 1-13.
Fablet, R., Pecquerie, L., de Pontual, H., Høie, H., Millner, R., Mosegaard, H., & Kooijman, S. A. (2011). Shedding light on fish otolith biomineralization using a bioenergetic approach. Plos one, 6(11), e27055.
Farrell, A. (2016). Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. Journal of Fish Biology, 88(1), 322-343.
Fricke, H. C., O'Neil, J. R., & Lynnerup, N. (1995). SPECIAL REPORT: Oxygen isotope composition of human tooth enamel from medieval Greenland: linking climate and society. Geology, 23(10), 869-872.
Gauldie, R. (1996). Biological factors controlling the carbon isotope record in fish otoliths: principles and evidence. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 115(2), 201-208.
George, A. B., & Westneat, M. W. (2019). Functional morphology of endurance swimming performance and gait transition strategies in balistoid fishes. Journal of Experimental Biology, 222(8), jeb194704.
Gillikin, D. P., Lorrain, A., Meng, L., & Dehairs, F. (2007). A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et cosmochimica Acta, 71(12), 2936-2946.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293(5538), 2248-2251.
Goreau, T. (1977). Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis. Proceedings of the Royal Society of London. Series B. Biological Sciences, 196(1124), 291-315.
Granadeiro, J. P., & Silva, M. A. (2000). The use of otoliths and vertebrae in the identification and size-estimation of fish in predator-prey studies. Cybium, 24(4), 383-393.
Grossman, E. L. (1984). Stable isotope fractionation in live benthic foraminifera from the southern California borderland. Palaeogeography, Palaeoclimatology, Palaeoecology, 47(3-4), 301-327.
Grossman, E. L., & Ku, T.-L. (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology: Isotope Geoscience Section, 59, 59-74.
Guiguer, K., Drimmie, R., & Power, M. (2003). Validating methods for measuring δ18O and δ13C in otoliths from freshwater fish. Rapid Communications in Mass Spectrometry, 17(5), 463-471.
Hansen, M. J., Boisclair, D., Brandt, S. B., Hewett, S. W., Kitchell, J. F., Lucas, M. C., & Ney, J. J. (1993). Applications of bioenergetics models to fish ecology and management: where do we go from here? Transactions of the American Fisheries Society, 122(5), 1019-1030.
Heinze, C., Hoogakker, B. A., & Winguth, A. (2016). Ocean carbon cycling during the past 130 000 years–a pilot study on inverse palaeoclimate record modelling. Climate of the Past, 12(10), 1949-1978.
Heinze, C., & Maier-Reimer, E. (1999). The Hamburg Oceanic Carbon Cycle Circulation Model. Version 1. Version'HAMOCC2s' for long time integrations.
Herskin, J., & Steffensen, J. (1998). Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. Journal of Fish Biology, 53(2), 366-376.
Iacumin, P., Bianucci, G., & Longinelli, A. (1992). Oxygen and carbon isotopic composition of fish otoliths. Marine Biology, 113, 537-542.
Jiang, Y., Yuan, Z., & Huang, J. (2020). Substituted hydroxyapatite: a recent development. Materials Technology, 35(11-12), 785-796.
Jones, J., Hunter, E., Hambach, B., Wilding, M., & Trueman, C. N. (2023). Individual variation in field metabolic rates of wild living fish have phenotypic and ontogenetic underpinnings: insights from stable isotope compositions of otoliths. Frontiers in Ecology and Evolution, 11.
Jutfelt, F., Ern, R., Leeuwis, R., & Clark, T. (2024). Effects of climate warming.
Jutfelt, F., Norin, T., Åsheim, E. R., Rowsey, L. E., Andreassen, A. H., Morgan, R., Clark, T. D., & Speers‐Roesch, B. (2021). ‘Aerobic scope protection’reduces ectotherm growth under warming. Functional Ecology, 35(7), 1397-1407.
Jutfelt, F., Norin, T., Ern, R., Overgaard, J., Wang, T., McKenzie, D. J., Lefevre, S., Nilsson, G. E., Metcalfe, N. B., & Hickey, A. J. (2018). Oxygen-and capacity-limited thermal tolerance: blurring ecology and physiology. Journal of Experimental Biology, 221(1), jeb169615.
Kahn, M. (1979). Non-equilibrium oxygen and carbon isotopic fractionation in tests of living planktonic-foraminifera. Oceanologica Acta, 2(2), 195-208.
Kalish, J. M. (1991). 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Marine Ecology Progress Series, 75(2-3), 191-203.
Keith, M., & Weber, J. (1965). Systematic relationships between carbon and oxygen isotopes in carbonates deposited by modern corals and algae. science, 150(3695), 498-501.
Kennedy, H., Richardson, C., Duarte, C., & Kennedy, D. (2001). Oxygen and carbon stable isotopic profiles of the fan mussel, Pinna nobilis, and reconstruction of sea surface temperatures in the Mediterranean. Marine Biology, 139, 1115-1124.
Killen, S. S., Marras, S., Metcalfe, N. B., McKenzie, D. J., & Domenici, P. (2013). Environmental stressors alter relationships between physiology and behaviour. Trends in Ecology & Evolution, 28(11), 651-658.
Kleiber, M. (1961). The fire of life. An introduction to animal energetics. The fire of life. An introduction to animal energetics.
Kohn, M. J., & Cerling, T. E. (2002). Stable isotope compositions of biological apatite. Reviews in mineralogy and geochemistry, 48(1), 455-488.
Kolodny, Y., Luz, B., & Navon, O. (1983). Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth and Planetary Science Letters, 64(3), 398-404.
Kooijman, S. A. L. M. (2010). Dynamic energy budget theory for metabolic organisation. Cambridge university press.
Larade, K., & Storey, K. B. (2002). A profile of the metabolic responses to anoxia in marine invertebrates. Cell and molecular response to stress, 3, 27-46.
Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et cosmochimica Acta, 48(2), 385-390.
Lorrain, A., Paulet, Y.-M., Chauvaud, L., Dunbar, R., Mucciarone, D., & Fontugne, M. (2004). δ13C variation in scallop shells: increasing metabolic carbon contribution with body size? Geochimica et cosmochimica Acta, 68(17), 3509-3519.
Luque, P. L., Sakai, S., Murua, H., & Arrizabalaga, H. (2020). Protocol for sampling sequential fin spine growth intervals for isotope analysis in the Atlantic Bluefin tuna. Frontiers in Marine Science, 7, 588651.
Madupalli, H., Pavan, B., & Tecklenburg, M. M. (2017). Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. Journal of solid state chemistry, 255, 27-35.
Martino, J. C., Doubleday, Z. A., Chung, M.-T., & Gillanders, B. M. (2020). Experimental support towards a metabolic proxy in fish using otolith carbon isotopes. Journal of Experimental Biology, 223(6), jeb217091.
Matsubayashi, J., Osada, Y., Tadokoro, K., Abe, Y., Yamaguchi, A., Shirai, K., Honda, K., Yoshikawa, C., Ogawa, N. O., & Ohkouchi, N. (2020). Tracking long‐distance migration of marine fishes using compound‐specific stable isotope analysis of amino acids. Ecology Letters, 23(5), 881-890.
Matsubayashi, J., & Tayasu, I. (2019). Collagen turnover and isotopic records in cortical bone. Journal of Archaeological Science, 106, 37-44.
Matsubayashi, J., Umezawa, Y., Matsuyama, M., Kawabe, R., Mei, W., Wan, X., Shimomae, A., & Tayasu, I. (2019). Using segmental isotope analysis of teleost fish vertebrae to estimate trophic discrimination factors of bone collagen. Limnology and Oceanography: Methods, 17(2), 87-96.
McConnaughey, T. (1989). 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et cosmochimica Acta, 53(1), 163-171.
McConnaughey, T. A., Burdett, J., Whelan, J. F., & Paull, C. K. (1997). Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et cosmochimica Acta, 61(3), 611-622.
McConnaughey, T. A., & Gillikin, D. P. (2008). Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters, 28, 287-299.
Morée, A. L., Schwinger, J., & Heinze, C. (2018). Southern Ocean controls of the vertical marine δ13C gradient–a modelling study. Biogeosciences, 15(23), 7205-7223.
Morissette, O., Trueman, C. N., Sturrock, A. M., Geffen, A. J., & Shirai, K. (2023). Limited evidence for species‐specific sensitivity of temperature‐dependent fractionation of oxygen stable isotope in biominerals: A meta‐analysis. Methods in Ecology and Evolution, 14(7), 1719-1731.
Nisbet, R. M., Jusup, M., Klanjscek, T., & Pecquerie, L. (2012). Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models. Journal of Experimental Biology, 215(6), 892-902.
Norin, T., Malte, H., & Clark, T. D. (2016). Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Functional Ecology, 30(3), 369-378.
Olszta, M. J., Cheng, X., Jee, S. S., Kumar, R., Kim, Y.-Y., Kaufman, M. J., Douglas, E. P., & Gower, L. B. (2007). Bone structure and formation: A new perspective. Materials Science and Engineering: R: Reports, 58(3-5), 77-116.
Ortiz, J. D., Mix, A., Rugh, W., Watkins, J., & Collier, R. (1996). Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria. Geochimica et cosmochimica Acta, 60(22), 4509-4523.
Owen, E. F., Wanamaker Jr, A. D., Feindel, S. C., Schöne, B. R., & Rawson, P. D. (2008). Stable carbon and oxygen isotope fractionation in bivalve (Placopecten magellanicus) larval aragonite. Geochimica et cosmochimica Acta, 72(19), 4687-4698.
Pauly, D. (1979). Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy's growth formula.
Pauly, D. (1998). Tropical fishes: patterns and propensities. Journal of Fish Biology, 53, 1-17.
Pauly, D. (2021). The gill-oxygen limitation theory (GOLT) and its critics. Science Advances, 7(2), eabc6050.
Pauly, D., & Cheung, W. W. (2018). Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Global change biology, 24(1), e15-e26.
Pecquerie, L., Petitgas, P., & Kooijman, S. A. (2009). Modeling fish growth and reproduction in the context of the Dynamic Energy Budget theory to predict environmental impact on anchovy spawning duration. Journal of Sea Research, 62(2-3), 93-105.
Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. science, 315(5808), 95-97.
Post, D. M., Layman, C. A., Arrington, D. A., Takimoto, G., Quattrochi, J., & Montana, C. G. (2007). Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152, 179-189.
R Core Team, R. (2013). R: A language and environment for statistical computing.
Radtke, R. (1983). Chemical and structural characteristics of statoliths from the short-finned squid Illex illecebrosus. Marine Biology, 76, 47-54.
Radtke, R., Lenz, P., Showers, W., & Moksness, E. (1996). Environmental information stored in otoliths: insights from stable isotopes. Marine Biology, 127, 161-170.
Remen, M., Nederlof, M. A., Folkedal, O., Thorsheim, G., Sitjà-Bobadilla, A., Pérez-Sánchez, J., Oppedal, F., & Olsen, R. E. (2015). Effect of temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata. Aquaculture Environment Interactions, 7(2), 115-123.
Rey, C., Renugopalakrishman, V., Collins, B., & Glimcher, M. J. (1991). Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcified tissue international, 49, 251-258.
Romanek, C. S., Grossman, E. L., & Morse, J. W. (1992). Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et cosmochimica Acta, 56(1), 419-430.
Rummer, J. L., Couturier, C. S., Stecyk, J. A., Gardiner, N. M., Kinch, J. P., Nilsson, G. E., & Munday, P. L. (2014). Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Global change biology, 20(4), 1055-1066.
Sakamoto, T., Komatsu, K., Yoneda, M., Ishimura, T., Higuchi, T., Shirai, K., Kamimura, Y., Watanabe, C., & Kawabata, A. (2017). Temperature dependence of δ18O in otolith of juvenile Japanese sardine: Laboratory rearing experiment with micro-scale analysis. Fisheries Research, 194, 55-59.
Sakamoto, T., Takahashi, M., Chung, M.-T., Rykaczewski, R. R., Komatsu, K., Shirai, K., Ishimura, T., & Higuchi, T. (2022). Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations. Nature Communications, 13(1), 5298.
Secor, S. M. (2009). Specific dynamic action: a review of the postprandial metabolic response. Journal of Comparative Physiology B, 179, 1-56.
Séon, N., Amiot, R., Suan, G., Lécuyer, C., Fourel, F., Demaret, F., Vinçon-Laugier, A., Charbonnier, S., & Vincent, P. (2022). Intra-skeletal variability in phosphate oxygen isotope composition reveals regional heterothermies in marine vertebrates. Biogeosciences, 19(10), 2671-2681.
Sherwood, G. D., & Rose, G. A. (2003). Influence of swimming form on otolith δ13C in marine fish. Marine Ecology Progress Series, 258, 283-289.
Skinner, M. M., Martin, A. A., & Moore, B. C. (2016). Is lipid correction necessary in the stable isotope analysis of fish tissues? Rapid Communications in Mass Spectrometry, 30(7), 881-889.
Smoliński, S., Denechaud, C., von Leesen, G., Geffen, A. J., Grønkjær, P., Godiksen, J. A., & Campana, S. E. (2021). Differences in metabolic rate between two Atlantic cod (Gadus morhua) populations estimated with carbon isotopic composition in otoliths. Plos one, 16(4), e0248711.
Solomon, C. T., Weber, P. K., Cech, J., Joseph J, Ingram, B. L., Conrad, M. E., Machavaram, M. V., Pogodina, A. R., & Franklin, R. L. (2006). Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences, 63(1), 79-89.
Sonnerup, R. E., & Quay, P. D. (2012). 13C constraints on ocean carbon cycle models. Global biogeochemical cycles, 26(2).
Steinhausen, M. F., Steffensen, J. F., & Andersen, N. G. (2005). Tail beat frequency as a predictor of swimming speed and oxygen consumption of saithe (Pollachius virens) and whiting (Merlangius merlangus) during forced swimming. Marine Biology, 148, 197-204.
Swart, P. K. (1983). Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-science reviews, 19(1), 51-80.
Tajika, A., Landman, N. H., Cochran, J. K., Nishida, K., Shirai, K., Ishimura, T., Murakami-Sugihara, N., & Sato, K. (2023). Ammonoid extinction versus nautiloid survival: Is metabolism responsible? Geology, 51(7), 621-625.
Thorarensen, H., Gallaugher, P., & Farrell, A. (1996). The limitations of heart rate as a predictor of metabolic rate in fish. Journal of Fish Biology, 49(2), 226-236.
Thorrold, S. R., Campana, S. E., Jones, C. M., & Swart, P. K. (1997). Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et cosmochimica Acta, 61(14), 2909-2919.
Toseland, A., Daines, S. J., Clark, J. R., Kirkham, A., Strauss, J., Uhlig, C., Lenton, T. M., Valentin, K., Pearson, G. A., & Moulton, V. (2013). The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Climate Change, 3(11), 979-984.
Treberg, J. R., Killen, S. S., MacCormack, T. J., Lamarre, S. G., & Enders, E. C. (2016). Estimates of metabolic rate and major constituents of metabolic demand in fishes under field conditions: methods, proxies, and new perspectives. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 202, 10-22.
Trueman, C., Rickaby, R., & Shephard, S. (2013). Thermal, trophic and metabolic life histories of inaccessible fishes revealed from stable‐isotope analyses: a case study using orange roughy Hoplostethus atlanticus. Journal of Fish Biology, 83(6), 1613-1636.
Trueman, C. N., Artetxe-Arrate, I., Kerr, L. A., Meijers, A. J., Rooker, J. R., Sivankutty, R., Arrizabalaga, H., Belmonte, A., Deguara, S., & Goñi, N. (2023). Thermal sensitivity of field metabolic rate predicts differential futures for bluefin tuna juveniles across the Atlantic Ocean. Nature Communications, 14(1), 7379.
Waddell, L. M., & Moore, T. C. (2008). Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate. Paleoceanography, 23(1).
Wainwright, P. C., Bellwood, D. R., & Westneat, M. W. (2002). Ecomorphology of locomotion in labrid fishes. Environmental Biology of Fishes, 65, 47-62.
Webb, P. W. (1971). The swimming energetics of trout: II. Oxygen consumption and swimming efficiency. Journal of Experimental Biology, 55(2), 521-540.
Weber, J. N., & Woodhead, P. M. (1970). Carbon and oxygen isotope fractionation in the skeletal carbonate of reef-building corals. Chemical Geology, 6, 93-117.
Weidel, B. C., Carpenter, S. R., Kitchell, J. F., & Vander Zanden, M. J. (2011). Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. Canadian Journal of Fisheries and Aquatic Sciences, 68(3), 387-399.
Wopenka, B., & Pasteris, J. D. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C, 25(2), 131-143.
Wurster, C. M., & Patterson, W. P. (2003). Metabolic rate of late Holocene freshwater fish: evidence from δ13C values of otoliths. Paleobiology, 29(4), 492-505.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95985-
dc.description.abstract海洋生物的代謝反應其能量使用情形,與其生活環境以及生活史策略相關,例如物種的分佈、環境溫鹽、生物交互作用、個體體型、運動能力強弱、及繁殖策略等,因此了解海洋生物在各種環境和人為壓力下的能量用以及相關生理反應至關重要。為了調查野外海洋生物的新陳代謝率,前人的研究應用了來自生物碳酸鹽中所紀錄的δ13C值計算出代謝指標(Cresp),如魚耳石、雙殼綱殼體和烏賊骨板,而本研究旨在擴展Cresp在海洋脊椎動物中的應用潛力,並企圖驗證脊椎的結構碳酸鹽也可以用作代謝記錄器。為此,我們進行了兩項實驗來評估其可行性,(1)分析了27種野生魚類的耳石和脊椎中所記錄的δ13C值,探討兩個結構δ13C值的可比性;(2)進行了為期一年的黑鯛(Acanthopagrus schlegelii)養殖實驗,建立脊椎結構碳酸鹽Cresp值與耗氧量建立關係式。首先,本研究觀察到在跨物種的比較中,耳石和脊椎之間的δ13C值在不同魚種中呈高度相關。其次,由黑鯛脊椎樣本計算的Cresp值與耗氧量之間的關係遵循退化模型的上升模式(a decay model in an increasing form),這與前人在耳石上進行的驗證實驗結果相似。這些結果證實了脊椎也可以用作魚類生活史代謝率的紀錄器,並且本研究所建立的δ13C代謝指標可應用於沒有耳石的物種,如鯊魚和海洋哺乳類等脊椎動物。發展δ13C代謝指標方法及應用有助於評估野生海洋生物的行為和生理,並可用於預測海洋脊椎動物在環境變化下的種群動態。zh_TW
dc.description.abstractThe metabolism reflects the energy use of a marine organism, which is associated with multiple variables, such as species distribution, environmental conditions, prey-predator interaction, body size, activity, reproduction, and fitness. Thus, it is crucial to understand the physiological responses of marine organisms exposed to various environmental and anthropogenic pressures. To investigate the physiological traits of marine organisms in the field, previous studies applied a metabolic proxy (Cresp) derived from the δ13C value in the biogenic carbonate, e.g., fish otolith, bivalve shell, and cuttlefish cuttlebone. This study aims to extend the use of Cresp in marine vertebrates and attempt to prove that the vertebral carbonate can also be used as a metabolic recorder. Thus, two experiments are conducted to evaluate the feasibility. (1) Field observations are to compare the δ13C value recorded in otolith and vertebrae in wild-caught fish across 27 species. (2) A one-year rearing experiment is to link Cresp to the oxygen consumption rate during the ontogeny of the black porgy (Acanthopagrus schlegelii). First, a strong correlation of δ13C values between otolith and vertebrae across teleost species is observed. Second, the relationship between vertebra-derived Cresp and oxygen consumption rate follows the decay model in an increasing form comparable to the previous validation experiment on otolith. These results strongly suggest that the vertebrae can also be used as a chemical archive, and the δ13C metabolic proxy holds the potential to apply to those species without otolith, e.g., sharks and marine mammals. The development of the δ13C metabolic proxy facilitates evaluating behavioral and physiological responses of marine organisms in the wild and predicting the population dynamic of marine vertebrates under the changing climate.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:28:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:28:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 ii
摘要 iii
Abstract iv
List of Tables viii
List of Figures ix
Introduction 1
δ13C metabolic proxy 2
Bone composition and isotope application 5
Experimental design 6
Method 7
Field observation 7
Rearing experimental setting 10
Result 16
Field observation 16
Rearing experiments 17
Discussion 20
Cresp calculation and uncertainty 23
The relationship of Cresp-oxygen consumption in Black porgy 27
Future application of metabolic proxy 28
References 31
-
dc.language.isoen-
dc.title脊椎作為魚類生活史代謝紀錄器之可行性開發驗證zh_TW
dc.titleVertebrae as a potential recorder of life history metabolism in marine fishesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭仁傑;曾庸哲zh_TW
dc.contributor.oralexamcommitteeJen-Chieh Shiao;Yung-Che Tsengen
dc.subject.keyword穩定性碳氧同位素,耳石,耗氧量,冷凍切片,zh_TW
dc.subject.keywordδ13C,δ18O,otolith,oxygen consumption,microtome,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202404023-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2026-08-08-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-08-08
3.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved