請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95981完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童心欣 | zh_TW |
| dc.contributor.advisor | Hsin-hsin Tung | en |
| dc.contributor.author | 張聖典 | zh_TW |
| dc.contributor.author | Sheng-Tien Chang | en |
| dc.date.accessioned | 2024-09-25T16:27:17Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-02 | - |
| dc.identifier.citation | Abin-Bazaine, A.A., Olmos-Marquez, M.A., Campos-Trujillo, A. 2024. A Fixed-Bed Column Sorption: Breakthrough Curves Modeling.
Ajayi, A.E., Horn, R. 2017. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage. Pedosphere, 27(2), 236-247. Babatunde, A., Zhao, Y., O'neill, M., O'sullivan, B. 2008. Constructed wetlands for environmental pollution control: a review of developments, research and practice in Ireland. Environment International, 34(1), 116-126. Bo, X., Zhang, Z., Wang, J., Guo, S., Li, Z., Lin, H., Huang, Y., Han, Z., Kuzyakov, Y., Zou, J. 2023. Benefits and limitations of biochar for climate-smart agriculture: a review and case study from China. Biochar, 5(1), 77. Bourne, D.G., McDonald, I.R., Murrell, J.C. 2001. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol, 67(9), 3802-9. Cai, W., Liu, W., Zhang, Z., Feng, K., Ren, G., Pu, C., Sun, H., Li, J., Deng, Y., Wang, A. 2018. mcrA sequencing reveals the role of basophilic methanogens in a cathodic methanogenic community. Water Research, 136, 192-199. Capodaglio, A., Olsson, G. 2020. Energy issues in sustainable urban wastewater management: use, demand reduction and recovery in the urban water cycle. Sustainability 12 (1): 266. Chen, J., Jiang, Z., Chen, Y., Qiu, Y., Tao, T., Du, X., Pan, J. 2021. Pollutants removal, greenhouse gases emission and functional genes in wastewater ecological soil infiltration systems: influences of influent surface organic loading and aeration mode. Water Science and Technology, 83(7), 1619-1632. Chi, Z., Lu, W., Mou, Z., Wang, H., Long, Y., Duan, Z. 2012. Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. Journal of the Air & Waste Management Association, 62(3), 278-286. Chiemchaisri, C., Chiemchaisri, W., Junsod, J., Threedeach, S., Wicranarachchi, P. 2009. Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland. Bioresource technology, 100(16), 3808-3814. Chistoserdova, L., Vorholt, J.A., Lidstrom, M.E. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biology, 6(2), 208. Corbella, C., Puigagut, J. 2015. Effect of primary treatment and organic loading on methane emissions from horizontal subsurface flow constructed wetlands treating urban wastewater. Ecological Engineering, 80, 79-84. Crites, R.W., Middlebrooks, E.J., Reed, S.C. 2010. Natural wastewater treatment systems. CRC press. Daelman, M.R., van Voorthuizen, E.M., van Dongen, U.G., Volcke, E.I., van Loosdrecht, M.C. 2012. Methane emission during municipal wastewater treatment. Water research, 46(11), 3657-3670. Degelmann, D.M., Borken, W., Drake, H.L., Kolb, S. 2010. Different Atmospheric Methane-Oxidizing Communities in European Beech and Norway Spruce Soils. Applied and Environmental Microbiology, 76(10), 3228-3235. El-Fadel, M., Massoud, M. 2001. Methane emissions from wastewater management. Environmental pollution, 114(2), 177-185. Enaime, G., Baçaoui, A., Yaacoubi, A., Lübken, M. 2020. Biochar for wastewater treatment—conversion technologies and applications. Applied Sciences, 10(10), 3492. Envall, I., Fagerlund, F., Johansson Westholm, L., Bring, A., Land, M., Åberg, C., Haddaway, N.R., Gustafsson, J.P. 2023. Existing evidence related to soil retention of phosphorus from on-site wastewater treatment systems in boreal and temperate climate zones: a systematic map. Environmental Evidence, 12(1), 6. Enzmann, F., Mayer, F., Rother, M., Holtmann, D. 2018. Methanogens: biochemical background and biotechnological applications. AMB Express, 8(1), 1. Fidel, R.B., Laird, D.A., Parkin, T.B. 2019. Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Systems, 3(1), 8. Frunzo, L., Garra, R., Giusti, A., Luongo, V. 2019. Modeling biological systems with an improved fractional Gompertz law. Communications in Nonlinear Science and Numerical Simulation, 74, 260-267. Gu, D., Liu, Y., Zhao, W., Qiu, S., Cui, N., Hu, X., Zhao, P. 2023. Status of Research on Greenhouse Gas Emissions from Wastewater Collection Systems. Water, 15(14), 2512. Hailegnaw, N.S., Mercl, F., Pračke, K., Száková, J., Tlustoš, P. 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19, 2405-2416. Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokhsar, D., Richardson, P.M., DeLong, E.F. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305(5689), 1457-1462. Hassan, H., Jin, B., Donner, E., Vasileiadis, S., Saint, C., Dai, S. 2018. Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: Microbial consortia could make differences. Chemical Engineering Journal, 332, 647-657. Hu, S., Zhu, H., Bañuelos, G., Shutes, B., Wang, X., Hou, S., Yan, B. 2023a. Factors influencing gaseous emissions in constructed wetlands: a meta-analysis and systematic review. International Journal of Environmental Research and Public Health, 20(5), 3876. Hu, Y., Thomsen, T.P., Fenton, O., Sommer, S.G., Shi, W., Cui, W. 2023b. Effects of dairy processing sludge and derived biochar on greenhouse gas emissions from Danish and Irish soils. Environmental Research, 216, 114543. Huang, J., Wang, C., Zhang, S., Han, X., Feng, R., Li, Y., Huang, X., Wang, J. 2023. Optimizing nitrogenous organic wastewater treatment through integration of organic capture, anaerobic digestion, and anammox technologies: sustainability and challenges. Environmental Science and Pollution Research, 30(31), 76372-76386. IPCC, I. 2014. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, Ipcc Geneva, Switzerland. Islam, A., Teo, S.H., Ng, C.H., Taufiq-Yap, Y.H., Choong, S.Y.T., Awual, M.R. 2023. Progress in recent sustainable materials for greenhouse gas (NOx and SOx) emission mitigation. Progress in Materials Science, 132, 101033. Jannat, M.A.H., Park, S.H., Chairattanawat, C., Yulisa, A., Hwang, S. 2022. Effect of different microbial seeds on batch anaerobic digestion of fish waste. Bioresource Technology, 349, 126834. Ji, C., Jin, Y., Li, C., Chen, J., Kong, D., Yu, K., Liu, S., Zou, J. 2018. Variation in Soil Methane Release or Uptake Responses to Biochar Amendment: A Separate Meta-analysis. Ecosystems, 21(8), 1692-1705. Jiang, H., Chen, Y., Murrell, J.C., Jiang, P., Zhang, C., Xing, X.H., Smith, T.J. 2011. 6.22 - Methanotrophs: Multifunctional Bacteria with Promising Applications in Environmental Bioengineering. in: Comprehensive Biotechnology (Second Edition), (Ed.) M. Moo-Young, Academic Press. Burlington, pp. 249-262. Jien, S.-H., Wang, C.-S. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225-233. Kadlec, R.H., Wallace, S. 2008. Treatment wetlands. CRC press. Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., Kschischo, M. 2010. Grofit: Fitting biological growth curves. Nature Precedings, 1-1. Karhu, K., Mattila, T., Bergström, I., Regina, K. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agriculture, Ecosystems & Environment, 140(1), 309-313. Kolb, S., Knief, C., Stubner, S., Conrad, R. 2003. Quantitative Detection of Methanotrophs in Soil by Novel pmoA-Targeted Real-Time PCR Assays. Applied and Environmental Microbiology, 69(5), 2423-2429. Kumar, S., Puniya, A.K., Puniya, M., Dagar, S.S., Sirohi, S.K., Singh, K., Griffith, G.W. 2009. Factors affecting rumen methanogens and methane mitigation strategies. World Journal of Microbiology and Biotechnology, 25(9), 1557-1566. Lee, J.-M., Jeong, H.-C., Gwon, H.-S., Lee, H.-S., Park, H.-R., Kim, G.-S., Park, D.-G., Lee, S.-I. 2023. Effects of biochar on methane emissions and crop yields in East Asian paddy fields: A regional scale meta-analysis. Sustainability, 15(12), 9200. Lehmann, J., Joseph, S. 2024. Biochar for environmental management: science, technology and implementation. Taylor & Francis. Li, B., Wang, H., Lai, A., Xue, J., Wu, Q., Yu, C., Xie, K., Mao, Z., Li, H., Xing, P. 2023. Hydrogenotrophic pathway dominates methanogenesis along the river-estuary continuum of the Yangtze River. Water Research, 240, 120096. Li, D., Wang, X., Chi, L., Zhang, Z., Liu, Y., Li, X. 2021. Decentralized domestic sewage treatment using an integrated multi-soil-layering and subsurface wastewater infiltration system. Water, 13(4), 431. Lin, F., Wang, H., Shaghaleh, H., Ali Adam Hamad, A., Zhang, Y., Yang, B., Alhaj Hamoud, Y. 2024. Effects of Biochar Amendment on N2O Emissions from Soils with Different pH Levels. Atmosphere, 15(1), 68. Liu, W., Xiao, H., Ma, H., Li, Y., Adyel, T.M., Zhai, J. 2020. Reduction of methane emissions from manganese-rich constructed wetlands: Role of manganese-dependent anaerobic methane oxidation. Chemical Engineering Journal, 387, 123402. Loosdrecht, M., Ekama, G., Brdjanovic, D. 1996. Biological waste-water treatment: principles, modelling and design, IWA Publishing, p 87139Frlund B, Palmgren R, Keiding K, Nielsen PH. Lu, X., Li, Y., Wang, H., Singh, B.P., Hu, S., Luo, Y., Li, J., Xiao, Y., Cai, X., Li, Y. 2019. Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agricultural and Forest Meteorology, 271, 168-179. Luesken, F.A., Zhu, B., Alen, T.A.v., Butler, M.K., Diaz, M.R., Song, B., Camp, H.J.M.O.d., Jetten, M.S.M., Ettwig, K.F. 2011. <i>pmoA</i> Primers for Detection of Anaerobic Methanotrophs. Applied and Environmental Microbiology, 77(11), 3877-3880. Luton, P.E., Wayne, J.M., Sharp, R.J., Riley, P.W. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148(11), 3521-3530. Lyu, Z., Shao, N., Akinyemi, T., Whitman, W.B. 2018. Methanogenesis. Current Biology, 28(13), R727-R732. Mainardis, M., Buttazzoni, M., Goi, D. 2020. Up-flow anaerobic sludge blanket (UASB) technology for energy recovery: a review on state-of-the-art and recent technological advances. Bioengineering, 7(2), 43. Markgraf, W., Watts, C.W., Whalley, W.R., Hrkac, T., Horn, R. 2012. Influence of organic matter on rheological properties of soil. Applied Clay Science, 64, 25-33. Masi, F., Rizzo, A., Regelsberger, M. 2018. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. Journal of Environmental Management, 216, 275-284. Medina, J.S., Zhang, S., Wang, C., Zhou, J., Hong, P.-Y. 2023. Decreasing hydraulic retention time of anaerobic membrane bioreactor: Effect on core genera and microbial contaminants removal. Bioresource Technology Reports, 22, 101389. Mertz, O., Halsnæs, K., Olesen, J.E., Rasmussen, K. 2009. Adaptation to climate change in developing countries. Environmental management, 43, 743-752. Metcalf, Eddy, Abu-Orf, M., Bowden, G., Burton, F.L., Pfrang, W., Stensel, H.D., Tchobanoglous, G., Tsuchihashi, R., AECOM. 2014. Wastewater engineering: treatment and resource recovery. McGraw Hill Education. Mitsch, W.J., Gosselink, J.G. 2015. Wetlands. John wiley & sons. Muñoz, C., Ginebra, M., Zagal, E. 2019. Variation of greenhouse gases fluxes and soil properties with addition of biochar from farm-wastes in volcanic and non-volcanic soils. Sustainability, 11(7), 1831. Murrell, J., Smith, T. 2009. Methanotrophy/methane oxidation. Encyclopedia of Microbiology (Third Edition), 293-298. Pang, J., Yang, M., Tong, D., Fu, X., Huang, L., Sun, B., Pan, J. 2020. Does influent C/N ratio affect pollutant removal and greenhouse gas emission in wastewater ecological soil infiltration systems with/without intermittent aeration? Water Science and Technology, 81(4), 668-678. Park, S.-G., Rhee, C., Shin, S.G., Shin, J., Mohamed, H.O., Choi, Y.-J., Chae, K.-J.J.E.i. 2019. Methanogenesis stimulation and inhibition for the production of different target electrobiofuels in microbial electrolysis cells through an on-demand control strategy using the coenzyme M and 2-bromoethanesulfonate. 131, 105006. Rani, A., Pundir, A., Verma, M., Joshi, S., Verma, G., Andjelković, S., Babić, S., Milenković, J., Mitra, D. 2024. Methanotrophy: A Biological Method to Mitigate Global Methane Emission. Microbiology Research, 15(2), 634-654. Ranieri, E., D'Onghia, G., Lopopolo, L., Gikas, P., Ranieri, F., Gika, E., Spagnolo, V., Ranieri, A.C. 2023. Evaluation of greenhouse gas emissions from aerobic and anaerobic wastewater treatment plants in Southeast of Italy. Journal of Environmental Management, 337, 117767. Ranieri, E., Giuliano, S., Ranieri, A.C. 2021. Energy consumption in anaerobic and aerobic based wastewater treatment plants in Italy. Water Practice & Technology, 16(3), 851-863. Saumya, S., Akansha, S., Rinaldo, J., Jayasri, M., Suthindhiran, K. 2015. Construction and evaluation of prototype subsurface flow wetland planted with Heliconia angusta for the treatment of synthetic greywater. Journal of cleaner production, 91, 235-240. Shah, I.H., Manzoor, M.A., Jinhui, W., Li, X., Hameed, M.K., Rehaman, A., Li, P., Zhang, Y., Niu, Q., Chang, L. 2024. Comprehensive review: Effects of climate change and greenhouse gases emission relevance to environmental stress on horticultural crops and management. Journal of Environmental Management, 351, 119978. Shine, K.P., Fuglestvedt, J.S., Hailemariam, K., Stuber, N. 2005. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic change, 68(3), 281-302. Song, C., Zhu, J.-J., Willis, J.L., Moore, D.P., Zondlo, M.A., Ren, Z.J. 2023. Methane Emissions from Municipal Wastewater Collection and Treatment Systems. Environmental Science & Technology, 57(6), 2248-2261. Strielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičienė, M., Petrenko, Y. 2021. Renewable energy in the sustainable development of electrical power sector: A review. Energies, 14(24), 8240. Sun, T., Li, X. 2006. The techniques of wastewater ecological treatment and renovation of urban wastewater, Chemical Industry Press Beijing. Tang, J., Zhu, W., Kookana, R., Katayama, A. 2013. Characteristics of biochar and its application in remediation of contaminated soil. Journal of bioscience and bioengineering, 116(6), 653-659. Thijs, S., Op De Beeck, M., Beckers, B., Truyens, S., Stevens, V., Van Hamme, J.D., Weyens, N., Vangronsveld, J. 2017. Comparative Evaluation of Four Bacteria-Specific Primer Pairs for 16S rRNA Gene Surveys. Front Microbiol, 8, 494. Wang, B., Li, H., Du, X., Cai, Y., Peng, J., Zhang, S., Liu, F. 2024. Characteristics of Greenhouse Gas Emissions from Constructed Wetlands Vegetated with Myriophyllum aquatic: The Effects of Influent C/N Ratio and Microbial Responses. Water, 16(2), 308. Wang, J., Pan, X., Liu, Y., Zhang, X., Xiong, Z. 2012. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and Soil, 360(1), 287-298. Wang, J., Xiong, Z., Kuzyakov, Y. 2016. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Gcb Bioenergy, 8(3), 512-523. Wang, L., Ge, J., Feng, L., Liu, Y., Li, Y., Wang, J., Xiao, X., Zhang, Z. 2022. The Synergism between Methanogens and Methanotrophs and the Nature of their Contributions to the Seasonal Variation of Methane Fluxes in a Wetland: The Case of Dajiuhu Subalpine Peatland. Advances in Atmospheric Sciences, 39(8), 1375-1385. Wang, X., Sun, T., Li, H., Li, Y., Pan, J. 2010. Nitrogen removal enhanced by shunt distributing wastewater in a subsurface wastewater infiltration system. Ecological Engineering, 36(10), 1433-1438. Wang, Y.C., Jia Yu, G.U., Ni, J.J. 2023. Influence of biochar on soil air permeability and greenhouse gas emissions in vegetated soil: a review. Biogeotechnics, 100040. Webster, T.M., Smith, A.L., Reddy, R.R., Pinto, A.J., Hayes, K.F., Raskin, L.J.M. 2016. Anaerobic microbial community response to methanogenic inhibitors 2‐bromoethanesulfonate and propynoic acid. 5(4), 537-550. Whiting, G.J., Chanton, J.P. 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B, 53(5), 521-528. WMO, G. 2017. The state of greenhouse gases in the atmosphere based on global observations through 2016. WMO Greenhouse Gas Bulletin(13). Wongnate, T., Sliwa, D., Ginovska, B., Smith, D., Wolf, M.W., Lehnert, N., Raugei, S., Ragsdale, S.W. 2016a. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science, 352(6288), 953-958. Wongnate, T., Sliwa, D., Ginovska, B., Smith, D., Wolf, M.W., Lehnert, N., Raugei, S., Ragsdale, S.W.J.S. 2016b. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. 352(6288), 953-958. Wu, B., Xi, B., He, X., Sun, X., Li, Q., Ouche, Q., Zhang, H., Xue, C. 2020. Methane emission reduction enhanced by hydrophobic biochar-modified soil cover. Processes, 8(2), 162. Yan, C., Zhang, H., Li, B., Wang, D., Zhao, Y., Zheng, Z. 2012. Effects of influent C/N ratios on CO2 and CH4 emissions from vertical subsurface flow constructed wetlands treating synthetic municipal wastewater. Journal of Hazardous Materials, 203-204, 188-194. Yang, X., Liu, D., Fu, Q., Li, T., Hou, R., Li, Q., Li, M., Meng, F. 2022. Characteristics of greenhouse gas emissions from farmland soils based on a structural equation model: Regulation mechanism of biochar. Environmental Research, 206, 112303. Yu, G., Huang, J., Chen, H., Chen, J., Ge, S., Liu, J., Zhen, D. 2023. Recent Advances in the Effects of Biochar on Constructed Wetlands: Treatment Performance and Microorganisms. Separations, 10(12), 593. Zhang, D., Pan, G., Wu, G., Kibue, G.W., Li, L., Zhang, X., Zheng, J., Zheng, J., Cheng, K., Joseph, S., Liu, X. 2016. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 142, 106-113. Zhang, J., Huang, X., Shao, C.-f., Liu, C.-x., Shi, H.-c., Hu, H.-y., Liu, Z.-q. 2004. Influence of packing media on nitrogen removal in a subsurface infiltration system. Journal of Environmental Sciences, 16, 153-156. Zhou, M., Hernandez-Sanabria, E., Guan, L.L. 2009. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol, 75(20), 6524-33. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95981 | - |
| dc.description.abstract | 氣候變化與人類活動加劇了溫室氣體 (Greenhouses gases, GHGs) 的排放,如甲烷(Methane, CH4)及二氧化碳(Carbon dioxide, CO2)。GHGs的上升增強了溫室效應,對生態環境、農業以及人類健康造成嚴重影響。本研究透過土壤管柱系統模擬廢水生態土壤滲濾系統(Wastewater ecological soil infiltration system, WESIS),添加生物炭以及調整不同空床接觸時間 (Empty Bed Contact Time, EBCT),以減少CH4與CO2排放為本研究重點。生物炭是近年來被國際認可的減排技術,具有高比表面積、孔隙度以及豐富的官能基,能有效改善土壤性質。所以透過批次實驗結果得知,添加10%生物炭的組別在Gompertz模型擬合中顯著降低了CH4及CO2的排放速度。將10% 生物炭應用於土壤管柱系統,其結果顯示,10%生物炭的組別在EBCT 4天時,有最低的有機負荷為2.08 g/m³/h ,明顯降低了CH4和CO2的排放通量,分別為1.216 mg/m²·h·kg soil以及5.94 mg/m²·h·kg soil,較未添加生物炭系統降低了30.1%以及2.78%的排放量,且COD和TN去除率分別為89.28%和21.97%,比未添加生物炭的系統提升了6.58%和40.9%去除率。在微生物群落方面,添加生物炭的系統中,隨著mcrA、pmoA基因增加,CH4以及CO2呈下降趨勢。且發現添加生物炭能增加下層土壤pmoA基因與甲烷氧化菌16S rRNA基因數及相對豐度。根據本研究結果可得知,添加10%生物炭且以EBCT為4天的WESIS操作條件,在減少溫室氣體排放和提升污染物處理方面具有顯著潛力,對優化WESIS和其應用具有重要參考價值。 | zh_TW |
| dc.description.abstract | Climate change and human activities have intensified the emission of greenhouse gases (GHGs), including methane (CH₄) and carbon dioxide (CO₂). The rising levels of GHGs have amplified the greenhouse effect, leading to profound impacts on ecological systems, agriculture, and human health. This study aims to mitigate CH₄ and CO₂ emissions by simulating a wastewater ecological soil infiltration system (WESIS) through soil column experiments, incorporating biochar, and adjusting various empty bed contact time (EBCT). Biochar, recognized internationally in recent years as an effective emission reduction technology, possesses a high specific surface area, porosity, and abundant functional groups, thereby enhancing soil properties. The results of batch experiments indicated that the group with 10% biochar significantly reduced CH₄ and CO₂ emission rates, as demonstrated by the Gompertz model fitting. When applying 10% biochar to the soil column system, the results showed that at an EBCT of 4 days, with the lowest organic loading of 2.08 g/m³/h, CH₄ and CO₂ emission fluxes were markedly reduced to 1.216 mg/m²·h·kg soil and 5.94 mg/m²·h·kg soil, respectively, representing reductions of 30.1% and 2.78% compared to the system without biochar. Furthermore, COD and TN removal efficiencies were 89.28% and 21.97%, respectively, showing increases of 6.58% and 40.9% over the system without biochar. Regarding the microbial community, the system with biochar addition exhibited a decrease in CH₄ and CO₂ emissions concurrent with the increase of mcrA and pmoA genes. Additionally, the introduction of biochar was found to enhance the abundance and relative abundance of pmoA genes and methane-oxidizing bacteria 16S rRNA genes in the lower soil layers. The findings of this study suggest that the application of 10% biochar with an EBCT of 4 days in WESIS demonstrates significant potential for reducing greenhouse gas emissions and improving pollutant removal, providing critical insights for the optimization and application of WESIS. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:27:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:27:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 x 1 第一章 前言 1 1.1 研究動機 1 1.2 研究假說 2 1.3 研究目的 2 2 第二章 文獻回顧 3 2.1 不同廢水處理中的溫室氣體排放 3 2.2 減少溫室氣體排放技術 4 2.3 廢水生態土壤滲濾系統 (Wastewater ecological soil infiltration system, WESIS) 5 2.4 生物炭 7 2.5 水力停留時間 (HRT) 8 2.6 甲烷相關菌群 9 2.6.1 甲烷菌 (Methanogen) 9 2.6.2 甲烷氧化菌 (Methanotroph) 11 2.7 本論文填補之知識缺口 13 3 第三章 材料與研究方法 14 3.1 研究架構及流程 14 3.2 實驗設計 15 3.2.1 土壤、生物炭之來源 15 3.2.2 人工廢水配置 15 3.2.3 批次實驗操作配置 16 3.2.4 動力學擬和模型 Modified Gompertz 17 3.2.5 連續流土壤管柱實驗操作配置 18 3.3 實驗儀器 19 3.4 分析方法 19 3.4.1 氣體檢測 19 3.4.2 水質檢測 20 3.4.2.1 化學需氧量(Chemical Oxygen Demand, COD) 20 3.4.2.2 總氮( Total Nitrogen, TN) 21 3.4.2.3 氨氮( Ammonium Nitrogen, NH₃-N)與硝酸鹽氮 (Nitrate Nitrogen, NO₃⁻-N) 21 3.4.2.4 酸鹼值(pH) 、溶氧(Dissolved Oxygen, DO)以及導電度 (Electrical Conductivity, EC) 21 3.5 分子生物技術 22 3.5.1 Phenol-Chloroform 土壤核酸萃取 22 3.5.2 TA cloning 23 3.5.3 質體DNA萃取 26 3.5.4 即時聚合酶連鎖反應定量分析 26 4 第四章 結果 29 4.1 批次實驗 29 4.1.1 不同生物炭添加比例對於土壤CH4排放速度影響 29 4.1.2 不同生物炭添加比例對於土壤CO2排放速度影響 32 4.2 連續流土壤管柱實驗 35 4.2.1 不同水力停留時間對CH4氣體通量影響 35 4.2.2 不同水力停留時間對CO2氣體通量影響 37 4.2.3 不同水力停留時間之水質變化 38 4.2.3.1 化學需氧量(Chemical oxygen demand , COD ) 38 4.2.3.2 總氮(Total nitrogen, TN) 39 4.2.3.3 硝酸鹽氮 (Nitrate Nitrogen, NO₃⁻-N) 40 4.2.3.4 氨氮( Ammonium Nitrogen, NH4+) 41 4.2.3.5 酸鹼值 (pH) 42 4.2.3.6 導電度 (Electrical Conductivity, EC) 43 4.2.3.7 溶氧 (Dissolved Oxygen, DO) 44 4.3 在不同水力停留時間下生物炭添加比例對環境因子的影響 46 4.4 不同有機負荷下對溫室氣體以及污染物去除效率之影響 47 4.4.1 不同有機負荷下對溫室氣體以及mcrA基因之影響 47 4.4.2 不同有機負荷下對溫室氣體以及pmoA基因之影響 48 4.5 不同有機負荷下對污染物去除效率之影響 50 4.6 土壤管柱系統甲烷菌與甲烷氧化菌之qPCR定量分析 51 4.6.1 不同水力停留時間對土壤管柱系統上、下層之pmoA與mcrA 之功能性基因數量變化 51 4.6.1.1 甲基輔酶M還原酶A亞基基因 (mcrA) 51 4.6.1.2 甲烷單氧酶A基因 ( pmoA) 52 4.6.2 不同水力停留時間對土壤管柱系統上、下層之甲烷菌與甲烷氧化菌(TypeⅠ、TypeⅡ) 16S rRNA菌群變化 54 4.6.2.1 甲烷菌 16S rRNA基因相對豐度 54 4.6.2.2 甲烷氧化菌16S rRNA基因相對豐度 55 5 第五章 討論 58 5.1 調整不同水力停留時間下生物炭添加對溫室氣體排放與水質變化的探討 58 5.2 不同有機負荷下對溫室氣體、功能性基因以及污染去除率的影響 60 5.3 甲烷菌與甲烷氧化菌在土壤管柱系統之上下層變化關係 61 6 第六章 結論與建議 63 6.1 結論 63 6.2 建議 64 7 參考文獻 65 8 附錄 72 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 生物炭及水力停留時間對土壤管柱系統溫室氣體排放及甲烷菌群變動之影響 | zh_TW |
| dc.title | The impact of biochar and hydraulic retention time on greenhouses gases emissions and methanogen / methanotrophs dynamic in soil column | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊姍樺;塗子萱 | zh_TW |
| dc.contributor.oralexamcommittee | Shan-Hua Yang;Tzu - Hsuan Tu | en |
| dc.subject.keyword | 溫室氣體,生物炭,廢水生態土壤滲濾系統,空床接觸時間,甲烷菌,甲烷氧化菌,mcrA 基因,pmoA 基因, | zh_TW |
| dc.subject.keyword | Greenhouse gases (GHGs),Biochar,Wastewater ecological soil infiltration system (WESIS),Empty Bed Contact Time (EBCT),Methanogens,Methanotrophs,mcrA gene,pmoA gene, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202404336 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-09-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| dc.date.embargo-lift | 2029-09-02 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 2.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
