Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真zh_TW
dc.contributor.advisorYu-Jane Shengen
dc.contributor.author胡昕緯zh_TW
dc.contributor.authorHsin-Wei Huen
dc.date.accessioned2024-09-25T16:24:37Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-09-19-
dc.identifier.citationChapter 3
1. M. Mulder, Basic Principles of Membrane Technology, Springer Science & Business Media, Dordrecht, 1996.
2. H. Guo, X. Li, W. Yang, Z. Yao, Y. Mei, L.E. Peng, Z. Yang, S. Shao, C.Y. Tang, Nanofiltration for drinking water treatment: a review, Front Chem Sci Eng, 16 (2022) 681-698.
3. N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustainable Materials and Technologies, 7 (2016) 1-28.
4. L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400.
5. I. Pinnau, B.D. Freeman, Formation and Modification of Polymeric Membranes: Overview, in: Membrane Formation and Modification, American Chemical Society, 1999, pp. 1-22.
6. S. Ashtiani, M. Khoshnamvand, P. Cihal, M. Dendisova, A. Randova, D. Bousa, A. Shaliutina-Kolesova, Z. Sofer, K. Friess, Fabrication of a PVDF membrane with tailored morphology and properties via exploring and computing its ternary phase diagram for wastewater treatment and gas separation applications, RSC Adv, 10 (2020) 40373-40383.
7. B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on membrane fabrication: Structure, properties and performance relationship, Desalination, 326 (2013) 77-95.
8. D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, 49 (2008) 3187-3204.
9. M.S. Sri Abirami Saraswathi, D. Rana, K. Divya, S. Alwarappan, A. Nagendran, Fabrication of anti-fouling PVDF nanocomposite membranes using manganese dioxide nanospheres with tailored morphology, hydrophilicity and permeation, New Journal of Chemistry, 42 (2018) 15803-15810.
10. I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers, Journal of Membrane Science, 113 (1996) 361-371.
11. T.A. Geleta, I.V. Maggay, Y. Chang, A. Venault, Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method, Membranes (Basel), 13 (2023).
12. S.K. Hubadillah, M.H.D. Othman, M.A. Rahman, A.F. Ismail, J. Jaafar, Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater, Arabian Journal of Chemistry, 13 (2020) 2349-2367.
13. D.-J. Lin, C.-L. Chang, C.-K. Lee, L.-P. Cheng, Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions, European Polymer Journal, 42 (2006) 2407-2418.
14. A.K. Hołda, I.F.J. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes, Journal of Applied Polymer Science, 132 (2015).
15. S. Rajabzadeh, T. Maruyama, Y. Ohmukai, T. Sotani, H. Matsuyama, Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method, Separation and Purification Technology, 66 (2009) 76-83.
16. N.R. Singha, M. Karmakar, P.K. Chattopadhyay, S. Roy, M. Deb, H. Mondal, M. Mahapatra, A. Dutta, M. Mitra, J.S.D. Roy, Structures, Properties, and Performances-Relationships of Polymeric Membranes for Pervaporative Desalination, Membranes (Basel), 9 (2019).
17. F. Tibi, A. Charfi, J. Cho, J. Kim, Fabrication of polymeric membranes for membrane distillation process and application for wastewater treatment: Critical review, Process Safety and Environmental Protection, 141 (2020) 190-201.
18. T. Ahmad, C. Guria, A. Mandal, Kinetic modeling and simulation of non-solvent induced phase separation: Immersion precipitation of PVC-based casting solution in a finite salt coagulation bath, Polymer, 199 (2020).
19. C. Kahrs, J. Schwellenbach, Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study, Polymer, 186 (2020).
20. S. Mazinani, S. Darvishmanesh, A. Ehsanzadeh, B. Van der Bruggen, Phase separation analysis of Extem/solvent/non-solvent systems and relation with membrane morphology, Journal of Membrane Science, 526 (2017) 301-314.
21. D.-M. Wang, J.-Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation, Current Opinion in Chemical Engineering, 2 (2013) 229-237.
22. H.H. Wang, J.T. Jung, J.F. Kim, S. Kim, E. Drioli, Y.M. Lee, A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS), Journal of Membrane Science, 574 (2019) 44-54.
23. N. Widjojo, T.-S. Chung, Thickness and Air Gap Dependence of Macrovoid Evolution in Phase-Inversion Asymmetric Hollow Fiber Membranes, Industrial & Engineering Chemistry Research, 45 (2006) 7618-7626.
24. J. Ren, J. Zhou, M. Deng, Morphology transition of asymmetric polyetherimide flat sheet membranes with different thickness by wet phase-inversion process, Separation and Purification Technology, 74 (2010) 119-129.
25. S.S. Shojaie, W.B. Krantz, A.R. Greenberg, Dense polymer film and membrane formation via the dry-cast process part I. Model development, Journal of Membrane Science, 94 (1994) 255-280.
26. A. Akthakul, C.E. Scott, A.M. Mayes, A.J. Wagner, Lattice Boltzmann simulation of asymmetric membrane formation by immersion precipitation, Journal of Membrane Science, 249 (2005) 213-226.
27. A. Maiti, J. Wescott, G. Goldbeck, Mesoscale modelling: Recent developments and applications to nanocomposites, drug delivery and precipitation membranes, International journal of nanotechnology, 2 (2005) 198-214.
28. D.R. Tree, K.T. Delaney, H.D. Ceniceros, T. Iwama, G.H. Fredrickson, A multi-fluid model for microstructure formation in polymer membranes, Soft Matter, 13 (2017) 3013-3030.
29. B. Zhou, A.C. Powell, Phase field simulations of early stage structure formation during immersion precipitation of polymeric membranes in 2D and 3D, Journal of Membrane Science, 268 (2006) 150-164.
30. M.R. Cervellere, X. Qian, D.M. Ford, C. Carbrello, S. Giglia, P.C. Millett, Phase-field modeling of non-solvent induced phase separation (NIPS) for PES/NMP/Water with comparison to experiments, Journal of Membrane Science, 619 (2021) 118779.
31. M.R. Cervellere, Y.-h. Tang, X. Qian, D.M. Ford, P.C. Millett, Mesoscopic simulations of thermally-induced phase separation in PVDF/DPC solutions, Journal of Membrane Science, 577 (2019) 266-273.
32. C. Geng, L.-Q. Chen, Spinodal decomposition and pattern formation near a crystalline surface, Surface Science, 355 (1996) 229-240.
33. X.-L. Wang, H.-J. Qian, L.-J. Chen, Z.-Y. Lu, Z.-S. Li, Dissipative particle dynamics simulation on the polymer membrane formation by immersion precipitation, Journal of Membrane Science, 311 (2008) 251-258.
34. H.-h. Lin, Y.-h. Tang, H. Matsuyama, X.-l. Wang, Dissipative particle dynamics simulation on the membrane formation of polymer–solvent system via nonsolvent induced phase separation, Journal of Membrane Science, 548 (2018) 288-297.
35. Y.-h. Tang, E. Ledieu, M.R. Cervellere, P.C. Millett, D.M. Ford, X. Qian, Formation of polyethersulfone membranes via nonsolvent induced phase separation process from dissipative particle dynamics simulations, Journal of Membrane Science, 599 (2020).
36. G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review, Industrial & Engineering Chemistry Research, 50 (2011) 3798-3817.
37. G.R. Guillen, G.Z. Ramon, H.P. Kavehpour, R.B. Kaner, E.M.V. Hoek, Direct microscopic observation of membrane formation by nonsolvent induced phase separation, Journal of Membrane Science, 431 (2013) 212-220.
38. P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhysics Letters, 19 (1992) 155.
39. P. Español, P. Warren, Statistical Mechanics of Dissipative Particle Dynamics, Europhysics Letters, 30 (1995) 191.
40. A. Maiti, S. McGrother, Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension, J Chem Phys, 120 (2004) 1594-1601.
41. S. Xiao, H.Y. Chen, Y.J. Sheng, H.K. Tsao, Induced polar order in sedimentation equilibrium of rod-like nanoswimmers, Soft Matter, 11 (2015) 2416-2422.
42. P.I. Kos, V.A. Ivanov, A.V. Chertovich, Crystallization in melts and poor-solvent solutions of semiflexible polymers: extensive DPD study, arXiv: Chemical Physics, (2017).
43. V.A. Harmandaris, K.C. Daoulas, V.G. Mavrantzas, Molecular Dynamics Simulation of a Polymer Melt/Solid Interface:  Local Dynamics and Chain Mobility in a Thin Film of Polyethylene Melt Adsorbed on Graphite, Macromolecules, 38 (2005) 5796-5809.
44. M.C. Staub, C.Y. Li, Polymer crystallization at liquid‐liquid interface, Polymer Crystallization, 1 (2018).
45. T. Verho, A. Paajanen, J. Vaari, A. Laukkanen, Crystal Growth in Polyethylene by Molecular Dynamics: The Crystal Edge and Lamellar Thickness, Macromolecules, 51 (2018) 4865-4873.
46. M. Guillotin, C. Lemoyne, C. Noel, L. Monnerie, Physicochemical processes occurring during the formation of cellulose diacetate membranes. Research of criteria for optimizing membrane performance. IV. Cellulose diacetate-acetone-organic additive casting solutions, Desalination, 21 (1977) 165-181.
47. J.T. Jung, J.F. Kim, H.H. Wang, E. di Nicolo, E. Drioli, Y.M. Lee, Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS), Journal of Membrane Science, 514 (2016) 250-263.
48. D.M. Koenhen, M.H.V. Mulder, C.A. Smolders, Phase separation phenomena during the formation of asymmetric membranes, Journal of Applied Polymer Science, 21 (1977) 199-215.

Chapter 4
49. Mavukkandy, M. O.; McBride, S. A.; Warsinger, D. M.; Dizge, N.; Hasan, S. W.; Arafat, H. A. Thin film deposition techniques for polymeric membranes– A review. Journal of Membrane Science 2020, 610, 118258. DOI: https://doi.org/10.1016/j.memsci.2020.118258.
50. Nunes, S. P.; Culfaz-Emecen, P. Z.; Ramon, G. Z.; Visser, T.; Koops, G. H.; Jin, W.; Ulbricht, M. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science 2020, 598, 117761. DOI: https://doi.org/10.1016/j.memsci.2019.117761.
51. Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47 (7), 2217-2262. DOI: https://doi.org/10.1016/j.polymer.2006.01.084.
52. Geleta, T. A.; Maggay, I. V.; Chang, Y.; Venault, A. Recent advances on the fabrication of antifouling phase-inversion membranes by physical blending modification method. Membranes 2023, 13 (1), 58.
53. Hubadillah, S. K.; Othman, M. H. D.; Rahman, M. A.; Ismail, A.; Jaafar, J. Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater. Arabian Journal of Chemistry 2020, 13 (1), 2349-2367.
54. Mulder, M. Basic principles of membrane technology; Springer science & business media, 2012.
55. Remanan, S.; Sharma, M.; Bose, S.; Das, N. C. Recent advances in preparation of porous polymeric membranes by unique techniques and mitigation of fouling through surface modification. ChemistrySelect 2018, 3 (2), 609-633.
56. Wienk, I.; Boom, R.; Beerlage, M.; Bulte, A.; Smolders, C.; Strathmann, H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of membrane science 1996, 113 (2), 361-371.
57. Cervellere, M. R.; Qian, X.; Ford, D. M.; Carbrello, C.; Giglia, S.; Millett, P. C. Phase-field modeling of non-solvent induced phase separation (NIPS) for PES/NMP/Water with comparison to experiments. Journal of Membrane Science 2021, 619, 118779.
58. Jung, J. T.; Kim, J. F.; Wang, H. H.; Di Nicolo, E.; Drioli, E.; Lee, Y. M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). Journal of Membrane Science 2016, 514, 250-263.
59. Wang, D.-M.; Lai, J.-Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering 2013, 2 (2), 229-237.
60. Wang, H. H.; Jung, J. T.; Kim, J. F.; Kim, S.; Drioli, E.; Lee, Y. M. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). Journal of membrane science 2019, 574, 44-54.
61. Ren, J.; Zhou, J.; Deng, M. Morphology transition of asymmetric polyetherimide flat sheet membranes with different thickness by wet phase-inversion process. Separation and purification technology 2010, 74 (1), 119-129.
62. Widjojo, N.; Chung, T.-S. The thickness and air gap dependence of macrovoid evolution in phase-inversion asymmetric hollow fiber membranes. In Hollow Fiber Membranes, Elsevier, 2021; pp 123-140.
63. Akthakul, A.; McDonald, W. F.; Mayes, A. M. Noncircular pores on the surface of asymmetric polymer membranes: evidence of pore formation via spinodal demixing. Journal of Membrane Science 2002, 208 (1-2), 147-155.
64. Ren, J.; Wang, R. Preparation of polymeric membranes. Membrane and desalination technologies 2011, 47-100.
65. Wang, D.-M.; Venault, A.; Lai, J.-Y. Fundamentals of nonsolvent-induced phase separation. In Hollow Fiber Membranes, Elsevier, 2021; pp 13-56.
66. Dong, X.; Lu, D.; Harris, T. A.; Escobar, I. C. Polymers and solvents used in membrane fabrication: a review focusing on sustainable membrane development. Membranes 2021, 11 (5), 309.
67. Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial & Engineering Chemistry Research 2011, 50 (7), 3798-3817.
68. Soroko, I.; Lopes, M. P.; Livingston, A. The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part A. Effect of polymer/solvent/non-solvent system choice. Journal of membrane science 2011, 381 (1-2), 152-162.
69. Mohsenpour, S.; Leaper, S.; Shokri, J.; Alberto, M.; Gorgojo, P. Effect of graphene oxide in the formation of polymeric asymmetric membranes via phase inversion. Journal of Membrane Science 2022, 641, 119924.
70. Tan, X.; Rodrigue, D. A review on porous polymeric membrane preparation. Part I: production techniques with polysulfone and poly (vinylidene fluoride). Polymers 2019, 11 (7), 1160.
71. Goh, P.; Matsuura, T.; Ismail, A.; Hilal, N. Recent trends in membranes and membrane processes for desalination. Desalination 2016, 391, 43-60.
72. Lim, Y. J.; Lee, J.; Bae, T.-H.; Torres, J.; Wang, R. Feasibility and performance of a thin-film composite seawater reverse osmosis membrane fabricated on a highly porous microstructured support. Journal of membrane science 2020, 611, 118407.
73. Dlamini, D. S.; Matindi, C.; Vilakati, G. D.; Tesha, J. M.; Motsa, M. M.; Thwala, J. M.; Mamba, B. B.; Hoek, E.; Li, J. Fine-tuning the architecture of loose nanofiltration membrane for improved water flux, dye rejection and dye/salt selective separation. Journal of Membrane Science 2021, 621, 118930.
74. Sukitpaneenit, P.; Chung, T.-S. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environmental science & technology 2012, 46 (13), 7358-7365.
75. Akthakul, A.; Scott, C. E.; Mayes, A. M.; Wagner, A. J. Lattice Boltzmann simulation of asymmetric membrane formation by immersion precipitation. Journal of membrane science 2005, 249 (1-2), 213-226.
76. Shojaie, S. S.; Krantz, W. B.; Greenberg, A. R. Dense polymer film and membrane formation via the dry-cast process part I. Model development. Journal of Membrane Science 1994, 94 (1), 255-280.
77. Tree, D. R.; Delaney, K. T.; Ceniceros, H. D.; Iwama, T.; Fredrickson, G. H. A multi-fluid model for microstructure formation in polymer membranes. Soft Matter 2017, 13 (16), 3013-3030.
78. Khansary, M. A.; Marjani, A.; Shirazian, S. On the search of rigorous thermo-kinetic model for wet phase inversion technique. Journal of membrane science 2017, 538, 18-33.
79. Luyben, W. L. Process modeling, simulation and control for chemical engineers; McGraw-Hill Higher Education, 1989.
80. Emmerich, H. The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models; Springer Science & Business Media, 2003.
81. Gibbs, J. W. A method of geometrical representation of the thermodynamic properties by means of surfaces. Transactions of Connecticut Academy of Arts and Sciences 1873, 382-404.
82. Fang, C.; Rajabzadeh, S.; Wu, H.-C.; Zhang, X.; Kato, N.; Kunimatsu, M.; Yoshioka, T.; Matsuyama, H. Effect of mass transfer at the interface of the polymer solution and extruded solvent during the air gap on membrane structures and performances in TIPS process using triple-orifice spinneret. Journal of Membrane Science 2020, 595, 117513.
83. Huang, X.; Wang, W.; Zheng, Z.; Wang, X.; Shi, J.; Fan, W.; Li, L.; Zhang, Z. Dissipative particle dynamics study and experimental verification on the pore morphologies and diffusivity of the poly (4-methyl-1-pentene)-diluent system via thermally induced phase separation: the effect of diluent and polymer concentration. Journal of Membrane Science 2016, 514, 487-500.
84. Lin, H.-h.; Tang, Y.-h.; Matsuyama, H.; Wang, X.-l. Dissipative particle dynamics simulation on the membrane formation of polymer–solvent system via nonsolvent induced phase separation. Journal of Membrane Science 2018, 548, 288-297.
85. Wang, C.; Quan, X.; Liao, M.; Li, L.; Zhou, J. Computer Simulations on the Channel Membrane Formation by Nonsolvent Induced Phase Separation. Macromolecular Theory and Simulations 2017, 26 (5), 1700027.
86. Huo, J.; Chen, Z.; Zhou, J. Zwitterionic Membrane via Nonsolvent Induced Phase Separation: A Computer Simulation Study. Langmuir 2019, 35 (5), 1973-1983. DOI: 10.1021/acs.langmuir.8b01786.
87. Hu, H.-W.; Tsao, H.-K.; Sheng, Y.-J. Solidification dynamics of polymer membrane by solvent extraction: Spontaneous stratification. Journal of Membrane Science 2023, 683, 121846.
88. Hu, H.-W.; Tsao, H.-K.; Sheng, Y.-J. Nonsolvent-Induced Solidification of Droplets of a Polymer Solution: From a Sphere to a Capsule. Macromolecules 2024.
89. Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters 1992, 19 (3), 155. DOI: 10.1209/0295-5075/19/3/001.
90. Español, P.; Warren, P. Statistical Mechanics of Dissipative Particle Dynamics. Europhysics Letters 1995, 30 (4), 191. DOI: 10.1209/0295-5075/30/4/001.
91. Maiti, A.; McGrother, S. Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. The Journal of Chemical Physics 2004, 120 (3), 1594-1601. DOI: 10.1063/1.1630294.
92. Groot, R. D.; Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of Chemical Physics 1997, 107 (11), 4423-4435. DOI: 10.1063/1.474784.
93. Wei, Y.-M.; Xu, Z.-L.; Yang, X.-T.; Liu, H.-L. Mathematical calculation of binodal curves of a polymer/solvent/nonsolvent system in the phase inversion process. Desalination 2006, 192 (1), 91-104.
94. Al Malek, S. A.; Abu Seman, M. N.; Johnson, D.; Hilal, N. Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone. Desalination 2012, 288, 31-39.
95. Kos, P.; Ivanov, V.; Chertovich, A. Crystallization in melts and poor-solvent solutions of semiflexible polymers: extensive DPD study. 2017, arXiv:1708.09499. arXiv.org e-Print archive. https://arxiv.org/abs/1708.09499.
96. Staub, M. C.; Li, C. Y. Polymer crystallization at liquid-liquid interface. Polym. Cryst. 2018, 1 (4), No. e10045.
97. Verho, T.; Paajanen, A.; Vaari, J.; Laukkanen, A. Crystal Growth in Polyethylene by Molecular Dynamics: The Crystal Edge and Lamellar Thickness. Macromolecules 2018, 51 (13), 4865-4873. DOI: 10.1021/acs.macromol.8b00857.
98. Pogodina, N. V.; Lavrenko, V. P.; Srinivas, S.; Winter, H. H. Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization. Polymer 2001, 42 (21), 9031-9043.
99. Winter, H. H.; Mours, M. Rheology of polymers near liquid-solid transitions. Neutron spin echo spectroscopy viscoelasticity rheology 1999, 165-234.
100. Aharoni, S.; Sibilia, J. Crystalline transitions and the solid‐state extrusion of polymers. Journal of Applied Polymer Science 1979, 23 (1), 133-140.
101. Katsumoto, Y.; Tanaka, T.; Sato, H.; Ozaki, Y. Conformational change of poly (N-isopropylacrylamide) during the Coil− Globule transition investigated by attenuated total reflection/infrared spectroscopy and density functional theory calculation. The Journal of Physical Chemistry A 2001, 106 (14), 3429-3435.
102. Sun, S.; Wu, P. Conformational changes in the heat-induced crystallization of poly (2-isopropyl-2-oxazoline) in the solid state. Physical Chemistry Chemical Physics 2015, 17 (46), 31084-31092.
103. Ahmad, T.; Rehman, L. M.; Al-Nuaimi, R.; de Levay, J.-P. B. B.; Thankamony, R.; Mubashir, M.; Lai, Z. Thermodynamics and kinetic analysis of membrane: Challenges and perspectives. Chemosphere 2023, 139430.
104. Maggay, I. V.; Yu, M.-L.; Wang, D.-M.; Chiang, C.-H.; Chang, Y.; Venault, A. Strategy to prepare skin-free and macrovoid-free polysulfone membranes via the NIPS process. Journal of membrane science 2022, 655, 120597.
105. Zuo, D.-y.; Zhu, B.-k.; Cao, J.-h.; Xu, Y.-y. Influence of alcohol-based nonsolvents on the formation and morphology of PVDF membranes in phase inversion process. Chinese journal of polymer science 2006, 24 (03), 281-289.
106. Avramescu, M.; Sager, W.; Mulder, M.; Wessling, M. Preparation of ethylene vinylalcohol copolymer membranes suitable for ligand coupling in affinity separation. Journal of membrane science 2002, 210 (1), 155-173.
107. Hussain, A.; Mehmood, A.; Saleem, A.; Majeed, M. K.; Raza, W.; Iqbal, R.; Rauf, S.; Saad, A.; Deng, Y.; Luo, G. Polyetherimide membrane with tunable porous morphology for safe lithium metal-based batteries. Chemical Engineering Journal 2023, 453, 139804.

Chapter 5
108. Allen, T. M.; Cullis, P. R. Drug delivery systems: entering the mainstream. Science 2004, 303 (5665), 1818-1822. DOI: 10.1126/science.1095833 From NLM.
109. Delcea, M.; Möhwald, H.; Skirtach, A. G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced drug delivery reviews 2011, 63 (9), 730-747.
110. Esser-Kahn, A. P.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Triggered release from polymer capsules. Macromolecules 2011, 44 (14), 5539-5553.
111. Peh, K. K.; Wong, C. F. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J Pharm Pharm Sci 1999, 2 (2), 53-61.
112. Tønnesen, H. H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Development and Industrial Pharmacy 2002, 28 (6), 621-630. DOI: 10.1081/DDC-120003853.
113. Gharieh, A.; Khoee, S.; Mahdavian, A. R. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Advances in Colloid and Interface Science 2019, 269, 152-186. DOI: https://doi.org/10.1016/j.cis.2019.04.010.
114. Vehring, R.; Foss, W. R.; Lechuga-Ballesteros, D. Particle formation in spray drying. Journal of aerosol science 2007, 38 (7), 728-746.
115. Beck-Broichsitter, M.; Rytting, E.; Lebhardt, T.; Wang, X.; Kissel, T. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. European Journal of Pharmaceutical Sciences 2010, 41 (2), 244-253.
116. Kumacheva, E.; Garstecki, P. Microfluidic reactors for polymer particles; John Wiley & Sons, 2011.
117. Shang, L.; Cheng, Y.; Zhao, Y. Emerging Droplet Microfluidics. Chemical Reviews 2017, 117 (12), 7964-8040. DOI: 10.1021/acs.chemrev.6b00848.
118. Watanabe, T.; Lopez, C. G.; Douglas, J. F.; Ono, T.; Cabral, J. T. Microfluidic Approach to the Formation of Internally Porous Polymer Particles by Solvent Extraction. Langmuir 2014, 30 (9), 2470-2479. DOI: 10.1021/la404506b.
119. Blanco, J.-F.; Sublet, J.; Nguyen, Q. T.; Schaetzel, P. Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. Journal of membrane science 2006, 283 (1-2), 27-37.
120. Hołda, A. K.; Vankelecom, I. F. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. Journal of Applied Polymer Science 2015, 132 (27), 42130.
121. Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial & Engineering Chemistry Research 2011, 50 (7), 3798-3817.
122. Guillen, G. R.; Ramon, G. Z.; Kavehpour, H. P.; Kaner, R. B.; Hoek, E. M. Direct microscopic observation of membrane formation by nonsolvent induced phase separation. Journal of Membrane Science 2013, 431, 212-220.
123. Kahrs, C.; Schwellenbach, J. Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study. Polymer 2020, 186, 122071.
124. Li, Y.; He, G.; Wang, S.; Yu, S.; Pan, F.; Wu, H.; Jiang, Z. Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A 2013, 1 (35), 10058-10077.
125. Wang, D.-M.; Lai, J.-Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering 2013, 2 (2), 229-237.
126. Bianco, A.; Burg, S. L.; Parnell, A. J.; Fernyhough, C. M.; Washington, A. L.; Hill, C. J.; Smith, P. J.; Whittaker, D. M.; Mykhaylyk, O. O.; Fairclough, J. P. A. Control of the porous structure of polystyrene particles obtained by nonsolvent induced phase separation. Langmuir 2017, 33 (46), 13303-13314.
127. Jung, Y.; Do, T.; Choi, U. S.; Jung, K.-W.; Choi, J.-W. Cage-like amine-rich polymeric capsule with internal 3D center-radial channels for efficient and selective gold recovery. Chemical Engineering Journal 2022, 438, 135618.
128. Piacentini, E.; Lakshmi, D. S.; Figoli, A.; Drioli, E.; Giorno, L. Polymeric microspheres preparation by membrane emulsification-phase separation induced process. Journal of membrane science 2013, 448, 190-197.
129. Sharratt, W.; Brooker, A.; Robles, E.; Cabral, J. Microfluidic solvent extraction of poly (vinyl alcohol) droplets: effect of polymer structure on particle and capsule formation. Soft Matter 2018, 14 (22), 4453-4463.
130. Udoh, C. E.; Garbin, V.; Cabral, J. T. Microporous polymer particles via phase inversion in microfluidics: impact of nonsolvent quality. Langmuir 2016, 32 (32), 8131-8140.
131. Hu, H.-W.; Tsao, H.-K.; Sheng, Y.-J. Solidification dynamics of polymer membrane by solvent extraction: Spontaneous stratification. Journal of Membrane Science 2023, 121846.
132. Hoogerbrugge, P.; Koelman, J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics letters 1992, 19 (3), 155.
133. Espanol, P.; Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics letters 1995, 30 (4), 191.
134. Maiti, A.; McGrother, S. Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. The Journal of chemical physics 2004, 120 (3), 1594-1601.
135. Groot, R. D.; Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of chemical physics 1997, 107 (11), 4423-4435.
136. Allen, M.; Tildesley, D. Computer simulation of liquids: Oxford university press.[Google Scholar]. 1989.
137. Anwar, M.; Schilling, T. Crystallization of polyethylene: A molecular dynamics simulation study of the nucleation and growth mechanisms. Polymer 2015, 76, 307-312.
138. Anwar, M.; Turci, F.; Schilling, T. Crystallization mechanism in melts of short n-alkane chains. The Journal of chemical physics 2013, 139 (21), 214904.
139. Harmandaris, V. A.; Daoulas, K. C.; Mavrantzas, V. G. Molecular dynamics simulation of a polymer melt/solid interface: Local dynamics and chain mobility in a thin film of polyethylene melt adsorbed on graphite. Macromolecules 2005, 38 (13), 5796-5809.
140. Kos, P.; Ivanov, V.; Chertovich, A. Crystallization in melts and poor-solvent solutions of semiflexible polymers: extensive DPD study. arXiv: Chemical Physics 2017. DOI: 10.48550/arXiv.1708.09499.
141. Staub, M. C.; Li, C. Y. Polymer crystallization at liquid‐liquid interface. Polymer Crystallization 2018, 1 (4), e10045.
142. Loxley, A.; Vincent, B. Preparation of poly (methylmethacrylate) microcapsules with liquid cores. Journal of colloid and interface science 1998, 208 (1), 49-62.
143. Peng, N.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M. M.; Lipscomb, G. G.; Chung, T.-S.; Lai, J.-Y. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Progress in polymer science 2012, 37 (10), 1401-1424.
144. Sawalha, H.; Schroën, K.; Boom, R. Biodegradable polymeric microcapsules: Preparation and properties. Chemical engineering journal 2011, 169 (1-3), 1-10.
145. Yow, H. N.; Routh, A. F. Formation of liquid core–polymer shell microcapsules. Soft matter 2006, 2 (11), 940-949.
146. Costa, P.; Lobo, J. M. S. Modeling and comparison of dissolution profiles. European journal of pharmaceutical sciences 2001, 13 (2), 123-133.
147. Sharratt, W. N.; Lee, V. E.; Priestley, R. D.; Cabral, J. T. Precision polymer particles by flash nanoprecipitation and microfluidic droplet extraction. ACS Applied Polymer Materials 2021, 3 (10), 4746-4768.
148. Udoh, C. E.; Cabral, J. T.; Garbin, V. Nanocomposite capsules with directional, pulsed nanoparticle release. Science Advances 2017, 3 (12), eaao3353.

Chapter 6
149. Allen, T. M.; Cullis, P. R. Drug delivery systems: entering the mainstream. Science 2004, 303 (5665), 1818-1822. DOI: 10.1126/science.1095833 From NLM.
150. Delcea, M.; Möhwald, H.; Skirtach, A. G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced drug delivery reviews 2011, 63 (9), 730-747.
151. Esser-Kahn, A. P.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Triggered release from polymer capsules. Macromolecules 2011, 44 (14), 5539-5553.
152. Peh, K. K.; Wong, C. F. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J Pharm Pharm Sci 1999, 2 (2), 53-61.
153. Tønnesen, H. H.; Karlsen, J. Alginate in Drug Delivery Systems. Drug Development and Industrial Pharmacy 2002, 28 (6), 621-630. DOI: 10.1081/DDC-120003853.
154. Vehring, R.; Foss, W. R.; Lechuga-Ballesteros, D. Particle formation in spray drying. Journal of aerosol science 2007, 38 (7), 728-746.
155. Gharieh, A.; Khoee, S.; Mahdavian, A. R. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Advances in Colloid and Interface Science 2019, 269, 152-186. DOI: https://doi.org/10.1016/j.cis.2019.04.010.
156. Beck-Broichsitter, M.; Rytting, E.; Lebhardt, T.; Wang, X.; Kissel, T. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. European Journal of Pharmaceutical Sciences 2010, 41 (2), 244-253.
157. Kumacheva, E.; Garstecki, P. Microfluidic reactors for polymer particles; John Wiley & Sons, 2011.
158. Shang, L.; Cheng, Y.; Zhao, Y. Emerging Droplet Microfluidics. Chemical Reviews 2017, 117 (12), 7964-8040. DOI: 10.1021/acs.chemrev.6b00848.
159. Watanabe, T.; Lopez, C. G.; Douglas, J. F.; Ono, T.; Cabral, J. T. Microfluidic Approach to the Formation of Internally Porous Polymer Particles by Solvent Extraction. Langmuir 2014, 30 (9), 2470-2479. DOI: 10.1021/la404506b.
160. Hołda, A. K.; Vankelecom, I. F. J. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. Journal of Applied Polymer Science 2015, 132 (27). DOI: https://doi.org/10.1002/app.42130.
161. Sharratt, W. N.; Lee, V. E.; Priestley, R. D.; Cabral, J. T. Precision polymer particles by flash nanoprecipitation and microfluidic droplet extraction. ACS Applied Polymer Materials 2021, 3 (10), 4746-4768.
162. Udoh, C. E.; Garbin, V.; Cabral, J. T. Microporous polymer particles via phase inversion in microfluidics: impact of nonsolvent quality. Langmuir 2016, 32 (32), 8131-8140.
163. Kim, J. F.; Kim, J. H.; Lee, Y. M.; Drioli, E. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE Journal 2016, 62 (2), 461-490.
164. Müller, M.; Abetz, V. Nonequilibrium processes in polymer membrane formation: Theory and experiment. Chemical Reviews 2021, 121 (22), 14189-14231.
165. Wienk, I. M. Ultrafiltration membranes from a polymer blend: hollow fiber preparation and characterization. 1993.
166. Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial & Engineering Chemistry Research 2011, 50 (7), 3798-3817.
167. Guillen, G. R.; Ramon, G. Z.; Kavehpour, H. P.; Kaner, R. B.; Hoek, E. M. Direct microscopic observation of membrane formation by nonsolvent induced phase separation. Journal of Membrane Science 2013, 431, 212-220.
168. Kahrs, C.; Schwellenbach, J. Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study. Polymer 2020, 186, 122071.
169. Li, Y.; He, G.; Wang, S.; Yu, S.; Pan, F.; Wu, H.; Jiang, Z. Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A 2013, 1 (35), 10058-10077.
170. Wang, D.-M.; Lai, J.-Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering 2013, 2 (2), 229-237.
171. Abasian, P.; Ghanavati, S.; Rahebi, S.; Nouri Khorasani, S.; Khalili, S. Polymeric nanocarriers in targeted drug delivery systems: A review. Polymers for Advanced Technologies 2020, 31 (12), 2939-2954.
172. Ali, A.; Zaman, A.; Sayed, E.; Evans, D.; Morgan, S.; Samwell, C.; Hall, J.; Arshad, M. S.; Singh, N.; Qutachi, O. Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Advanced drug delivery reviews 2021, 176, 113788.
173. Alonso, M. J. Nanoparticulate drug carrier technology. In Microparticulate systems for the delivery of proteins and vaccines, CRC Press, 2020; pp 203-242.
174. Bandopadhyay, S.; Manchanda, S.; Chandra, A.; Ali, J.; Deb, P. K. Overview of different carrier systems for advanced drug delivery. In Drug Delivery Systems, Elsevier, 2020; pp 179-233.
175. Kamaly, N.; Xiao, Z.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews 2012, 41 (7), 2971-3010.
176. Lee, T. Y.; Ku, M.; Kim, B.; Lee, S.; Yang, J.; Kim, S. H. Microfluidic production of biodegradable microcapsules for sustained release of hydrophilic actives. Small 2017, 13 (29), 1700646.
177. Min, N. G.; Choi, T. M.; Kim, S. H. Bicolored Janus microparticles created by phase separation in emulsion drops. Macromolecular Chemistry and Physics 2017, 218 (2), 1600265.
178. Min, N. G.; Kim, B.; Lee, T. Y.; Kim, D.; Lee, D. C.; Kim, S.-H. Anisotropic microparticles created by phase separation of polymer blends confined in monodisperse emulsion drops. Langmuir 2015, 31 (3), 937-943.
179. Min, N. G.; Ku, M.; Yang, J.; Kim, S.-H. Microfluidic production of uniform microcarriers with multicompartments through phase separation in emulsion drops. Chemistry of Materials 2016, 28 (5), 1430-1438.
180. Bianco, A.; Burg, S. L.; Parnell, A. J.; Fernyhough, C. M.; Washington, A. L.; Hill, C. J.; Smith, P. J.; Whittaker, D. M.; Mykhaylyk, O. O.; Fairclough, J. P. A. Control of the porous structure of polystyrene particles obtained by nonsolvent induced phase separation. Langmuir 2017, 33 (46), 13303-13314.
181. Jung, Y.; Do, T.; Choi, U. S.; Jung, K.-W.; Choi, J.-W. Cage-like amine-rich polymeric capsule with internal 3D center-radial channels for efficient and selective gold recovery. Chemical Engineering Journal 2022, 438, 135618.
182. Piacentini, E.; Lakshmi, D. S.; Figoli, A.; Drioli, E.; Giorno, L. Polymeric microspheres preparation by membrane emulsification-phase separation induced process. Journal of membrane science 2013, 448, 190-197.
183. Sharratt, W.; Brooker, A.; Robles, E.; Cabral, J. Microfluidic solvent extraction of poly (vinyl alcohol) droplets: effect of polymer structure on particle and capsule formation. Soft Matter 2018, 14 (22), 4453-4463.
184. Hu, H.-W.; Tsao, H.-K.; Sheng, Y.-J. Solidification dynamics of polymer membrane by solvent extraction: Spontaneous stratification. Journal of Membrane Science 2023, 683, 121846. DOI: https://doi.org/10.1016/j.memsci.2023.121846.
185. Hu, H.-W.; Tsao, H.-K.; Sheng, Y.-J. Nonsolvent-Induced Solidification of Droplets of a Polymer Solution: From a Sphere to a Capsule. Macromolecules 2024, 57 (3), 847-857. DOI: 10.1021/acs.macromol.3c01948.
186. Hoogerbrugge, P.; Koelman, J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics letters 1992, 19 (3), 155.
187. Chang, H.-Y.; Tsao, H.-K.; Sheng, Y.-J. Solid-like elastic behavior of nanosized concentrated emulsions: Size-dependent Young’s and bulk moduli. Journal of Molecular Liquids 2023, 380, 121745.
188. Cheng, Y.-T.; Tsao, H.-K.; Sheng, Y.-J. Interfacial assembly of nanorods: smectic alignment and multilayer stacking. Nanoscale 2021, 13 (33), 14236-14244.
189. Hsieh, M.-C.; Tsao, Y.-H.; Sheng, Y.-J.; Tsao, H.-K. Microstructural Dynamics of Polymer Melts during Stretching: Radial Size Distribution. Polymers 2023, 15 (9), 2067.
190. Peng, Y.-S.; Sheng, Y.-J.; Tsao, H.-K. Partition of nanoswimmers between two immiscible phases: a soft and penetrable boundary. Soft Matter 2020, 16 (21), 5054-5061.
191. Espanol, P.; Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics letters 1995, 30 (4), 191.
192. Maiti, A.; McGrother, S. Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. The Journal of Chemical Physics 2004, 120 (3), 1594-1601. DOI: 10.1063/1.1630294 (acccessed 6/21/2024).
193. Groot, R. D.; Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of chemical physics 1997, 107 (11), 4423-4435.
194. Anwar, M.; Schilling, T. Crystallization of polyethylene: A molecular dynamics simulation study of the nucleation and growth mechanisms. Polymer 2015, 76, 307-312.
195. Kos, P.; Ivanov, V.; Chertovich, A. Crystallization in melts and poor-solvent solutions of semiflexible polymers: extensive DPD study. 2017, arXiv:1708.09499. arXiv.org e-Print archive. https://arxiv.org/ abs/1708.09499.
196. Staub, M. C.; Li, C. Y. Polymer crystallization at liquid‐liquid interface. Polymer Crystallization 2018, 1 (4), e10045.
197. Costa, P.; Lobo, J. M. S. Modeling and comparison of dissolution profiles. European journal of pharmaceutical sciences 2001, 13 (2), 123-133.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95972-
dc.description.abstract高分子薄膜和膠囊被廣泛應用於各種工業和日常應用中。瞭解它們的動力學、形態和微結構可以為工程、科學和製藥領域提供有價值的見解。本篇論文主要分為四個部分,深入探討了使用非溶劑誘導相分離方法所產生的高分子薄膜和膠囊的固化動力學機制。
(1) 非溶劑誘導相分離是高分子薄膜製作中常見的技術,涉及液-液分離。利用分子模擬來研究薄膜形成動力學,追蹤膜收縮和各物質濃度的分布。可區分三個不同的區域:界面區域、致密層和中間區域,且這三個區域的固化機制各不相同。模擬結果顯示相分離是由溶劑萃取和高分子增濃所引起的,而不是非溶劑誘導引發。這些結果顯示由於溶劑損失和過飽和而導致的定向固化以及薄膜自動分層化。此篇研究成果已被刊登於Journal of Membrane Science期刊:Hu, H.-W., et al. (2023). “Solidification dynamics of polymer membrane by solvent extraction: Spontaneous stratification.” Journal of Membrane Science 683: 121846。
(2) 利用模擬探索非溶劑誘導相分離生成高分子薄膜的過程,並對其固化機制加以研究。主要探討非溶劑和溶劑之間的親和力對薄膜形態和微結構的影響。強親和力導致主動交換和形成穿越孔洞的結構;而弱親和力則導致由於溶劑損失過飽和而形成封閉的空隙結構。再者,模擬結果發現薄膜微結構與高分子構形相關,這些高分子在薄膜中呈現低結晶度和具有較小的尺寸的捲曲螺旋狀態。推測若選用強親和力的非溶劑和溶劑會導致固化加速,並且降低整體薄膜的結晶度以及高分子的排列。此篇研究成果已被接受於Macromolecules期刊:Hu, H.-W., et al. (2024). “Impact of Nonsolvent-Solvent Affinity on Membrane Morphology and Microstructure: Unraveling the Transition from Traversing Pore to Closed Void Structures.” Macromolecules 57(15): 7640-7653。
(3) 利用耗散性粒子動力學模擬研究高分子溶液微滴在非溶劑浴中固化成膠囊和微粒的過程,並且探索了各種初始高分子濃度下的過程。分析了收縮微滴的動力學、溶劑和非溶劑濃度以及高分子濃度分布。研究結果顯示,初始高分子濃度顯著影響宏觀形態和微觀結構:較高初始濃度導致形成具有較長尺寸的高分子殼的中空微粒,而較低初始濃度則產生具有增加的摺疊鏈的固體微粒。此篇研究成果已被刊登於Macromolecules期刊:Hu, H.-W., et al. (2024). “Nonsolvent-Induced Solidification of Droplets of a Polymer Solution: From a Sphere to a Capsule.” Macromolecules 57(3): 847-857。
(4) 在非溶劑浴中固化二元高分子溶液液滴可創建獨特的微載體。我們使用耗散粒子動力學模擬,探索了含有兩種不相容高分子的沉澱物的形態。最終結構取決於高分子間的不相容性、高分子與非溶劑的不相容性以及莫爾分率。當高分子間不相容性較低時,形成多相高分子殼層;而當其較高時,則形成異質雙面顆粒。增加聚合物與非溶劑的不相容性,會使微膠囊殼從多相轉變為雙層。
zh_TW
dc.description.abstractPolymer membranes and capsules find widespread use in various industrial and everyday applications. Understanding their dynamics, morphologies, and microstructures can yield valuable insights for engineering, scientific, and pharmaceutical purposes. The dissertation is divided into four major parts, delving into the solidification dynamics mechanisms of polymer membranes and capsules using the nonsolvent-induced phase separation method.
(1) Nonsolvent-induced phase separation is a common technique in polymer membrane creation, involving liquid-liquid separation. Simulations are utilized to investigate membrane formation dynamics, tracking film shrinkage and concentration profiles. Three distinct regions are identified: the interfacial region, dense layer, and middle region. Demixing arises from solvent extraction and polymer concentration, rather than nonsolvent-induced separation. These findings shed light on directional solidification and membrane stratification due to solvent loss and oversaturation. This research has been published in the journal: Hu, H.-W., et al. (2023). “Solidification dynamics of polymer membrane by solvent extraction: Spontaneous stratification.” Journal of Membrane Science 683: 121846.
(2) Simulations are employed to explore how nonsolvent-induced phase separation generates polymer membranes and elucidates their solidification mechanisms. The impact of the affinity between nonsolvent and solvent on membrane morphology and microstructure is examined. Strong affinity results in active exchange and the formation of traversing pore structures, whereas weak affinity leads to closed void structures due to solvent loss oversaturation. Membrane microstructure correlates with polymer conformations, with polymers in smaller size observed in membranes with low crystallite content and coil-like conformations. Strong affinity accelerates solidification, reducing crystallinity and polymer alignment. This research has been published in the journal: Hu, H.-W., et al. (2024). “Impact of Nonsolvent-Solvent Affinity on Membrane Morphology and Microstructure: Unraveling the Transition from Traversing Pore to Closed Void Structures.” Macromolecules.
(3) Investigating the solidification of polymer solution droplets into capsules and particles in a nonsolvent bath, the research employs dissipative particle dynamics simulations to explore this process across various initial polymer concentrations. It analyzes the dynamics of shrinking droplets, solvent and nonsolvent concentrations, and polymer concentration profiles. Results indicate that initial polymer concentrations significantly impact both macroscopic morphology and microscopic configuration: higher concentrations lead to hollow particles with longer polymer shells, while lower concentrations produce solid particles with increased chain-folding. This research has been published in the journal: Hu, H.-W., et al. (2024). “Nonsolvent-Induced Solidification of Droplets of a Polymer Solution: From a Sphere to a Capsule.” Macromolecules 57(3): 847-857.
(4) Solidifying binary polymer solution droplets in a nonsolvent bath creates unique microcarriers. Using dissipative particle dynamics simulations, we explored the morphologies of precipitates with two immiscible polymers. The structure depends on inter-polymer and polymer-nonsolvent incompatibility and mole fraction. Multi-compartment shells form when inter-polymer incompatibility is lower, while Janus particles form when it is higher. Increasing polymer-nonsolvent incompatibility changes the microcapsule shell from multi-compartment to bilayer, offering insights into polymer blend microcapsule formation and morphology.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:24:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:24:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
List of Figures xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Objective 3
1.4 Structure of the dissertation 3
1.5 Significance 5
Chapter 2 Literature Review 7
2.1 Introduction 7
2.2 Polymer membrane fabrication 7
2.2.1 Nonsolvent-induced phase separation (NIPS) 7
2.2.2 Brief overview of other fabrication methods 9
2.3 Simulation methods 10
2.3.1 DPD simulation for NIPS process 10
2.3.2 Modeling polymer particles and capsules 11
2.4 Membrane characterization techniques 12
2.4.1 Microscopy techniques 12
2.4.2 Spectroscopy techniques 13
2.4.3 Mechanical testing 14
2.4.4 Permeability and selectivity testing 14
2.4.5 Thermal and chemical stability testing 15
2.5 Applications of polymer membranes 16
2.5.1 Water treatment 16
2.5.2 Gas separation 17
2.5.3 Biomedical applications 17
2.5.4 Environmental applications 18
2.5.5 Energy applications 18
2.6 Conclusion 19
Chapter 3 Solidification dynamics of polymer membrane by solvent extraction: spontaneous stratification 21
3.1 Abstract 21
3.2 Introduction 22
3.3 Simulation methods 26
3.3.1 Interaction force and simulation system 26
3.3.2 Flory-Huggins parameters and crystallization (alignment) of polymers 29
3.4 Results and discussion 31
3.4.1 Solidification of polymer solution 31
3.4.2 Dynamics of solvent extraction and membrane shrinkage 35
3.4.3 Concentration profiles and spontaneous stratification 41
3.4.4 Microstructure and directional solidification 45
3.5 References 51
Chapter 4 Impact of nonsolvent-solvent affinity on membrane morphology and microstructure 60
4.1 Abstract 60
4.2 Introduction 61
4.3 Simulation methods 65
4.3.1 Interaction force 65
4.3.2 Simulation system 66
4.3.3 The relation between the interaction parameter and χ-parameter 69
4.3.4 Criteria for polymer crystallization (alignment) 71
4.4 Results and discussion 72
4.4.1 Conformational change associated with solidification 72
4.4.2 Shrinking dynamics of membrane: effect of χNS 80
4.4.3 Membrane morphology and microstructure 88
4.5 References 96
Chapter 5 Nonsolvent-induced solidification of droplets of a polymer solution 107
5.1 Abstract 107
5.2 Introduction 108
5.3 Simulation methods 112
5.3.1 Interaction force 112
5.3.2 Simulation system 113
5.3.3 Interaction parameters related to Flory-Huggins χ-parameter 116
5.3.4 Criteria for crystallization (alignment) of polymers 117
5.4 Results and discussion 119
5.4.1 Solidification of polymers in solution and crystallinity 119
5.4.2 Dynamics of capsule formation: effect of initial polymer concentration 127
5.4.3 Distribution of polymer concentration and solidification dynamics 132
5.5 References 143
Chapter 6 Formation of polymer blend microcapsules with distinct morphologies via phase separation: effects of inter-polymer and polymer-nonsolvent incompatibilities 150
6.1 Abstract 150
6.2 Introduction 151
6.3 Simulation method 155
6.3.1 Interaction forces 155
6.3.2 Simulation system 157
6.3.3 Interaction parameters and Flory-Huggins χ-parameters 158
6.3.4 Criteria for crystallization (alignment) of polymers 160
6.4 Results and discussion 161
6.4.1 Extent of phase separation of polymer blend: degree of inhomogeneity 162
6.4.2 Formation of microcapsules and Janus particles: effect of inter-polymer incompatibility 169
6.4.3 Formation dynamics of bilayered microcapsules: effect of polymer-nonsolvent incompatibility 177
6.5 References 186
Chapter 7 Conclusions 194
-
dc.language.isoen-
dc.title非溶劑誘導相分離形成膜和膠囊的微觀結構動力學zh_TW
dc.titleMicrostructural Dynamics of Membrane and Capsule Formation by Nonsolvent Induced Phase Separationen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee郭修伯;崔宏瑋;曹恆光;陳儀帆zh_TW
dc.contributor.oralexamcommitteeHsiu-Po Kuo;Hung-Wei Tsui;Heng-Kwong Tsao;Yi-Fan Chenen
dc.subject.keyword非溶劑誘導相分離,液-固分離,固化動力學,非溶劑-溶劑親和力,多孔膜,微膠囊,高分子摻合,zh_TW
dc.subject.keywordnonsolvent-induced phase separation,liquid-solid separation,solidification dynamics,nonsolvent-solvent affinity,porous membrane,microcapsule,polymer blend,en
dc.relation.page201-
dc.identifier.doi10.6342/NTU202404390-
dc.rights.note未授權-
dc.date.accepted2024-09-20-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
7.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved