請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95969完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃明蕙 | zh_TW |
| dc.contributor.advisor | Ming-Hui Huang | en |
| dc.contributor.author | 郭太元 | zh_TW |
| dc.contributor.author | Tai-Yuan Kuo | en |
| dc.date.accessioned | 2024-09-25T16:23:43Z | - |
| dc.date.available | 2024-11-28 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-09-20 | - |
| dc.identifier.citation | 1. Cui, Y. G., van Esch, P., & Phelan, S. (2024). How to build a competitive advantage for your brand using generative AI. Business Horizons.
2. De Luca, L. M., & Atuahene-Gima, K. (2007). Market knowledge dimensions and cross-functional collaboration: Examining the different routes to product innovation performance. Journal of marketing, 71(1), 95-112. 3. Germann, F., Ebbes, P., & Grewal, R. (2015). The chief marketing officer matters!. Journal of Marketing, 79(3), 1-22. 4. Gök, O., & Hacioglu, G. (2010). The organizational roles of marketing and marketing managers. Marketing Intelligence & Planning, 28(3), 291-309. 5. Huang, M. H., & Rust, R. T. (2024). The caring machine: Feeling AI for customer care. Journal of Marketing, 00222429231224748. 6. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large language models are zero-shot reasoners. Advances in neural information processing systems, 35, 22199-22213. 7. OpenAI (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774. 8. Payne, A., Frow, P., & Eggert, A. (2017). The customer value proposition: evolution, development, and application in marketing. Journal of the Academy of Marketing Science, 45, 467-489. 9. Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., ... & Le, Q. V. (2021). Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652. 10. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., ... & Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95969 | - |
| dc.description.abstract | 生成式人工智慧(生成式 AI)迅速成為品牌溝通的重要工具,在大量訓練數據的支持下,為成熟的品牌提供顯著的優勢。然而,由於新的品牌缺乏既有的數據,他們會在使用生成式 AI 時面臨挑戰,這會影響輸出的品質。本文將探討生成式 AI 在成熟的品牌與新的品牌之間的生成品質差異,並著重於以微調的方法拉近這一段差距。
透過對於 FL Studio(一個成熟品牌)和 Suno AI(一個新品牌)的比較分析,我們研究了無範例提示、人物誌規律和跨部門合作模擬的策略。使用最新的 GPT-4o 模型,我們以對 AI 進行微調生成與品牌身份和目標客群一致的價值主張。 我們的研究發現無範例提示提供基準線,而微調顯著提升輸出品質,尤其是對於新品牌有明顯的改善。行銷長角色扮演與跨部門合作模擬的微調方式可以有效提高新品牌價值主張的相關性和清晰度。 本研究提供品牌溝通上模型微調的寶貴見解,突顯出新品牌可成功利用生成式 AI 的方法。未來工作可以探討更多的調整策略及其在多樣生成環境中的影響,包括多語言和多文化應用。 | zh_TW |
| dc.description.abstract | Generative AI (GenAI) has rapidly become integral in brand communications, providing significant advantages for mature brands due to the extensive training data available. However, new brands face challenges with GenAI due to the lack of pre-existing data, which affects the quality of generated outputs. This thesis investigates the disparities in GenAI output quality between mature (well-established) and new brands, focusing specifically on fine-tuning methodologies to bridge this gap.
Employing a comparative analysis of FL Studio (a mature brand) and Suno AI (a new brand), our research explores strategies such as standard zero-shot prompting, persona pattern, and cross-functional collaboration simulation. Using the latest GPT-4o model, we fine-tune the AI to generate value propositions that align with the brands' identities and target customers. Our findings reveal that while standard zero-shot prompting offers a baseline, fine-tuning significantly enhances output quality, particularly for new brands. Role-playing as a Chief Marketing Officer and simulating cross-functional collaboration proved effective in improving the relevance and clarity of the value propositions for the new brand. This research contributes valuable insights into effective AI fine-tuning for brand communications, highlighting actionable methods for new brands to leverage Generative AI successfully. Future work may explore additional tuning strategies and their impact in diverse generative contexts, considering multilingual and multicultural applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:23:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:23:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝詞 I
論文摘要 II THESIS ABSTRACT III Table of Contents V List of Tables IX CHAPTER 1. Introduction and Motivation 1 1.1. Background 1 1.2. The Importance of Generative AI for Branding 2 1.3. Challenges in Using Generative AI 2 1.4. Significance of the Research 5 1.5. Research Objectives 5 1.6. Research Problem 6 1.7. Structure of the Thesis 7 CHAPTER 2. Literature Review 9 2.1. Challenges for New Brands with GenAI 9 2.2. Fine-Tuning Generative AI Models 10 2.2.1. Zero-shot Prompting 10 2.2.2. Persona Pattern 12 2.2.3. Cross-functional Collaboration 12 2.3. What Makes a Value Proposition Effective 13 2.4. Conceptual Framework 14 CHAPTER 3. Methodology 17 3.1. Check of GPT-4o's Knowledge on Suno AI 17 3.2. Experiments 19 3.2.1. Common Setup 19 3.2.1.1.1. GPT Model 19 3.2.1.1.1.1. Model Setting 20 3.2.1.2. Prompt Header 20 3.2.2. Base Case: Standard Zero-shot Prompting 22 3.2.3. Fine-Tuning Strategies 23 3.2.3.1. Persona Pattern 23 3.2.3.1.1. Prompt Modifications 23 3.2.3.2. Cross-functional Collaboration Simulation 24 3.3. Value Proposition Evaluation 25 3.3.1. Evaluative Criteria 25 3.3.2. Evaluating Methods 26 3.3.2.1. Same Machine Evaluation 26 3.3.2.1.1. Ordinal Scoring per Criterion 26 3.3.2.1.2. 100-point Scale Scoring 27 3.3.2.1.3. Ranking 28 3.3.2.1.4. Pairwise Comparison 28 3.3.2.2. Different Machine Evaluation 29 3.3.2.3. Human Evaluation 30 CHAPTER 4. Results 31 4.1. Generated Value Propositions 31 4.2. Same Machine Evaluations 33 4.2.1. Ordinal Scoring per Criterion 33 4.2.2. 100-point Scale Scoring 34 4.2.3. Ranking 35 4.2.4. Pairwise Comparison 37 4.3. Different Machine Evaluations 39 4.3.1. Ordinal Scoring per Criterion 39 4.3.1.1. Claude 39 4.3.1.2. Gemini 40 4.3.2. 100-point Scale Scoring 41 4.4. Human Evaluations of Generated Value Propositions 42 4.4.1. Ordinal Scores 42 4.4.2. Qualitative Comments 43 4.4.2.1. Base Case: Standard Zero-shot Prompting 43 4.4.2.1.1. Mature Brand: FL Studio 43 4.4.2.1.2. New Brand: HarmoniAI 43 4.4.2.2. Fine-Tuning 1: Persona Pattern 44 4.4.2.2.1. Mature Brand: FL Studio 44 4.4.2.2.2. New Brand: HarmoniAI 44 4.4.2.3. Fine-Tuning 2: Cross-functional Collaboration Simulation 45 4.4.2.3.1. Mature Brand: FL Studio 45 4.4.2.3.2. New Brand: HarmoniAI 45 4.5. Overall Performance and Comparative Analysis 46 4.5.1. Overall Performance on the Mature Brand (FL Studio) 46 4.5.2. Overall Performance on the New Brand (HarmoniAI) 46 4.5.3. Comparative Performance Between Mature and New Brands 47 4.5.4. Standard Zero-shot Prompting vs. Fine-Tuning 47 4.6. Summary 48 CHAPTER 5. Discussion and Conclusion 49 5.1. Contributions of the Thesis 49 5.2. Implications for New Brands 50 5.3. Other Concerns: Privacy and Security 50 5.4. Future Work 51 References 52 | - |
| dc.language.iso | en | - |
| dc.subject | 價值主張 | zh_TW |
| dc.subject | 跨部門 | zh_TW |
| dc.subject | 人物誌規律 | zh_TW |
| dc.subject | 新的品牌 | zh_TW |
| dc.subject | 商業中的 AI | zh_TW |
| dc.subject | 品牌定位 | zh_TW |
| dc.subject | AI 驅動內容創作 | zh_TW |
| dc.subject | GPT-4o | zh_TW |
| dc.subject | 生成式人工智慧(生成式 AI) | zh_TW |
| dc.subject | 微調 | zh_TW |
| dc.subject | 行銷 | zh_TW |
| dc.subject | marketing | en |
| dc.subject | cross-functional | en |
| dc.subject | GPT-4o | en |
| dc.subject | AI-driven content creation | en |
| dc.subject | brand positioning | en |
| dc.subject | AI in business | en |
| dc.subject | new brands | en |
| dc.subject | value proposition | en |
| dc.subject | persona pattern | en |
| dc.subject | fine-tuning | en |
| dc.subject | Generative AI (GenAI) | en |
| dc.title | 微調生成式 AI:新品牌 vs. 成熟品牌 | zh_TW |
| dc.title | Fine-tune Generative AI: New vs. Mature Brands | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡益坤;林俊昇 | zh_TW |
| dc.contributor.oralexamcommittee | Yih-Kuen Tsay;Jiun-Sheng Chris Lin | en |
| dc.subject.keyword | 生成式人工智慧(生成式 AI),微調,行銷,價值主張,新的品牌,人物誌規律,跨部門,GPT-4o,AI 驅動內容創作,品牌定位,商業中的 AI, | zh_TW |
| dc.subject.keyword | Generative AI (GenAI),fine-tuning,marketing,value proposition,new brands,persona pattern,cross-functional,GPT-4o,AI-driven content creation,brand positioning,AI in business, | en |
| dc.relation.page | 53 | - |
| dc.identifier.doi | 10.6342/NTU202404383 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-09-20 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 商學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
