Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95963
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉貴生zh_TW
dc.contributor.advisorGuey-Sheng Liouen
dc.contributor.author王裕捷zh_TW
dc.contributor.authorYu-Jie Wangen
dc.date.accessioned2024-09-25T16:21:53Z-
dc.date.available2025-09-06-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation(1) Pascault, J.-P.; Williams, R. J. Epoxy polymers: new materials and innovations; John Wiley & Sons, 2009.
(2) Mohan, P. A critical review: the modification, properties, and applications of epoxy resins. Polymer-plastics technology and engineering 2013, 52 (2), 107-125.
(3) Looney, M. G.; Solomon, D. H. The chemistry of novolac resins. I. A review on the use of models. Australian Journal of Chemistry 1995, 48 (2), 323-331.
(4) Monk, P.; Mortimer, R.; Rosseinsky, D. Electrochromism and electrochromic devices; Cambridge university press, 2007.
(5) Mortimer, R. J. Electrochromic materials. Annual review of materials research 2011, 41, 241-268.
(6) Platt, J. R. Electrochromism, a possible change of color producible in dyes by an electric field. The Journal of Chemical Physics 1961, 34 (3), 862-863.
(7) Sood, A.; Poletayev, A. D.; Cogswell, D. A.; Csernica, P. M.; Mefford, J. T.; Fraggedakis, D.; Toney, M. F.; Lindenberg, A. M.; Bazant, M. Z.; Chueh, W. C. Electrochemical ion insertion from the atomic to the device scale. Nature Reviews Materials 2021, 6 (9), 847-867.
(8) Zhang, X.; Tian, Y.; Li, W.; Dou, S.; Wang, L.; Qu, H.; Zhao, J.; Li, Y. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Solar Energy Materials and Solar Cells 2019, 200, 109916.
(9) Faughnan, B. W.; Crandall, R. S.; Lampert, M. A. Model for the bleaching of WO3 electrochromic films by an electric field. Applied Physics Letters 1975, 27 (5), 275-277.
(10) Jarry, A.; Walker, M.; Theodoru, S.; Brillson, L. J.; Rubloff, G. W. Elucidating Structural Transformations in LixV2O5 Electrochromic thin films by multimodal spectroscopies. Chemistry of Materials 2020, 32 (17), 7226-7236.
(11) Cheng, K.-C.; Chen, F.-R.; Kai, J.-J. V2O5 nanowires as a functional material for electrochromic device. Solar Energy Materials and Solar Cells 2006, 90 (7-8), 1156-1165.
(12) Arash, A.; Tawfik, S. A.; Spencer, M. J.; Kumar Jain, S.; Arash, S.; Mazumder, A.; Mayes, E.; Rahman, F.; Singh, M.; Bansal, V. Electrically activated UV-A filters based on electrochromic MoO3–x. ACS Applied Materials & Interfaces 2020, 12 (14), 16997-17003.
(13) Jittiarporn, P.; Sikong, L.; Kooptarnond, K.; Taweepreda, W.; Stoenescu, S.; Badilescu, S.; Truong, V.-V. Electrochromic properties of MoO3-WO3 thin films prepared by a sol-gel method, in the presence of a triblock copolymer template. Surface and Coatings Technology 2017, 327, 66-74.
(14) Macher, S.; Schott, M.; Sassi, M.; Facchinetti, I.; Ruffo, R.; Patriarca, G.; Beverina, L.; Posset, U.; Giffin, G. A.; Löbmann, P. New roll‐to‐roll processable PEDOT‐based polymer with colorless bleached state for flexible electrochromic devices. Advanced Functional Materials 2020, 30 (6), 1906254.
(15) Popov, A.; Brasiunas, B.; Damaskaite, A.; Plikusiene, I.; Ramanavicius, A.; Ramanaviciene, A. Electrodeposited gold nanostructures for the enhancement of electrochromic properties of PANI–PEDOT film deposited on transparent electrode. Polymers 2020, 12 (12), 2778.
(16) Yang, B.; Ma, D.; Zheng, E.; Wang, J. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cells 2019, 192, 1-7.
(17) Dulgerbaki, C.; Maslakci, N. N.; Komur, A. I.; Oksuz, A. U. Electrochromic strategy for tungsten oxide/polypyrrole hybrid nanofiber materials. European Polymer Journal 2018, 107, 173-180.
(18) Che, B.; Zhou, D.; Li, H.; He, C.; Liu, E.; Lu, X. A highly bendable transparent electrode for organic electrochromic devices. Organic Electronics 2019, 66, 86-93.
(19) Ram, M. K.; Maccioni, E.; Nicolini, C. The electrochromic response of polyaniline and its copolymeric systems. Thin Solid Films 1997, 303 (1-2), 27-33.
(20) Assis, L.; Leones, R.; Kanicki, J.; Pawlicka, A.; Silva, M. M. Prussian blue for electrochromic devices. Journal of Electroanalytical Chemistry 2016, 777, 33-39.
(21) Zloczewska, A.; Celebanska, A.; Szot, K.; Tomaszewska, D.; Opallo, M.; Jönsson-Niedziolka, M. Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display. Biosensors and Bioelectronics 2014, 54, 455-461.
(22) Jelle, B. P.; Hagen, G. Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Journal of the Electrochemical Society 1993, 140 (12), 3560.
(23) Deb, S. A novel electrophotographic system. Applied Optics 1969, 8 (101), 192-195.
(24) Blanc, J.; Staebler, D. L. Electrocoloration in SrTiO3: Vacancy drift and oxidation-reduction of transition metals. Physical Review B 1971, 4 (10), 3548.
(25) Renger, G.; Erixon, K.; Döring, G.; Wolff, C. Studies on the nature of the inhibitory effect of trypsin on the photosynthetic electron transport of system II in spinach chloroplasts. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1976, 440 (2), 278-286.
(26) Itaya, K.; Shibayama, K.; Akahoshi, H.; Toshima, S. Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device. Journal of Applied Physics 1982, 53 (1), 804-805.
(27) Garnier, F.; Tourillon, G.; Gazard, M.; Dubois, J. Organic conducting polymers derived from substituted thiophenes as electrochromic material. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1983, 148 (2), 299-303.
(28) Li, H.; Guarr, T. F. Reversible electrochromism in polymeric metal phthalocyanine thin films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1991, 297 (1), 169-183.
(29) Ohkubo, M.; Nonomura, S.; Watanabe, H.; Gotoh, T.; Yamamoto, K.; Nitta, S. Optical properties of amorphous indium nitride films and their electrochromic and photodarkening effects. Applied Surface Science 1997, 113, 476-479.
(30) Wade, C. R.; Li, M.; Dincă, M. Facile deposition of multicolored electrochromic metal–organic framework thin films. Angewandte Chemie International Edition 2013, 52 (50), 13377-13381.
(31) Bao, W.; Wan, J.; Han, X.; Cai, X.; Zhu, H.; Kim, D.; Ma, D.; Xu, Y.; Munday, J. N.; Drew, H. D.; et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nature Communications 2014, 5 (1), 4224.
(32) Salles, P.; Pinto, D.; Hantanasirisakul, K.; Maleski, K.; Shuck, C. E.; Gogotsi, Y. Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Advanced Functional Materials 2019, 29 (17), 1809223.
(33) Guo, Q.; Zhao, X.; Li, Z.; Wang, B.; Wang, D.; Nie, G. High performance multicolor intelligent supercapacitor and its quantitative monitoring of energy storage level by electrochromic parameters. ACS Applied Energy Materials 2020, 3 (3), 2727-2736.
(34) Mohanadas, D.; Sulaiman, Y. Recent advances in development of electroactive composite materials for electrochromic and supercapacitor applications. Journal of Power Sources 2022, 523, 231029.
(35) Sutar, S. H.; Babar, B. M.; Pisal, K. B.; Inamdar, A. I.; Mujawar, S. H. Feasibility of nickel oxide as a smart electrochromic supercapacitor device: A review. Journal of Energy Storage 2023, 73, 109035.
(36) In, Y. R.; Kim, Y. M.; Lee, Y.; Choi, W. Y.; Kim, S. H.; Lee, S. W.; Moon, H. C. Ultra-low power electrochromic heat shutters through tailoring diffusion-controlled behaviors. ACS Applied Materials & Interfaces 2020, 12 (27), 30635-30642.
(37) Wu, Z.; Zhao, Q.; Luo, X.; Ma, H.; Zheng, W.; Yu, J.; Zhang, Z.; Zhang, K.; Qu, K.; Yang, R.; Jian, N.; Hou, J.; Liu, X.; Xu, J.; Lu, B. Low-cost fabrication of high-performance fluorinated polythiophene-based vis–NIR electrochromic devices toward deformable display and camouflage. Chemistry of Materials 2022, 34 (22), 9923-9933.
(38) Day, J. H. Thermochromism. Chemical Reviews 1963, 63 (1), 65-80.
(39) Pardo, R.; Zayat, M.; Levy, D. Photochromic organic–inorganic hybrid materials. Chemical Society Reviews 2011, 40 (2), 672-687.
(40) Gu, C.; Jia, A.-B.; Zhang, Y.-M.; Zhang, S. X.-A. Emerging electrochromic materials and devices for future displays. Chemical Reviews 2022, 122 (18), 14679-14721.
(41) Rai, V.; Singh, R. S.; Blackwood, D. J.; Zhili, D. A review on recent advances in electrochromic devices: A material approach. Advanced Engineering Materials 2020, 22 (8), 2000082.
(42) Wu, W.; Fang, H.; Ma, H.; Wu, L.; Wang, Q.; Wang, H. Self-powered rewritable electrochromic display based on WO3-x film with mechanochemically synthesized MoO3–y nanosheets. ACS Applied Materials & Interfaces 2021, 13 (17), 20326-20335.
(43) Li, J.; Zhuang, Y.; Chen, J.; Li, B.; Wang, L.; Liu, S.; Zhao, Q. Two-dimensional materials for electrochromic applications. Energy Chem 2021, 3 (5), 100060.
(44) Zhao, Y.; Zhang, X.; Li, W.; Li, Z.; Zhang, H.; Chen, M.; Sun, W.; Xiao, Y.; Zhao, J.; Li, Y. High-performance electrochromic WO3 film driven by controllable crystalline structure and its all-solid-state device. Solar Energy Materials and Solar Cells 2022, 237, 111564.
(45) Zheng, J. Y.; Sun, Q.; Cui, J.; Yu, X.; Li, S.; Zhang, L.; Jiang, S.; Ma, W.; Ma, R. Review on recent progress in WO3-based electrochromic films: preparation methods and performance enhancement strategies. Nanoscale 2023, 15 (1), 63-79.
(46) Chang, C.-M.; Chiang, Y.-C.; Cheng, M.-H.; Lin, S.-H.; Jian, W.-B.; Chen, J.-T.; Cheng, Y.-J.; Ma, Y.-R.; Tsukagoshi, K. Fabrication of WO3 electrochromic devices using electro-exploding wire techniques and spray coating. Solar Energy Materials and Solar Cells 2021, 223, 110960.
(47) Weil, M.; Schubert, W. D. The beautiful colours of tungsten oxides. International Tungsten Industry Association 2013, 4, 1-12.
(48) Kettle, S. F. A. Electronic spectra of transition metal complexes. Physical Inorganic Chemistry: A Coordination Chemistry Approach, Kettle, S. F. A. Ed.; Springer Berlin Heidelberg, 1996, 156-184.
(49) Acosta, A.; Zink, J. I.; Cheon, J. Ligand to ligand charge transfer in (hydrotris(pyrazolyl)borato)(triphenylarsine)copper(I). Inorganic Chemistry 2000, 39 (3), 427-432.
(50) Itaya, K.; Shibayama, K.; Akahoshi, H.; Toshima, S. Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device. Journal of Applied Physics 1982, 53 (1), 804-805.
(51) Itaya, K.; Ataka, T.; Toshima, S. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. Journal of the American Chemical Society 1982, 104 (18), 4767-4772.
(52) Ivanov, V. D. Four decades of electrochemical investigation of Prussian blue. Ionics 2020, 26 (2), 531-547.
(53) Yang, M.; Liu, Z.; Li, X.; Wang, Y.; Niu, C.; Lv, Y. Controlled hydrothermal synthesis of Prussian blue films with multicolor electrochromic behaviors. Journal of Solid State Chemistry 2023, 325, 124160.
(54) Yang, M.; Liu, Z.; Li, X.; Zhang, S.; Wang, L.; Niu, C.; Lv, Y. Prussian green films exhibiting typical four-colors electrochromic properties. Thin Solid Films 2024, 789, 140192.
(55) Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. Journal of The Electrochemical Society 1978, 125 (6), 886.
(56) Kim, J.; Rémond, M.; Kim, D.; Jang, H.; Kim, E. Electrochromic conjugated polymers for multifunctional smart windows with integrative functionalities. Advanced Materials Technologies 2020, 5 (6), 1900890.
(57) Yan, S.; Zhang, L.; Lv, X.; Sun, J.; Zhang, Y.; Zhang, C. Black-to-transmissive electrochromism in π-conjugated polymer-based materials and devices. Advanced Photonics Research 2022, 3 (1), 2000199.
(58) Kim, J.; In, Y. R.; Phan, T. N.-L.; Kim, Y. M.; Ha, J.-W.; Yoon, S. C.; Kim, B. J.; Moon, H. C. Design of dithienopyran-based conjugated polymers for high-performance electrochromic devices. Chemistry of Materials 2023, 35 (2), 792-800.
(59) Yu, L.; Xing, X.; Fang, D.; Meng, H. Highly transparent conjugated polymer as the counter electrode in electrochromic smart windows. Advanced Optical Materials 2022, 10 (23), 2201423.
(60) Huang, Q.; Chen, J.; Yan, S.; Shao, X.; Dong, Y.; Liu, J.; Li, W.; Zhang, C. New donor–acceptor–donor conjugated polymer with twisted donor–acceptor configuration for high-capacitance electrochromic supercapacitor application. ACS Sustainable Chemistry & Engineering 2021, 9 (41), 13807-13817.
(61) Tao, J.; Chen, H.; Han, Y.; Gao, P.; Zhang, X.-P.; Peng, S.; Liu, H.; Wu, Z.; Liu, J. Molecular engineering of novel D-A conjugated polymers for electrochromic energy storage devices toward enhanced performance. European Polymer Journal 2023, 200, 112502.
(62) Dyer, A. L.; Österholm, A. M.; Shen, D. E.; Johnson, K. E.; Reynolds, J. R. Conjugated electrochromic polymers: structure-driven colour and processing control. Electrochromic Materials and Devices, 2013; 113-184.
(63) Sonmez, G. Polymeric electrochromics. Chemical Communications 2005, (42), 5251-5259.
(64) Lacerda, G. R. d. B. S.; Calado, C. R.; Calado, H. D. R. Electrochromic and electrochemical properties of copolymer films based on EDOT and phenylthiophene derivatives. Journal of Solid State Electrochemistry 2019, 23 (3), 823-835.
(65) Nie, G.; Zhou, L.; Yang, H. Electrosynthesis of a new polyindole derivative obtained from 5-formylindole and its electrochromic properties. Journal of Materials Chemistry 2011, 21 (36), 13873-13880.
(66) Savagian, L. R.; Österholm, A. M.; Shen, D. E.; Christiansen, D. T.; Kuepfert, M.; Reynolds, J. R. Conjugated polymer blends for high contrast black-to-transmissive electrochromism. Advanced Optical Materials 2018, 6 (19), 1800594.
(67) Michaelis, L.; Hill, E. S. The viologen indicators. J Gen Physiol 1933, 16 (6), 859-873.
(68) Shah, K. W.; Wang, S.-X.; Soo, D. X. Y.; Xu, J. Viologen-based electrochromic materials: From small molecules, polymers and composites to their applications. Polymers 2019, 11 (11), 1839.
(69) Sagara, T.; Tahara, H. Redox of viologen for powering and coloring. The Chemical Record 2021, 21 (9), 2375-2388.
(70) De Long, H. C.; Buttry, D. A. Environmental effects on redox potentials of viologen groups embedded in electroactive self-assembled monolayers. Langmuir 1992, 8 (10), 2491-2496.
(71) Monk, P.; Mortimer, R.; Rosseinsky, D. Electrochromism and Electrochromic Devices; Cambridge University Press, 2007.
(72) Yen, H.-J.; Liou, G.-S. Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Progress in Polymer Science 2019, 89, 250-287.
(73) Yen, H.-J.; Liou, G.-S. Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polymer Chemistry 2018, 9 (22), 3001-3018.
(74) Yen, H.-J.; Kung, Y.-R.; Hsiao, S.-H.; Liou, G.-S. Arylamine-based High Performance Polymers for Electrochromic Applications. In Electrochromic Smart Materials: Fabrication and Applications, Xu, J. W., Chua, M. H., Shah, K. W. Eds.; The Royal Society of Chemistry, 2019, 11, 323-371.
(75) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. Journal of the American Chemical Society 1966, 88 (15), 3498-3503.
(76) Nelson, R. R.; Adams, R. N. Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. Journal of the American Chemical Society 1968, 90 (15), 3925-3930.
(77) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. Journal of Materials Chemistry 2007, 17 (10), 1007-1015.
(78) Chang, C.-W.; Yen, H.-J.; Huang, K.-Y.; Yeh, J.-M.; Liou, G.-S. Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: Synthesis, electrochromic, and gas separation properties. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (24), 7937-7949.
(79) Wang, H.-M.; Hsiao, S.-H. Enhancement of redox stability and electrochromic performance of aromatic polyamides by incorporation of (3,6-dimethoxycarbazol-9-yl)-triphenylamine units. Journal of Polymer Science Part A: Polymer Chemistry 2014, 52 (2), 272-286.
(80) Hsiao, S.-H.; Wang, H.-M.; Liao, S.-H. Redox-stable and visible/near-infrared electrochromic aramids with main-chain triphenylamine and pendent 3,6-di-tert-butylcarbazole units. Polymer Chemistry 2014, 5 (7), 2473-2483.
(81) Wang, H.-M.; Hsiao, S.-H.; Liou, G.-S.; Sun, C.-H. Synthesis, photoluminescence, and electrochromism of polyamides containing (3,6-di-tert-butylcarbazol-9-yl)triphenylamine units. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (21), 4775-4789.
(82) Wu, J.-T.; Lin, H.-T.; Liou, G.-S. Synthesis and characterization of novel triarylamine derivatives with dimethylamino substituents for application in optoelectronic devices. ACS Applied Materials & Interfaces 2019, 11 (16), 14902-14908.
(83) Li, F.-W.; Yen, T.-C.; Liou, G.-S. Synthesis of high-performance electrochromic material for facile fabrication of truly black electrochromic devices. Electrochimica Acta 2021, 367, 137474.
(84) Shao, Y.-J.; Tu, M.-H.; Liou, G.-S. Unprecedented facile approach of multiple amino-substituted triphenylamine derivatives for electrochromic devices with extremely high coloration efficiency and unexpected redox stability. Chemical Engineering Journal 2023, 466, 143003.
(85) Yen, H.-J.; Tsai, C.-L.; Chen, S.-H.; Liou, G.-S. Electrochromism and Nonvolatile Memory Device Derived from Triphenylamine-based polyimides with pendant viologen units. Macromolecular Rapid Communications 2017, 38 (9), 1600715.
(86) Hsiao, S.-H.; Teng, C.-Y.; Kung, Y.-R. Synthesis and characterization of novel electrochromic poly(amide-imide)s with N,N′-di(4-methoxyphenyl)-N,N′-diphenyl-p-phenylenediamine units. RSC Advances 2015, 5 (113), 93591-93606.
(87) Liou, G.-S.; Hsiao, S.-H.; Su, T.-H. Synthesis, luminescence and electrochromism of aromatic poly(amine–amide)s with pendant triphenylamine moieties. Journal of Materials Chemistry 2005, 15 (18), 1812-1820.
(88) Chang, C.-W.; Chung, C.-H.; Liou, G.-S. Novel Anodic Polyelectrochromic Aromatic Polyamides Containing Pendent Dimethyltriphenylamine Moieties. Macromolecules 2008, 41 (22), 8441-8451.
(89) Yen, H.-J.; Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polymer Chemistry 2012, 3 (2), 255-264.
(90) Liou, G.-S.; Lin, H.-Y.; Yen, H.-J. Synthesis and characterization of electroactive hyperbranched aromatic polyamides based on A2B-type triphenylamine moieties. Journal of Materials Chemistry 2009, 19 (41), 7666-7673.
(91) Liu, H.-S.; Pan, B.-C.; Huang, D.-C.; Kung, Y.-R.; Leu, C.-M.; Liou, G.-S. Highly transparent to truly black electrochromic devices based on an ambipolar system of polyamides and viologen. NPG Asia Materials 2017, 9 (6), e388-e388.
(92) D'Alessandro, D. M.; Keene, F. R. Current trends and future challenges in the experimental, theoretical and computational analysis of intervalence charge transfer (IVCT) transitions. Chemical Society Reviews 2006, 35 (5), 424-440.
(93) Robin, M. B.; Day, P. Mixed valence chemistry-a survey and classification. Advances in Inorganic Chemistry and Radiochemistry, Emeléus, H. J., Sharpe, A. G. Eds.; Vol. 10; Academic Press, 1968; 247-422.
(94) Chern, Y.-T.; Zhang, S.-J.; Ho, S.-J.; Shao, Y.-J.; Wang, Y.-J.; Liou, G.-S. Substituents and resonance effects on the electrochemical stability of polyelectrochromic triarylamine-based polymers. ACS Applied Polymer Materials 2024, 6 (9), 5256-5267.
(95) Chern, Y.-T.; Zhang, Z.-Y.; Wang, J.-J.; Lin, P.-L.; Chiu, Y.-C.; Wang, Y.-J.; Lin, C.-H.; Liou, G.-S. Concept of triphenylamine side chains with four electroactive nitrogen centers toward record-high stable electrochromic polyamides. Journal of Materials Chemistry C 2024, 12 (24), 8804-8812.
(96) Liou, G.-S.; Lin, H.-Y. Synthesis and electrochemical properties of novel aromatic poly(amine−amide)s with anodically highly stable yellow and blue electrochromic behaviors. Macromolecules 2009, 42 (1), 125-134.
(97) Yen, H.-J.; Lin, H.-Y.; Liou, G.-S. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochromism in near-infrared and visible light regions. Chemistry of Materials 2011, 23 (7), 1874-1882.
(98) Wu, J.-T.; Hsiang, T.-L.; Liou, G.-S. Synthesis and optical properties of redox-active triphenylamine-based derivatives with methoxy protecting groups. Journal of Materials Chemistry C 2018, 6 (48), 13345-13351.
(99) Chiu, K.-Y.; Su, T.-X.; Li, J.-H.; Lin, T.-H.; Liou, G.-S.; Cheng, S.-H. Novel trends of electrochemical oxidation of amino-substituted triphenylamine derivatives. Journal of Electroanalytical Chemistry 2005, 575 (1), 95-101.
(100) Yen, H.-J.; Liou, G.-S. Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chemistry of Materials 2009, 21 (17), 4062-4070.
(101) El-Mahdy, A. F. M.; Mohamed, M. G.; Mansoure, T. H.; Yu, H.-H.; Chen, T.; Kuo, S.-W. Ultrastable tetraphenyl-p-phenylenediamine-based covalent organic frameworks as platforms for high-performance electrochemical supercapacitors. Chemical Communications 2019, 55 (99), 14890-14893.
(102) Yen, H.-J.; Lin, K.-Y.; Liou, G.-S. Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. Journal of Materials Chemistry 2011, 21 (17), 6230-6237.
(103) Chen, F.; Tian, G.; Shi, L.; Qi, S.; Wu, D. Nonvolatile write-once read-many-times memory device based on an aromatic hyperbranched polyimide bearing triphenylamine moieties. RSC Advances 2012, 2 (33), 12879-12885.
(104) Lu, H.-C.; Kao, S.-Y.; Yu, H.-F.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids. ACS Applied Materials & Interfaces 2016, 8 (44), 30351-30361.
(105) Huang, Q.; Chen, J.; Shao, X.; Zhang, L.; Dong, Y.; Li, W.; Zhang, C.; Ma, Y. New electropolymerized triphenylamine polymer films and excellent multifunctional electrochromic energy storage system materials with real-time monitoring of energy storage status. Chemical Engineering Journal 2023, 461, 141974.
(106) Ates, M. N.; Allen, C. J.; Mukerjee, S.; Abraham, K. M. Electronic effects of substituents on redox shuttles for overcharge protection of li-ion batteries. Journal of The Electrochemical Society 2012, 159 (7), A1057.
(107) Kowalski, J. A.; Casselman, M. D.; Kaur, A. P.; Milshtein, J. D.; Elliott, C. F.; Modekrutti, S.; Attanayake, N. H.; Zhang, N.; Parkin, S. R.; Risko, C.; Brushett, F. R.;Odom, S. A. A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries. Journal of Materials Chemistry A 2017, 5 (46), 24371-24379.
(108) Pan, B.-C.; Chen, W.-H.; Lee, T.-M.; Liou, G.-S. Synthesis and characterization of novel electrochromic devices derived from redox-active polyamide–TiO2 hybrids. Journal of Materials Chemistry C 2018, 6 (45), 12422-12428.
(109) Lin, H.-T.; Wu, J.-T.; Chen, M.-H.; Liou, G.-S. Novel electrochemical devices with high contrast ratios and simultaneous electrochromic and electrofluorochromic response capability behaviours. Journal of Materials Chemistry C 2020, 8 (36), 12656-12661.
(110) Kyriakou-Tziamtzi, C.; Vlachopoulos, A.; Zamboulis, A.; Bikiaris, D. N.; Achilias, D. S.; Chrissafis, K. Kinetic evaluation of the crosslinking of a low-temperature cured biobased epoxy-diamine structure. Progress in Organic Coatings 2023, 174, 107285.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95963-
dc.description.abstract本論文分為四章。首先,第一章為總體緒論,介紹了環氧樹脂、電致變色(EC)的發展和價間電子轉移(IVCT)。其次,在第二章中,合成了四種對氨基取代的TPA衍生物(TPPA-2N、TPPA-4N、TPB-2N和TPB-4N)。利用循環伏安法(CV)、微分脈衝伏安法(DPV)和能斯特分析,研究這些TPA衍生物的電致變色特性。這些TPA衍生物的多段電致變色和低驅動電壓特性成為電致變色應用的優勢。此外,這些氨基取代的TPA在長時間之連續測量中顯示出高穩定性。進一步將這些電活性TPA材料製作成電致變色元件(ECDs),並研究它們的電化學和光譜電化學特性。在第三章中,利用三種對氨基取代的TPA衍生物(TPA-3N、TPPA-4N和TPB-4N)與雙環氧化物BDGE合成了熱固性環氧聚合物(TPA-3N_BDGE、TPPA-4N_BDGE和TPB-4N_BDGE),藉由一系列的差示掃描量熱法(DSC)的測量來決定反應進行的條件,並通過將合成的環氧聚合物浸入濃硫酸中與傅立葉變換紅外光譜(FTIR)來確認是否成功合成環氧聚合物。我們也使用了熱重分析儀(TGA)和熱機械分析儀(TMA)對熱性質進行進一步研究。此外,還測量了循環伏安法、微分脈衝伏安法和能斯特分析等電化學和光譜電化學特性。最後,在第四章中,對實驗結果進行了總結。我們發現,儘管氨基助色團被轉化為二烷基胺基團,對氨基取代的TPA衍生物的多段電致變色行為和優異穩定性依然得以保持,且外圍氮原子的氧化能力未受影響,表明這些材料在未來應用中具有很大潛力。zh_TW
dc.description.abstractThere are four chapters in this study. Firstly, a general introduction was provided in CHAPTER 1, introducing epoxy resins, the development of electrochromism (EC), and intervalence charge transfer (IVCT). Secondly, in CHAPTER 2, four derivatives of para-amino-substituted TPA (TPPA-2N, TPPA-4N, TPB-2N, and TPB-4N) were synthesized. With cyclic voltammetry (CV), differential pulse voltammetry (DPV), and Nernstian analysis, the EC properties of these TPA derivatives were recorded. The multi-electrochromic and low-driving-voltage attributes became the advantages for electrochromic applications. Moreover, these amino-substituted TPA revealed high stability in continuous measurement. The electroactive TPA chromophores were further fabricated as electrochromic devices (ECDs). The properties of electrochemistry and spectroelectrochemistry were also investigated. Then, in CHAPTER 3, three para-amino-substituted TPA derivatives (TPA-3N, TPPA-4N, and TPB-4N) were used to synthesize thermoset epoxy polymers (TPA-3N_BDGE, TPPA-4N_BDGE, and TPB-4N_BDGE) with diepoxy BDGE according to a series of differential scanning calorimetry (DSC) measurements. Whether the epoxy polymers were successfully synthesized was checked by dipping them into concentrated sulfuric acid and Fourier-transform infrared spectroscopy (FTIR). The thermal properties were investigated by thermogravimetric analyzer (TGA) and thermal mechanical analyzer (TMA). Furthermore, electrochemistry and spectroelectrochemistry, such as CV, DPV, and Nernstian analysis, were also measured. Finally, in CHAPTER 4, the results were summarized. We found that the properties, such as the multi-electrochromic behavior and outstanding stability of the para-amino-substituted TPA derivatives, could be retained, although the amino auxochromes were transformed into dialkylamine groups without losing the original ability of the peripheral nitrogens to undergo further oxidation. Indicating promising thermoset epoxy materials for future applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:21:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:21:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
ABSTRACT II
中文摘要 IV
Table of Contents VI
List of Figures IX
List of Schemes XVII
List of Tables XVIII
CHAPTER 1 1
1.1 Epoxy Resins1,2 2
1.1.1 General Introduction of Epoxy Resins 2
1.1.2 Manufacturing of Epoxy Resins 3
1.1.3 Hardeners 6
1.1.4 Applications 8
1.2 Electrochromism (EC) 9
1.2.1 Evolution of Electrochromism 9
1.2.2 Common Electrochromic Materials 12
1.2.3 Triarylamine-Based Electrochromic Materials72-74 21
1.3 Intervalence Charge Transfer (IVCT)92 28
1.3.1 IVCT in TPA-based System72 28
1.3.2 Relationship Between Electrochromic Behavior and IVCT Effect 30
1.4 Research Motivation 33
CHAPTER 2 36
2.1 Introduction 37
2.2 Experimental Section 39
2.2.1 Materials 39
2.2.2 Fabrication of Liquid-type Electrochromic Devices (ECDs) 39
2.2.3 Measurement 40
2.3 Result and Discussion 41
2.3.1 Electrochemical Properties of para-Amino-substituted TPA Derivatives 41
2.3.1.1 Differential Pulse Voltammetry (DPV) and Cyclic Voltammetry (CV) 41
2.3.1.2 Spectroelectrochemistry 52
2.3.1.3 Cyclic Stability 60
2.3.2 Electrochemical Properties of ECDs 65
2.3.2.1 Differential Pulse Voltammetry (DPV) and Cyclic Voltammetry (CV) 65
2.3.2.2 Spectroelectrochemistry 68
2.3.2.3 Switching Stability 72
CHAPTER 3 77
3.1 Introduction 78
3.2 Experimental Section 81
3.2.1 Materials 81
3.2.2 Preparation of the Thermoset Epoxy Resin Films 81
3.2.3 Measurement 83
3.3 Result and Discussion 85
3.3.1 Thermoset Epoxy Polymer Synthesis 85
3.3.2 Thermal Properties of Epoxy Polymers 91
3.3.3 Electrochemical Properties of Epoxy Polymers 93
3.3.3.1 Differential Pulse Voltammetry (DPV) and Cyclic Voltammetry (CV) 93
3.3.3.2 Spectroelectrochemistry 96
3.3.3.3 Cyclic Stability 100
CHAPTER 4 105
Reference 109
-
dc.language.isoen-
dc.title新型具三芳香胺材料之熱固性環氧樹脂合成與電致變色性質之探討zh_TW
dc.titleSynthesis and Electrochromic Properties of Novel Thermoset Epoxy Materials Containing Triarylamine Moietiesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭勝輝;陳燿騰;張嘉文zh_TW
dc.contributor.oralexamcommitteeSheng-Huei Hsiao;Yaw-Terng Chern;Cha-Wen Changen
dc.subject.keyword三苯胺衍生物,電致變色,高穩定性,氨基取代,環氧樹脂,zh_TW
dc.subject.keywordtriphenylamine derivatives,electrochromism,high stability,amino-substituted,epoxy resin,en
dc.relation.page122-
dc.identifier.doi10.6342/NTU202403645-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2025-09-06-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved