請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95945完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡永傑 | zh_TW |
| dc.contributor.advisor | Wing-Kit Choi | en |
| dc.contributor.author | 張智堯 | zh_TW |
| dc.contributor.author | Chih-Yao Chang | en |
| dc.date.accessioned | 2024-09-25T16:16:08Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | Reinitzer F. 1888. Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften. Volume9, page 421-441.
Lehmann O. 1889. Über fliessende krystalle. Zeitschrift für physikalische Chemie.Volume4, page 462-472. S. T. Wu. 1994. Nematic liquid crystals. Optical Engineering-New York-Marcel Dekker Incorporated. 47: 1-1. Goodby J.W. and Leslie T.M. 1986. Smectic liquid crystals. U.S. Patents. US4613209 A. Friedel G. 1922. Les états mésomorphes de la matière. Annales de Physique. 9: 273-474. Broer D. J., Lub J., and Mol G.N. . 1955. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378.6556: 467. S. T. Wu. 1986. Birefringence dispersions of liquid crystals. Physical Review A, 33: 1270. Masahito Oh‐e and Katsumi K. 1995. Electro‐optical characteristics and switching behavior of the in‐plane switching mode. Applied physics letters, 67.26: 3895-3897. Masahito Oh‐e and Katsumi K. 1996. Response mechanism of nematic liquid crystals using the in‐plane switching mode. Applied physics letters, 69.5: 623-625. S. H. Lee , S. L. Lee and H. Y. Kim. 1998. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Applied physics letters, 73.20: 2881-2883. W. K. Choi and S. T. Wu. 2011. Fast Response Liquid Crystal Mode. U.S. Patent No. 7369204. W. K. Choi et al. 1990. Effects of electrode structure and dielectric anisotropy on the performance of VA-FFS LC mode. Optics express, 27.23: 34343-34358. 朱崴豪。2021。改善垂直配向邊緣場效驅動液晶顯示器的虛擬牆穩定性之研究。碩士論文。國立台灣大學光電工程學研究所。 王子權。2023。運用新型電極結構提升負型垂直配向邊原場效驅動液晶之虛擬牆穩定度。碩士論文。國立台灣大學光電工程學研究所。 謝易程。2020。三維電極結構之垂直配向邊緣場效驅動液晶顯示器元件模擬。碩士論文。國立台灣大學光電工程學研究所。 Fangwang G et al. 2017. Submillisecond-response liquid crystal for high-resolution virtual reality displays. Optics express, 25.7: 7984-7997. Jiao M et al. 2008. Submillisecond response nematic liquid crystal modulators using dual fringe field switching in a vertically aligned cell. Applied Physics Letters, 92.11: 111101. Lien A. 1990. Extended Jones matrix representation for the twisted nematic liquid‐crystal display at oblique incidence. Applied physics letters, 57.26: 2767-2769. Fangwang G, Haiwei C, M. C. Li, S. L. Lee and S. T. Wu. 2017. Submillisecond-response liquid crystal for high-resolution virtual reality displays. Optics Express Vol. 25, Issue 7, pp. 7984-7997. S. H. Hong et al. 2000. Electro-optic characteristic of fringe-field switching mode depending on rubbing direction. Japanese Journal of Applied Physics, 39.6A: L527. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95945 | - |
| dc.description.abstract | 隨著時代科技的發展,人們每天都花非常多在具有顯示器之產品,從手機、手錶到電視與商店櫥窗的螢幕等,非常多的顯示器刻印在日常生活當中,可見顯示器的需求越來越多,又以液晶顯示器為主流,成為了生活中不可或缺的產品。
在眾多顯示器技術裡,其中FFS(Fringe-field switch)技術具有廣視角、高亮度等優點,在過去研究針對正型液晶驅動之2D VAFFS與負型液晶驅動之3D VAFFS深入分析時,發現結構中產生之向錯(Disclination)能夠加快反應時間,向錯即為虛擬牆,又以改變電極結構設計,使虛擬牆能夠在長時間信號輸入下仍然存在且保持穩定,目前已有成效。 本論文將簡化井字式叉字形結構,使結構成為陣列式,整體更加均勻與規律,並分析兩者結構之液晶分子轉動情況,接著探討操作電壓、穩定性、反應時間與穿透率之關係,最後進行比較。由於先前畫素電極設計較為複雜,後續提出新型菱形結構,探討將電極設計更加簡化時能否提升穿透率、反應時間與穩定性,並且降低操作電壓,並且利用多種液晶材料進行模擬與比較,來了解結構之通用性。 菱形結構中液晶分子出現螺旋形式轉動,我們將此結構進行優化,增加電極間隙,控制電場之強度,並在共同電極上也形成虛擬牆,使整體反應時間更快速,接著分析液晶分子轉動情形,與探討新結構之操作電壓、穩定性、反應時間與穿透率,最後與優化前進行比較。 | zh_TW |
| dc.description.abstract | With the development of technology, people spend a lot of time on displays every day. From cell phones to TV and store window screens etc., many displays are being used in our daily lives. This shows that there is an increasing demand for displays. Liquid Crystal Display (LCD) is the mainstream display technology, and has become an indispensable product in our lives.
The fringe-field switch (FFS) technology is one of the various LCD display technologies available. It offers benefits including wide viewing angle and high transmittance. From previous research such as 2D VAFFS driven by positive liquid crystal and 3D VAFFS driven by negative liquid crystal, it was found that the disclinations created within the structure can help improve the device’s response time. This disclination is also known as the virtual wall. These virtual walls can be stable even under a long-time signal input by altering the electrode structure's design. This approach has proven to be effective so far. In this thesis, the previously proposed cross-structure design will be simplified into a more uniform and regular array structure. We will analyze the liquid crystal molecular rotation on these two structures, and also investigate the relationships between transmittance, operating voltage, stability and response time, and finally provide a comparison between them. In this thesis, a new diamond-structure is also proposed in order to explore the possibility of further simplifying the electrode design while maintaining similar transmittance, stability, response time and operating voltage. Additionally, different liquid crystal materials were used in the simulations for the comparison of these different structure designs. Finally, in order to improve the response time, we further optimized the diamond structure by widening the gap between the electrodes, adjusting the electric field strength and creating a virtual wall on the common electrodes such that liquid crystal molecules' spiral rotation may be minimized. We analyzed the molecular rotation of the liquid crystals in these new structures and also investigated their performances on operating voltage, stability, response time, and transmittance. Finally, we also compared the results of these new optimized structures with the pre-optimized structures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:16:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:16:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書……………………………………………………………. i
誌謝………………………………………………………………………………. ii 中文摘要…………………………………………………………………………. iii 英文摘要…………………………………………………………………………. iv 目次………………………………………………………………………………. vi 圖次………………………………………………………………………………. viii 表次………………………………………………………………………………. xi 第一章 簡介……………………………………………………………………. 1 1.1何謂液晶………………………………………………………………… 1 1.2液晶的物理特性.……………………………………………………….. 4 1.2.1介電異向性.……………………………………………………… 4 1.2.2雙折射性質.……………………………………………………… 5 1.3液晶顯示器技術簡介.………………………………………………….. 7 第二章 文獻回顧與研究動機……….………………………………………… 10 2.1二維垂直配向邊緣場驅動……………………………………………… 10 2.2三維垂直配向邊緣場驅動……………………………………………… 11 2.3叉字形電極結構結合井字形結構……………………………………… 13 2.4研究動機………………………………………………………………… 14 第三章 TechWiz模擬軟體電極結構設計…………………………………….. 15 3.1模擬軟體TechWizLCD 3D介紹..……………………………………… 15 3.2設定材料參數…………………………………………………………… 16 3.3元件架構設計…………………………………………………………… 17 3.4網格切割…………………………………………………………………. 19 3.5電壓設定…………………………………………………………………… 19 3.5.1 V-T圖.…………………………………………………………… 20 3.5.2 t-T圖.……………………………………………………………. 20 3.6液晶配向參數..…………………………………………………………. 21 3.7光學分析設定…………………………………………………………… 22 第四章 模擬結果與討論……………………………………………………….. 23 4.1陣列式叉字形結構……………………………………………………… 23 4.1.1原理與介紹……………………………………………………… 23 4.1.2應用三種材料在不同尺寸大小之實驗結果分析……………… 24 4.1.3不同區域下液晶分子轉動之分析……………………………… 29 4.1.4比較……………………………………………………………… 31 4.2新型菱形結構…………………………………………………………… 32 4.2.1原理與介紹……………………………………………………… 32 4.2.2液晶分子轉動之分析…………………………………………… 34 4.2.3操作電壓、穩定性、反應時間與穿透率之分析.……………… 35 4.2.4與先前結構比較………………………………………………… 39 4.3優化菱形結構…………………………………………………………… 40 4.3.1增加電極間隙與重新定義電極寬度…………………………… 40 4.3.2液晶分子轉動之分析…………………………………………… 42 4.3.3操作電壓、穩定性、反應時間與穿透率之分析……………… 45 4.3.4比較.……………………………………………………………… 51 第五章 結論與未來目標………………………………………………………. 52 參考文獻…………………………………………………………………………. 54 附錄………………………………………………………………………………. 56 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 垂直配向邊緣場效驅動之負型液晶運用新型電極結構之研究 | zh_TW |
| dc.title | New Electrode Designs for Vertically-Aligned Fringe-Field Switching Liquid Crystal with Negative Dielectric Anisotropy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃定洧;林晃巖;黃念祖 | zh_TW |
| dc.contributor.oralexamcommittee | Ding-wei Huang;Hoang Yan Lin;Nien-Tsu Huang | en |
| dc.subject.keyword | 三維電極結構,垂直配向邊緣場驅動,快速反應時間,虛擬牆,穩定性,菱形結構, | zh_TW |
| dc.subject.keyword | three-dimensional electrode structure,vertically aligned fringe field switching,fast response time,virtual walls,stability,diamond structure, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202403867 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
