請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95939
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林維怡 | zh_TW |
dc.contributor.advisor | Wei-Yi Lin | en |
dc.contributor.author | 王琦緣 | zh_TW |
dc.contributor.author | Chi-Yuan Wang | en |
dc.date.accessioned | 2024-09-25T16:14:20Z | - |
dc.date.available | 2024-09-26 | - |
dc.date.copyright | 2024-09-25 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | 吳炳奇、吳文政、林國清 (1998)。農作物現代化生產技術。台南區農業改良場技術專刊85,87-13.
林再發 (1990)。白葉枯病對水稻產量與米質之影響及抗病品系之育成。台中區農業改良場研究彙報29,29-30. 林學詩(2012)。水稻合理化施肥技術。臺東區農技報導9,3。 Anderson, M. J. (2014). Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, 1-15. Aronson, E. L., Allison, S. D., & Helliker, B. R. (2013). Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Frontiers in Microbiology, 4, 225. Aulakh, M. S., Wassmann, R., Bueno, C., & Rennenberg, H. (2001). Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant and Soil, 230, 77-86. Bacilio-Jiménez, M., Aguilar-Flores, S., Ventura-Zapata, E., Pérez-Campos, E., Bouquelet, S., & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, 249, 271-277. Balvočiūtė, M., & Huson, D. H. (2017). SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?. BMC Genomics, 18, 1-8. Bertora, C., Cucu, M. A., Lerda, C., Peyron, M., Bardi, L., Gorra, R., Sacco, D., Celi, L., & Said-Pullicino, D. (2018). Dissolved organic carbon cycling, methane emissions and related microbial populations in temperate rice paddies with contrasting straw and water management. Agriculture, Ecosystems & Environment, 265, 292-306. Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodriguez, A. M., Chase, J., . . . Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 1091. Borrel, G., Parisot, N., Harris, H. M., Peyretaillade, E., Gaci, N., Tottey, W., Bardot, O., Raymann, K., Gribaldo, S., & Peyret, P. (2014). Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics, 15, 1-24. Borrett, S. R., Lau, M. K., & Dray, S. (2014). EnaR: An r package for ecosystem network analysis. Methods in Ecology and Evolution, 5, 1206-1213. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581-583. Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Jounal of Statistics, 11, 265-270. Chao, A., & Lee, S.-M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87, 210-217. Chen, J., Sun, M., Xiao, G., Shi, R., Zhao, C., Zhang, Q., Yang, S., & Xuan, Y. (2023). Starving the enemy: how plant and microbe compete for sugar on the border. Frontiers in Plant Science, 14, 1230254. Chen, X., Liu, P., Mei, L., He, X., Chen, L., Liu, H., Shen, S., Ji, Z., Zheng, X., & Zhang, Y. (2021). Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Communications, 2. Chen, Y., Li, S., Zhang, Y., Li, T., Ge, H., Xia, S., Gu, J., Zhang, H., Lü, B., Wu, X., Wang, Z., Yang, J., Zhang, J., & Liu, L. (2019). Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biology and Biochemistry, 129, 191-200. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M., Smyth, G., & Hall, E. (2020). EdgeR: differential analysis of sequence read count data User’s Guide. R Packag, (June), 1-121. Cohen, S. P., Liu, H., Argueso, C. T., Pereira, A., Vera Cruz, C., Verdier, V., & Leach, J. E. (2017). RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature. PLoS ONE, 12, e0187625. Csardi, M. G. (2013). Package ‘igraph’. Last Accessed, 3. De Cáceres, M. (2013). How to use the indicspecies package (ver. 1.7. 1). R Project, 29, 1-29. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72, 5069-5072. Ding, H., Jiang, Y., & Cao, C. (2021). Deep rice root systems reduce methane emissions in rice paddies. Plant and Soil, 468, 337-352. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Edwards, J., Santos-Medellín, C., & Sundaresan, V. (2018). Extraction and 16S rRNA sequence analysis of microbiomes associated with rice roots. Bio-protocol, 8, e2884-e2884. FAO. (2022). Agricultural production statistics. 2000–2021. Fiyaz, R. A., Shivani, D., Chaithanya, K., Mounika, K., Chiranjeevi, M., Laha, G. S., Viraktamath, B. C., Rao, L. V. S., & Sundaram, R. M. (2022). Genetic improvement of rice for bacterial blight resistance: present status and future prospects. Rice Science, 29, 118-132. Frindte, K., Maarastawi, S. A., Lipski, A., Hamacher, J., & Knief, C. (2017). Characterization of the first rice paddy cluster I isolate, Methyloterricola oryzae gen. nov., sp. nov. and amended description of Methylomagnum ishizawai. International Journal of Systematic and Evolutionary Microbiology, 67, 4507-4514. Gauch, H. G. (1973). The relationship between sample similarity and ecological distance. Ecology, 54, 618-622. Guerrero-Cruz, S., Vaksmaa, A., Horn, M. A., Niemann, H., Pijuan, M., & Ho, A. (2021). Methanotrophs: discoveries, environmental relevance, and a perspective on current and future applications. Frontiers in Microbiology, 12, 678057. Hardoim, P. (2015). Heading to the origins-Rice microbiome as functional extension of the host. Journal of Rice Research, 3, 1-3. Henneberg, A., Sorrell, B. K., & Brix, H. (2012). Internal methane transport through Juncus effusus: Experimental manipulation of morphological barriers to test above‐and below‐ground diffusion limitation. New Phytologist, 196, 799-806. Hou, A. X., Chen, G. X., Wang, Z. P., Van Cleemput, O., & Patrick, W. H. (2000). Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal, 64, 2180-2186. Hsu, Y.-C., Chiu, C.-H., Yap, R., Tseng, Y.-C., & Wu, Y.-P. (2020). Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. International Journal of Molecular Sciences, 21, 1281. Hu, K., Cao, J., Zhang, J., Xia, F., Ke, Y., Zhang, H., Xie, W., Liu, H., Cui, Y., & Cao, Y. (2017). Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants, 3, 1-9. Iqbal, M. F., Liu, S., Zhu, J., Zhao, L., Qi, T., Liang, J., Luo, J., Xiao, X., & Fan, X. (2021). Limited aerenchyma reduces oxygen diffusion and methane emission in paddy. Journal of Environmental Management, 279, 111583. Iyer-Pascuzzi, A., Jiang, H., Huang, L., & McCouch, S. (2008). Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5. Phytopathology, 98, 289-295. Iyer, A. S., & McCouch, S. R. (2004). The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant-Microbe Interactions, 17, 1348-1354. Jia, Z., & Cai, Z. (2003). Effects of rice plants on methane emission from paddy fields. The Journal of Applied Ecology, 14,2049-2053. Jia, Z. J., Cai, Z. C., Xu, H., & Tsuruta, H. (2002). Effects of rice cultivars on methane fluxes in a paddy soil. Nutrient Cycling in Agroecosystems, 64, 87-94. Jiang, Y., van Groenigen, K. J., Huang, S., Hungate, B. A., van Kessel, C., Hu, S., Zhang, J., Wu, L., Yan, X., & Wang, L. (2017). Higher yields and lower methane emissions with new rice cultivars. Global Change Biology, 23, 4728-4738. Kanipriya, R., Natarajan, S., Gopalakrishnan, C., Ramalingam, J., Saraswathi, R., & Ramanathan, A. (2024). Screening for disease resistance and profiling the expression of defense-related genes contributing to resistance against bacterial blight (Xanthomonas oryzae pv. oryzae) in rice genotypes. Physiological and Molecular Plant Pathology, 131, 102286. Kassambara, A., & Mundt, F. (2017). Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses, 76. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780. Kim, W.-J., Bui, L. T., Chun, J.-B., McClung, A. M., & Barnaby, J. Y. (2018). Correlation between methane (CH4) emissions and root aerenchyma of rice varieties. Plant Breeding and Biotechnology, 6, 381-390. Lalman, J. A., & Bagley, D. M. (2001). Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Research, 35, 2975-2983. Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31, 814-821. Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25-50. Li, X.-g., Zhang, T.-l., Wang, X.-x., Hua, K., Zhao, L., & Han, Z.-m. (2013). The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. International Journal of Biological Sciences, 9, 164. Li, Y., Zhang, Y., Xue, S., & Liu, B. (2023). Actinobacteria may influence biological methane generation in coal seams. Fuel, 339, 126917. Liechty, Z., Santos-Medellín, C., Edwards, J., Nguyen, B., Mikhail, D., Eason, S., Phillips, G., & Sundaresan, V. (2020). Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters. Msystems, 5, 00897-00819. Liu, C., Cui, Y., Li, X., & Yao, M. (2021). Microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97. Liu, Y. (2010). Methanobacteriales. In Handbook of Hydrocarbon and Lipid Microbiology. Lu, Y., Wassmann, R., Neue, H.-U., & Huang, C. (2000). Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Science Society of America Journal, 64, 2011-2017. Lu, Y., Wassmann, R., Neue, H., & Huang, C. (1999). Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry, 47, 203-218. Lueders, T., Chin, K. J., Conrad, R., & Friedrich, M. (2001). Molecular analyses of methyl‐coenzyme M reductase α‐subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environmental Microbiology, 3, 194-204. Luke, D. A. (2015). Network data management in R. A User’s Guide to Network Analysis in R, 17-41. Luo, D., Li, Y., Yao, H., & Chapman, S. J. (2022). Effects of different carbon sources on methane production and the methanogenic communities in iron rich flooded paddy soil. Science of the Total Environment, 823, 153636. Ma, G., Chen, Y., & Ndegwa, P. (2021). Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression. Renewable and Sustainable Energy Reviews, 135, 110212. Ma, K. E., Qiu, Q., & Lu, Y. (2009). Microbial mechanism for rice variety control on methane emission from rice field soil. Global Change Biology, 16, 3085-3095. Määttä, T., & Malhotra, A. (2024). The hidden roots of wetland methane emissions. Global Change Biology, 30, e17127. Mand, T. D., & Metcalf, W. W. (2019). Energy conservation and hydrogenase function in methanogenic Archaea, in particular the genus Methanosarcina. Microbiology and Molecular Biology Reviews, 83, 10-1128. Margalef, R. (1969). Diversity and stabilitya practical proposal and a model of interdependence. Brookhaven Symposium in Biology, 22, 25-27. McDonald, D., Jiang, Y., Balaban, M., Cantrell, K., Zhu, Q., Gonzalez, A., Morton, J. T., Nicolaou, G., Parks, D. H., Karst, S. M., Albertsen, M., Hugenholtz, P., DeSantis, T., Song, S. J., Bartko, A., Havulinna, A. S., Jousilahti, P., Cheng, S., Inouye, M., . . . Knight, R. (2024). Greengenes2 unifies microbial data in a single reference tree. Nature Biotechnology, 42, 715-718. McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8, e61217. Mengyu Ge, Aino Korrensalo, Raija Laiho, Lukas Kohl, Annalea Lohila, Mari Pihlatie, Xuefei Li, Anna M. Laine g, Jani Anttila, Anuliina Putkinen, Weifeng Wang, & ssss, M. K. (2024). Plant-mediated CH4 exchange in wetlands: A review of mechanisms and measurement methods with implications for modelling. Science of the Total Environment, 914, 169662. Minamikawa, K., & Sakai, N. (2006). The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field in Japan. Agriculture, Ecosystems & Environment, 116, 181-188. Minamikawa, K., Tokida, T., Sudo, S., Padre, A., & Yagi, K. (2015). Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan, 76. Nakayama, J., Watanabe, K., Jiang, J., Matsuda, K., Chao, S.-H., Haryono, P., La-Ongkham, O., Sarwoko, M.-A., Sujaya, I. N., Zhao, L., Chen, K.-T., Chen, Y.-P., Chiu, H.-H., Hidaka, T., Huang, N.-X., Kiyohara, C., Kurakawa, T., Sakamoto, N., Sonomoto, K., . . . Lee, Y.-K. (2015). Diversity in gut bacterial community of school-age children in Asia. Scientific Reports, 5, 8397. Nazaries, L., Murrell, J. C., Millard, P., Baggs, L., & Singh, B. K. (2013). Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology, 15, 2395-2417. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., & Oksanen, M. J. (2013). Package ‘vegan’ (Vol. version2). Özkan, K., Özdemir, S., Şenol, A., & Küçüksille, E. (2024). A new species richness measure improved from Margalef and Menhinick indices. Gazi University Journal of Science, 37, 1056-1064. Price, M. N., Dehal, P. S., & Arkin, A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641-1650. Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLoS ONE, 5, e9490. Protassov, R., Van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A. (2002). Statistics, handle with care: detecting multiple model components with the likelihood ratio test. The Astrophysical Journal, 571, 545. Qi, Z., Guan, S., Zhang, Z., Du, S., Li, S., & Xu, D. (2024). Effect and mechanism of root characteristics of different rice varieties on methane emissions. Agronomy, 14, 595. Qiu, S., Zhang, X., Xia, W., Li, Z., Wang, L., Chen, Z., & Ge, S. (2023). Effect of extreme pH conditions on methanogenesis: Methanogen metabolism and community structure. Science of the Total Environment, 877, 162702. Rahalkar, M. C., & Bahulikar, R. A. (2018). Hemerythrins are widespread and conserved for methanotrophic guilds. Gene Reports, 11, 250-254. Ralf Conrad, Melanie Klose, & Noll, M. (2009). Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environmental Microbiology, 11, 1844-1853. Reim, A., Hernandez, M., Klose, M., Chidthaisong, A., Yuttitham, M., & Conrad, R. (2017). Response of methanogenic microbial communities to desiccation stress in flooded and rain-fed paddy soil from Thailand. Frontiers in Microbiology, 8, 785. Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. Schmitz, E. V., Just, C. L., Schilling, K., Streeter, M., & Mattes, T. E. (2023). Reconnaissance of oxygenic denitrifiers in agriculturally impacted soils. mSphere, 8, e00571-00522. Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., & York, L. M. (2021). RhizoVision Explorer: open-source software for root image analysis and measurement standardization. AoB Plants, 13, plab056. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, R60. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423. Shi, S., Richardson, A. E., O'Callaghan, M., DeAngelis, K. M., Jones, E. E., Stewart, A., Firestone, M. K., & Condron, L. M. (2011). Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 77, 600-610. Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688-688. Stępniewska, Z., Goraj, W., Kuźniar, A., Szafranek-Nakonieczna, A., Banach, A., Górski, A., Pytlak, A., & Urban, D. (2018). Methane oxidation by endophytic bacteria inhabiting Sphagnum sp. and some vascular plants. Wetlands, 38, 411-422. Tveit, A. T., Söllinger, A., Rainer, E. M., Didriksen, A., Hestnes, A. G., Motleleng, L., Hellinger, H.-J., Rattei, T., & Svenning, M. M. (2023). Thermal acclimation of methanotrophs from the genus Methylobacter. The ISME Journal, 17, 502-513. Tyner, S. C., Briatte, F., & Hofmann, H. (2017). Network Visualization with ggplot2. Verma, A., & Maitra, S. S. (2024). Differences in methanotrophic community structure in two methane-rich habitats: Oil natural gas field & paddy field. bioRxiv, 2024-2006. Vives-Peris, V., De Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: from plant to rhizosphere and beyond. Plant cell reports, 39, 3-17. Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiol, 132, 44-51. Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21, 213-251. Wickham, H. (2016). Data Analysis. Springer, 189-201. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37-52. Wu, J., Yu, H., Dai, H., Mei, W., Huang, X., Zhu, S., & Peng, M. (2012). Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice. Acta Biochimica et Biophysica Sinica, 44, 650-659. Wu, K., Yuan, S., Xun, G., Shi, W., Pan, B., Guan, H., Shen, B., & Shen, Q. (2015). Root exudates from two tobacco cultivars affect colonization of Ralstonia solanacearum and the disease index. European Journal of Plant Pathology, 141, 667-677. Wu, L.-J., Kobayashi, T., Li, Y.-Y., Xu, K.-Q., & Lv, Y. (2017). Determination and abatement of methanogenic inhibition from oleic and palmitic acids. International Biodeterioration & Biodegradation, 123, 10-16. Xu, Z., Xu, X., Gong, Q., Li, Z., Li, Y., Wang, S., Yang, Y., Ma, W., Liu, L., & Zhu, B. (2019). Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Molecular Plant, 12, 1434-1446 Yang, W.-t., Shen, L.-d., & Bai, Y.-n. (2023). Role and regulation of anaerobic methane oxidation catalyzed by NC10 bacteria and ANME-2d archaea in various ecosystems. Environmental Research, 219, 115174. Yang, Y., Zhou, Y., Sun, J., Liang, W., Chen, X., Wang, X., Zhou, J., Yu, C., Wang, J., & Wu, S. (2022). Research progress on cloning and function of Xa genes against rice bacterial blight. Frontiers in Plant Science, 13, 847199. Yao, X., Wang, J., & Hu, B. (2023). How methanotrophs respond to pH: a review of ecophysiology. Frontiers in Microbiology, 13, 1034164. Yoon, S., Lee, J., Lee, Y., An, H., Jung, K. Y., Oh, S. H., Lee, C. H., & Kim, S. Y. (2022). Long-term inorganic and organic fertilizations affect CH4 oxidation potential and methanotrophic community structure in paddy soils. Korean Journal of Soil Science and Fertilizer, 55, 475-487. York, L. M., Cumming, J. R., Trusiak, A., Bonito, G., von Haden, A. C., Kalluri, U. C., Tiemann, L. K., Andeer, P. F., Blanc‐Betes, E., Diab, J. H., Favela, A., Germon, A., Gomez‐Casanovas, N., Hyde, C. A., Kent, A. D., Ko, D. K., Lamb, A., Missaoui, A. M., Northen, T. R., . . . Yang, W. H. (2022). Bioenergy underground: Challenges and opportunities for phenotyping roots and the microbiome for sustainable bioenergy crop production. The Plant Phenome Journal, 5, e20028. Yu, K., Wang, Z., Vermoesen, A., Patrick Jr, W., & Van Cleemput, O. (2001). Nitrous oxide and methane emissions from different soil suspensions: effect of soil redox status. Biology and Fertility of Soils, 34, 25-30. Zhou, B. L., Chen, Z. X., Du, L., Xsie, Y. H., Zhang, Q., & Ye, X. L. (2011). Allelopathy of root exudates from different resistant eggplants to Verticillium dahliae and the identification of allelochemicals. African Journal of Biotechnology, 10, 8284-8290. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95939 | - |
dc.description.abstract | 亞洲稻米生產以湛水栽培為主,低氧狀態使土壤中的厭氧微生物大量增殖,包括產甲烷菌,因此水稻田為全球甲烷排放的主要來源之一。白葉枯病為嚴重威脅稻米生產之病害,目前已鑑定出數十個抗病基因座並堆疊至不同稻品系,先前有研究指出抗病基因的導入會影響水稻的代謝體,但目前仍不清楚是否會影響根內及根圈菌相組成,因此本研究企圖探究白葉枯病抗病基因的導入對根圈、根內細菌結構及甲烷排放的影響。本研究以堆疊5個抗病基因座的品系IRBB66及其母本IR24,以及IRBB66導入TNG82的品系為材料,調查水稻的甲烷排放量與根系結構、根圈及根內菌相、根分泌物的差異。2023年一期作的調查發現,各品系的甲烷排放速率隨生育時期演進和環境溫度增加而提升,在乳熟期IRBB66及其導入系的甲烷排放速率皆比輪迴親本低;根系結構的分析顯示IRBB66和導入系的根尖數、根長、根表面積較親本低,顯示根系並不是影響甲烷排放的關鍵。根圈菌相分析發現IRBB66較IR24更能吸引產甲烷菌,但在根內生菌相的部分則發現導入白葉枯病抗病基因座的品系吸引較多甲烷氧化菌到根內,可能是造成導入系的甲烷排放量少於親本的原因;根分泌物組成的分析結果發現部分長鏈脂肪酸和有機化合物在IR24的根分泌物中含量顯著較高,仍需進一步試驗以確認這些化合物與菌相的相關性,未來會持續觀察不同期作抗病品系與親本的甲烷排放,以及探究品系間的通氣組織及地上部的性狀差異,以期了解白葉枯病抗病基因座對甲烷排放之影響,作為未來育成抗病和低碳排品系之參考。 | zh_TW |
dc.description.abstract | Paddy cultivation is the main agricultural practice for Asian rice production, which generates low oxygen environment that promote the proliferation of anaerobic microorganisms in soil, including methanogenic archaea. Thus, rice paddies are the one of human sources of methane emissions. Bacterial blight (BB) is a serious threat to rice production. Numbers of loci associated with disease resistance have been identified and stacked into different rice varieties. It has been shown that the introducing disease resistance genes affects plant metabolome, but it remains unclear whether it influences the composition of endospheric or rhizospheric microbiome. Thus, this study aims to explore the impacts of pyramiding bacterial leaf blight resistant genes on rhizospheric and endospheric bacterial structure and methane emissions. IRBB66 line, which stacks five BB-resistant genes and the introgressive lines in TNG82 were recruited as materials for investigating the differences of methane emissions, root structure, rhizospheric and endospheric bacterial communities, and root exudate composition between lines. In the first cropping season in 2023, we found that methane emissions rates of all the lines increased with the progression of the growth period and environmental temperatures. During the milky stage, methane emission rates of IRBB66 and its introgressive lines were lower than those of recurrent parents. Root structure analysis showed that the number of root tips, total root length, and root surface area of IRBB66 and its introgressive lines were lower than those of recurrent lines, suggesting that root structure may not be the key factor affecting methane emissions. Rhizosphere microbiome analysis revealed that IRBB66 attracts more methanogens compared to IR24, but in endospheric microbiome, BB-resistant lines attracted more methanotrophs to roots. It may be one of the reasons that the disease-resistant lines had less methane emissions. Analysis of root exudate profiles suggested that some long-chain fatty acids and some organic compounds in IR24 were higher than in IRBB66. Further experiments are required to confirm the roles of these compounds in modulating bacterial structure in rhizosphere and endosphere. In the future we will keep monitering the methane emissions of BB-resistant and parental lines. The difference of aerenchyma structure and physiological traits of aboveground tissues will be also dissected. The results will help to understand the impacts of introducing BB-resistant genes on rice methane emission and provide useful information for developing disease-resistant and low-carbon-emission lines in the future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:14:20Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-25T16:14:20Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 iv
Abstract v 目次 vii 圖次 xi 表次 xiii 附錄目錄 xiv 第一章 前言 1 1.1碳排碳匯 1 1.2 水稻田的甲烷排放 1 1.2.1 產甲烷菌 2 1.2.2甲烷氧化菌 3 1.2.3影響產甲烷菌及甲烷氧化菌族群豐度和組成之環境因素 4 1.2.4稻米遺傳背景對菌相組成之影響 6 1.3水稻與白葉枯病 7 1.4研究目的與動機 8 第二章 材料方法 10 2.1田間實驗 10 2.1.1測試地點及土壤性質 10 2.1.2品系選擇 10 2.1.3栽培管理 10 2.2甲烷分析 11 2.2.1樣品採集 11 2.2.2氣體分析 11 2.3根圈及根內菌樣品採集 12 2.3.1 DNA萃取 12 2.4 根圈菌16S rRNA基因次世代定序 13 2.5根圈的生物資訊分析 13 2.5.1樣品複雜度分析 (α-多樣性;α-diversity) 14 2.5.2 樣本分組比較分析 (β-多樣性;β-diversity) 14 2.5.3敏感物種 (ASVs) 分析 14 2.5.4 LEfSe分析 14 2.5.5基因功能預測 14 2.5.6數據統計分析 15 2.6根內生菌全長16S rRNA定序 15 2.7根內的生物資訊分析 15 2.7.1樣品複雜度分析 (α-多樣性;α-diversity) 16 2.7.2樣本分組比較分析 (β-多樣性;β-diversity) 16 2.7.3 LEfSe分析 16 2.7.4基因功能預測 16 2.7.5數據統計分析 17 2.8根分泌物實驗 17 2.8.1種植方式 17 2.8.2根分泌物的收集與分析 17 2.9根系結構分析 17 2.9.1水稻種植 17 2.9.2分析方式 18 2.9.3統計分析 18 第三章 結果 19 1.試驗環境概況 19 2.不同品系水稻的甲烷排放差異 19 3.不同品系水稻的根部結構差異 20 4.不同品系水稻的微生物相 20 4-1品系間的根圈土壤微生物相 20 4-2品系間的根部內微生物相 25 5.不同品系的水稻根分泌物成分差異 28 第四章 討論 29 1.甲烷排放量的差異 29 2.根系結構的差異對於甲烷排放的影響 29 3.菌相的差異對甲烷排放量的影響 30 3-1根圈土壤菌相的差異 30 3-2根內生菌相的差異 32 4.根分泌物對甲烷排放的影響 32 第五章 結論 33 參考文獻 34 附錄 81 | - |
dc.language.iso | zh_TW | - |
dc.title | 堆疊白葉枯病抗病基因座對水稻甲烷排放量及根部微生物相之影響 | zh_TW |
dc.title | Impacts of Stacking Blast Resistance Gene Loci on Methane Emission and Root Microbiome in Rice | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蕭友晉;許奕婷 | zh_TW |
dc.contributor.oralexamcommittee | Yo-Jin Shiau;Yi-Ting Hsu | en |
dc.subject.keyword | 水稻,白葉枯病抗病基因座,甲烷排放,根系結構,根圈菌相,根內菌相, | zh_TW |
dc.subject.keyword | rice,bacterial blight resistance gene loci,methane emissions,root structure,rhizospheric microbiome,endospheric microbiome, | en |
dc.relation.page | 83 | - |
dc.identifier.doi | 10.6342/NTU202403355 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農藝學系 | - |
dc.date.embargo-lift | 2029-08-07 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。