Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏呈zh_TW
dc.contributor.advisorBo-Cheng Kuoen
dc.contributor.author林亞蓁zh_TW
dc.contributor.authorYa-Chen Linen
dc.date.accessioned2024-09-25T16:13:45Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationAly, M., & Turk-Browne, N. B. (2017). How hippocampal memory shapes, and is shaped by, attention. In D. E. Hannula & M. C. Duff (Eds.), The hippocampus from cells to systems: Structure, connectivity, and functional contributions to memory and flexible cognition (pp. 369–403). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-50406-3_12
Amrhein, C., Mühlberger, A., Pauli, P., & Wiedemann, G. (2004). Modulation of event-related brain potentials during affective picture processing: A complement to startle reflex and skin conductance response? International Journal of Psychophysiology, 54(3), 231–240. https://doi.org/10.1016/j.ijpsycho.2004.05.009
Armony, J. L., & Dolan, R. J. (2002). Modulation of spatial attention by fear-conditioned stimuli: An event-related fMRI study. Neuropsychologia, 40(7), 817–826. https://doi.org/10.1016/s0028-3932(01)00178-6
Brosch, T., Pourtois, G., Sander, D., & Vuilleumier, P. (2011). Additive effects of emotional, endogenous, and exogenous attention: Behavioral and electrophysiological evidence. Neuropsychologia, 49(7), 1779–1787. https://doi.org/10.1016/j.neuropsychologia.2011.02.056
Brosch, T., Scherer, K. R., Grandjean, D., & Sander, D. (2013). The impact of emotion on perception, attention, memory, and decision-making. Swiss Medical Weekly, 143, w13786. https://doi.org/10.4414/smw.2013.13786
Brosch, T., Sander, D., Pourtois, G., & Scherer, K. R. (2008). Beyond Fear. Psychological Science, 19(4), 362–370. https://doi.org/10.1111/j.1467-9280.2008.02094.x
Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325–340. https://doi.org/10.1016/s0896-6273(02)00586-x
Chen, D., & Hutchinson, J. B. (2019). What is memory-guided attention? How past experiences shape selective visuospatial attention in the present. Current Topics in Behavioral Neuroscience, 41, 185-212. https://doi.org/10.1007/7854_2018_76
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. https://doi.org/10.1006/cogp.1998.0681
Cravo, A. M., Rohenkohl, G., Santos, K. M., & Nobre, A. C. (2017). Temporal anticipation based on memory. Journal of Cognitive Neuroscience, 29(12), 2081–2089. https://doi.org/10.1162/jocn_a_01172
Darby, K. P., Burling, J. M., & Yoshida, H. (2014). The role of search speed in the contextual cueing of children’s attention. Cognitive Development, 29, 17–29. https://doi.org/10.1016/j.cogdev.2013.10.001
Dixon, M. L., Fox, K. C., & Christoff, K. (2014). A framework for understanding the relationship between externally and internally directed cognition. Neuropsychologia, 62, 321–330. https://doi.org/10.1016/j.neuropsychologia.2014.05.024
Dixsaut, L., & Gräff, J. (2021). The medial prefrontal cortex and fear memory: Dynamics, connectivity, and engrams. International Journal of Molecular Sciences, 22(22), 12113. https://doi.org/10.3390/ijms222212113
Doallo, S., Patai, E. Z., & Nobre, A. C. (2013). Reward associations magnify memory-based biases on perception. Journal of Cognitive Neuroscience, 25(2), 245–257. https://doi.org/10.1162/jocn_a_00314
Dolcos, F., LaBar, K. S., & Cabeza, R. (2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 42(5), 855–863. https://doi.org/10.1016/s0896-6273(04)00289-2
Dolan, R. J. (2002). Emotion, cognition, and behavior. Science, 298(5596), 1191–1194. https://doi.org/10.1126/science.1076358
Günseli, E., & Aly, M. (2020). Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex. eLife, 9. https://doi.org/10.7554/elife.53191
Ferrari, V., Mastria, S., & Codispoti, M. (2020). The interplay between attention and long‐term memory in affective habituation. Psychophysiology, 57(6). https://doi.org/10.1111/psyp.13572
Fields, E. C. (2023). The P300, the LPP, context updating, and memory: What is the functional significance of the emotion-related late positive potential? International Journal of Psychophysiology, 192, 43–52. https://doi.org/10.1016/j.ijpsycho.2023.08.005
Foti, D., Hajcak, G., & Dien, J. (2009). Differentiating neural responses to emotional pictures: Evidence from temporal‐spatial PCA. Psychophysiology, 46(3), 521–530. https://doi.org/10.1111/j.1469-8986.2009.00796.x
Fox, E., Lester, V., Russo, R., Bowles, R. J., Pichler, A., & Dutton, K. (2000). Facial expressions of emotion: Are angry faces detected more efficiently? Cognition and Emotion, 14(1), 61-92. https://doi.org/10.1080/026999300378996
Goodhew, S. C., & Edwards, M. (2022). Don’t look now! Emotion-induced blindness: The interplay between emotion and attention. Attention, Perception & Psychophysics, 84(8), 2741–2761. https://doi.org/10.3758/s13414-022-02525-z
Günseli, E., & Aly, M. (2020). Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex. eLife, 9, e53191. https://doi.org/10.7554/eLife.53191
Hajcak, G., & Olvet, D. M. (2008). The persistence of attention to emotion: Brain potentials during and after picture presentation. Emotion, 8(2), 250–255. https://doi.org/10.1037/1528-3542.8.2.250
Headley, D. B., & Pare, D. (2013). In sync: gamma oscillations and emotional memory. Frontiers Behavioral Neuroscience, 7, 170. https://doi.org/10.3389/fnbeh.2013.00170
Hutchinson, J. B., & Turk-Browne, N. B. (2012). Memory-guided attention: Control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576–579. https://doi.org/10.1016/j.tics.2012.10.003
Isen, A. M., Daubman, K. A., & Nowicki, G. P. (1987). Positive affect facilitates creative problem solving. Journal of Personality and Social Psychology, 52(6), 1122–1131. https://doi.org/10.1037/0022-3514.52.6.1122
Isenburg, K., Morin, T. M., Rosen, M. L., Somers, D. C., & Stern, C. E. (2023). Functional network reconfiguration supporting memory-guided attention. Cerebral Cortex, 33(12), 7702–7713. https://doi.org/10.1093/cercor/bhad073
Kennedy, B. L., Rawding, J., Most, S. B., & Hoffman, J. E. (2014). Emotion-induced blindness reflects competition at early and late processing stages: An ERP study. Cognitive, Affective & Behavioral Neuroscience, 14(4), 1485–1498. https://doi.org/10.3758/s13415-014-0303-x
Kensinger, E. A. (2009). Remembering the details: Effects of emotion. Emotion Review, 1(2), 99–113. https://doi.org/10.1177/1754073908100432
Kensinger, E. A., Garoff-Eaton, R. J., & Schacter, D. L. (2006). Memory for specific visual details can be enhanced by negative arousing content. Journal of Memory and Language, 54(1), 99–112. https://doi.org/10.1016/j.jml.2005.05.005
Kensinger, E. A., & Schacter, D. L. (2008). Memory and emotion. In M. Lewis,
J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of emotions (pp. 601–617). The Guilford Press
Lang, P. J., Bradley, M. M., & Cutberg, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8.
Langeslag, S. J. E., & Van Strien, J. W. (2009). Aging and emotional memory: The co-occurrence of neurophysiological and behavioral positivity effects. Emotion, 9(3), 369–377. https://doi.org/10.1037/a0015356
Liu, T. L., Lin, S. T., & Cheng, S. K. (2021). Retrieval orientation for memories encoded in emotional contexts: An ERP study. Brain and Cognition, 152, 105769. https://doi.org/10.1016/j.bandc.2021.105769
Liu, X., Zhou, X., Zeng, Y., Li, J., Zhao, W., Xu, L., Zheng, X., Fu, M., Yao, S., Cannistraci, C. V., Kendrick, K. M., & Becker, B. (2022). Medial prefrontal and occipito-temporal activity at encoding determines enhanced recognition of threatening faces after 1.5 years. Brain Structure & Function, 227(5), 1655–1672. https://doi.org/10.1007/s00429-022-02462-5
Steinmetz, K. R. M., & Kensinger, E. A. (2009). The effects of valence and arousal on the neural activity leading to subsequent memory. Psychophysiology, 46(6), 1190–1199. https://doi.org/10.1111/j.1469-8986.2009.00868.x
Mickley, K. R., & Kensinger, E. A. (2008). Emotional valence influences the neural correlates associated with remembering and knowing. Cognitive, Affective & Behavioral Neuroscience, 8(2), 143–152. https://doi.org/10.3758/cabn.8.2.143
Most, S. B., Chun, M. M., Widders, D. M., & Zald, D. H. (2005). Attentional rubbernecking: Cognitive control and personality in emotion-induced blindness. Psychonomic Bulletin & Review, 12(4), 654–661. https://doi.org/10.3758/bf03196754
Müller, M. M., Keil, A., Gruber, T., & Elbert, T. (1999). Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clinical Neurophysiology, 110(11), 1913–1920. https://doi.org/10.1016/s1388-2457(99)00151-0
Nobre, A. C., & Mesulam, M. M. (2014). Large-scale networks for attentional biases. In A. C. Nobre & S. Kastner (Eds.), The Oxford handbook of Attention (pp. 105–151). Oxford University Press.
Nobre, A. C., & Stokes, M. G. (2019). Premembering experience: A hierarchy of time-scales for proactive attention. Neuron, 104(1), 132–146. https://doi.org/10.1016/j.neuron.2019.08.030
Öhman, A., Lundqvist, D., & Esteves, F. (2001). The face in the crowd revisited: A threat advantage with schematic stimuli. Journal of Personality and Social Psychology, 80(3), 381–396. https://doi.org/10.1037/0022-3514.80.3.381
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1–9. https://doi.org/10.1155/2011/156869
Patai, E. Z., Doallo, S., & Nobre, A. C. (2012). Long-term memories bias sensitivity and target selection in complex scenes. Journal of Cognitive Neuroscience, 24(12), 2281–2291. https://doi.org/10.1162/jocn_a_00294
Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14(2), 198–202. https://doi.org/10.1016/j.conb.2004.03.015
Plater, L., Giammarco, M., Joubran, S., & Al-Aidroos, N. (2023). Control over attentional capture within 170 ms by long-term memory control settings: Evidence from the N2pc. Psychonomic Bulletin & Review, 31(1), 283–292. https://doi.org/10.3758/s13423-023-02352-9
Pollmann, S., & Manginelli, A. A. (2009). Anterior prefrontal involvement in implicit contextual change detection. Frontiers in Human Neuroscience, 3, 28. https://doi.org/10.3389/neuro.09.028.2009
Richter-Levin, G. (2004). The Amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist, 10(1), 31–39. https://doi.org/10.1177/1073858403259955
Richter-Levin, G., & Akirav, I. (2000). Amygdala-Hippocampus dynamic interaction in relation to memory. Molecular Neurobiology, 22(1–3), 011–020. https://doi.org/10.1385/mn:22:1-3:011
Rosero, M. A., Winkelmann, T., Pohlack, S., Cavalli, J., Nees, F., & Flor, H. (2019). Memory-guided attention: Bilateral hippocampal volume positively predicts implicit contextual learning. Brain Structure & Function, 224(6), 1999–2008. https://doi.org/10.1007/s00429-019-01887-9
Salsano, I., Tain, R., Giulietti, G., Williams, D. P., Ottaviani, C., Antonucci, G., Thayer, J. F., & Santangelo, V. (2024). Negative emotions enhance memory-guided attention in a visual search task by increasing frontoparietal, insular, and parahippocampal cortical activity. Cortex, 173, 16–33. https://doi.org/10.1016/j.cortex.2023.12.014
Sakaki, M., Fryer, K., & Mather, M. (2014). Emotion strengthens high-priority memory Traces but weakens low-priority memory traces. Psyschological Science, 25(2), 387-395. https://doi.org/10.1177/0956797613504784
Scherer, K. R. (1994). Emotion serves to decouple stimulus and response. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion: Fundamental questions (pp. 127–130). Oxford University Press.
Schindler, S., Bruchmann, M., & Straube, T. (2022). Feature-based attention interacts with emotional picture content during mid-latency and late ERP processing stages. Biological Psychology, 170, 108310. https://doi.org/10.1016/j.biopsycho.2022.108310
Schindler, S., & Bublatzky, F. (2020). Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex, a journal devoted to the study of the nervous system and behavior, 130, 362–386. https://doi.org/10.1016/j.cortex.2020.06.010
Schuck, N. W., Gaschler, R., Wenke, D., Heinzle, J., Frensch, P. A., Haynes, J. D., & Reverberi, C. (2015). Medial prefrontal cortex predicts internally driven strategy shifts. Neuron, 86(1), 331–340. https://doi.org/10.1016/j.neuron.2015.03.015
Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Ito, T., & Lang, P. J. (2000). Affective picture processing: The late positive potential is modulated by motivational relevance. Psychophysiology, 37(2), 257–261. https://doi.org/10.1111/1469-8986.3720257
Shin, J. D., & Jadhav, S. P. (2016). Multiple modes of hippocampal–prefrontal interactions in memory-guided behavior. Current Opinion in Neurobiology, 40, 161–169. https://doi.org/10.1016/j.conb.2016.07.015
Sisk, C. A., Remington, R. W., & Jiang, Y. V. (2019). Mechanisms of contextual cueing: A tutorial review. Attention, Perception, and Psychophysics, 81(8), 2571-2589. https://doi.org/10.3758/s13414-019-01832-2
Stokes, M. G., Atherton, K., Patai, E. Z., & Nobre, A. C. (2012). Long-term memory prepares neural activity for perception. Proceeding of the National Academy of Sciences of the United States of America, 109(6), E360-367. https://doi.org/10.1073/pnas.1108555108
Suárez-Suárez, S., Holguín, S. R., Cadaveira, F., Nobre, A. C., & Doallo, S. (2019). Punishment-related memory-guided attention: Neural dynamics of perceptual modulation. Cortex, 115, 231–245. https://doi.org/10.1016/j.cortex.2019.01.029
Summerfield, J. J., Rao, A., Garside, N., & Nobre, A. C. (2011). Biasing perception by spatial long-term memory. Journal of Neuroscience, 31(42), 14952-14960. https://doi.org/10.1523/JNEUROSCI.5541-10.2011
Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M., & Nobre, A. C. (2006). Orienting attention based on long-term memory experience. Neuron, 49(6), 905–916. https://doi.org/10.1016/j.neuron.2006.01.021
Theeuwes, J. (2019). Goal-driven, stimulus-driven, and history-driven selection. Current Opinion in Psychology, 29, 97-101. https://doi.org/10.1016/j.copsyc.2018.12.024
Tyng, C. M., Amin, H. U., Saad, M. N. M., & Malik, A. S. (2017). The influences of emotion on learning and memory. Frontiers in Psychology, 8, 1454. https://doi.org/10.3389/fpsyg.2017.01454
Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Science, 9(12), 585-594. https://doi.org/10.1016/j.tics.2005.10.011
Wang, B., & Theeuwes, J. (2018). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, and Psychophysics, 80(4), 860-870. https://doi.org/10.3758/s13414-018-1493-z
Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9(1), 33–39. https://doi.org/10.1111/ 1467-9280.00006
Yamasaki, H., LaBar, K. S., & McCarthy, G. (2002). Dissociable prefrontal brain systems for attention and emotion. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11447–11451. https://doi.org/10.1073/pnas.182176499
Zinchenko, A., Geyer, T., Müller, H. J., & Conci, M. (2020). Affective modulation of memory-based guidance in visual search: Dissociative role of positive and negative emotions. Emotion, 20(7), 1301–1305. https://doi.org/10.1037/emo0000602
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95937-
dc.description.abstract近期研究顯示長期記憶可以引導視覺注意力。然而,目前仍不清楚長期記憶中的情緒與中性脈絡在引導知覺和記憶搜尋時是否會有不同的影響。本實驗透過行為實驗(實驗一,24位參與者)及腦電圖實驗(實驗二,30位參與者),檢驗長期記憶中負向脈絡對記憶導引的注意力與長期記憶表現的效果,相對於中性脈絡是否不同。兩項實驗皆包括第一天的學習階段和第二天的測試階段。在學習階段,參與者學習在中性脈絡或負面脈絡場景圖片中嵌入的目標物體位置,及該物體與場景之間的聯結,並重複學習回合五次。第二天,參與者在測試階段完成注意力導引及知覺和記憶搜尋作業,這些作業當中包括新場景和舊場景。實驗二將在測驗階段同時記錄受試者的腦波訊號。行為結果顯示,記憶引導注意力的效果顯著,且場景情緒性對注意力導引的影響在新舊場景圖片有所不同。與中性場景相比,在新場景中,參與者在負面場景中正確偵測目標的反應時間較快、d’分數較高。相反地,在舊場景中偵測目標時,兩種脈絡的行為反應無顯著差異。此外,負面脈絡對新舊場景中的搜尋任務有不同影響。參與者在新場景中搜尋目標時,知覺錯誤在兩種情境中無顯著差異。然而,參與者在舊場景中搜尋目標時,負面場景的記憶錯誤顯著高於中性場景。群體層次的分析顯示,學習階段時搜尋時間的進步幅度與記憶錯誤之間存在顯著的負相關,即學習時搜尋時間的進步越大,記憶錯誤越小。腦電圖結果顯示,負向脈絡對新舊場景中的事件關聯電位有不同的影響。在注意力作業及記憶搜尋作業當中,對於已學習及新場景,在提示出現後的時間窗口,觀察到負面場景相比中性場景在左右後部電極上出現顯著更高的正向振幅。另外,我們也觀察到情緒相關的事件關聯電位LPP的效果在已學習及新場景圖片不同。當受試者受到學習過的場景提示,負向脈絡圖片相對於中性脈絡出現更強的LPP效果;相對地,當受試者受到新場景提示,兩種脈絡在LPP的效果上沒有出現此差異。整體而言,我們的行為結果及腦電圖結果皆顯示負面脈絡在長期記憶導引的注意力及視覺和記憶搜尋中扮演不同角色。zh_TW
dc.description.abstractRecent studies have revealed a close relationship between long-term memories (LTM) and visual attention. While these studies demonstrated that LTM can guide attention, it remains unclear whether the emotional context from LTM may have a different impact on attention to guide visual and memory search when compared to the neutral context from LTM. We address this issue in a behavioral experiment (N = 24) and an electroencephalography (EEG) experiment (N = 30). Both experiments consisted of a learning session and a testing session. In the learning session, participants learned the locations of a pre-defined object within neutral or negative scenes and the object-scene associations across five blocks. On the following day, participants performed orienting attention, visual and memory search tasks with new and old scenes in the testing session. EEG data were only recorded on day 2. Our behavioral results with pooled data from two experiments (N = 54) demonstrated the effects of memory-guided orienting attention. The scene context emotionality (negative and neutral) showed different impacts on the scenes that were learned (old) or not (new). Compared to neutral scenes, participants showed faster RTs and higher d’ score when detecting the target in negative scenes in new scenes. On the contrary, when detecting the targets in old scenes, the two contexts did not show different behavioral responses. Moreover, the negative context showed different impacts when searching the target in old and new scenes. When the participants searched the targets within the new scenes, perceptual errors did not show significant differences between two contexts. In contrast, we found a larger memory error for negative scenes compared to neutral scenes when the participants searched the targets within the old scenes in the memory search task. The group-level analysis showed a significant correlation between the search time improvement and memory error. This inverse correlation reflected the larger the learning improvement, the smaller the memory errors. In addition, event-related potential (ERP) results (N = 30) showed the different impacts of emotional contexts on new and old scenes. We observed a significantly higher positive amplitude in response to negative scenes compared to neutral scenes over both left and right posterior electrodes during the post-cueing interval for both old and new scenes on both tasks. Moreover, we observed a larger late positive potential (LPP) for negative scenes compared to neutral scenes, and this effect was stronger when participants were cued with old scenes compared to neutral scenes. Overall, our experiments provide novel evidence that negative and neutral contexts play different roles in LTM-guided attention and search processes.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:13:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:13:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
List of Contents v
List of Tables vii
List of Figures vii
1.Introduction 1
2.Materials and Methods 9
2.1. Participants 9
2.2. Stimuli 9
2.3. Task Design 11
2.4. Behavioral Analysis 15
2.5. EEG Acquisition and Recording Parameters 16
2.6. EEG Preprocessing 17
2.7. EEG Data Analysis 18
3.Results 19
3.1. Behavioral Results 19
3.2. EEG Results 24
4.Discussion 28
4.1. Behavioral Results 29
4.2. Neural Activity Results 31
4.3. Limitations 34
4.4. Conclusions 35
5. References 36
Appendix A 49
Appendix B 52
Appendix C 59
Appendix D 71
-
dc.language.isoen-
dc.title長期記憶情緒脈絡對注意力導引與搜尋歷程的影響zh_TW
dc.titleInfluence of Emotional Context from Long-term Memory on Orienting Attention and Search Processen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭仕坤;葉怡玉;徐慈妤zh_TW
dc.contributor.oralexamcommitteeShih-Kuen Cheng;Yei-Yu Yeh;Tzu-Yu Hsuen
dc.subject.keyword情緒,長期記憶,記憶導引注意力,事件關聯電位,zh_TW
dc.subject.keywordEmotion,Long-term memory,Memory-guided attention,Event-related potentials,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202402959-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept心理學系-
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved