請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95935完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陽毅平 | zh_TW |
| dc.contributor.advisor | Yee-Pien Yang | en |
| dc.contributor.author | 劉俊楷 | zh_TW |
| dc.contributor.author | Chun-Kai Liu | en |
| dc.date.accessioned | 2024-09-25T16:13:09Z | - |
| dc.date.available | 2024-09-26 | - |
| dc.date.copyright | 2024-09-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | [1] O. Payza, Y. Demir and M. Aydin, "Investigation of Losses for a Concentrated Winding High-Speed Permanent Magnet-Assisted Synchronous Reluctance Motor for Washing Machine Application," in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, Nov. 2018
[2] M. M. Bouiabadi, A. Damaki Aliabad, S. M. Mousavi and E. Amiri, "Design and analysis of E-core PM-assisted switched reluctance motor," in IET Electric Power Applications, vol. 14, no. 5, pp. 859-864, 5 2020 [3] A. Mohammadi and S. M. Mirimani, "Design and Analysis of a Novel Permanent Magnet Assisted Synchronous Reluctance Machine Using Finite-Element-Method," 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Tehran, Iran, 2020, pp. 1-5 [4] S. Panda and R. K. Keshri, "Evaluation of Permanent Magnet Assisted Synchronous Reluctance Motor for Light Electric Vehicle Applications," 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2020, pp. 1-6 [5] H. Heidari, E. Andriushchenko, A. Rassõlkin, A. Kallaste, T. Vaimann and G. L. Demidova, "Comparison of Synchronous Reluctance Machine and Permanent Magnet-Assisted Synchronous Reluctance Machine Performance Characteristics," 2020 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED), Moscow, Russia, 2020, pp. 1-5 [6] T. Mohanarajah, J. Rizk, A. Hellany and M. Nagrial, "Design of Permanent Magnet Assisted Synchronous Reluctance Machines with Rare-Earth Magnets," 2019 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 2019, pp. 122-1224 [7] G. Boztas and O. Aydogmus, "Comparison of Permanent-Magnet Assisted Synchronous Reluctance Motors with Different Rotor Structures," 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2019, pp. 166-171. [8] J. Neumann, C. Henaux, M. Fadel, D. Prieto, E. Fournier and M. T. Yamdeu, "Geometrical parameters influence analysis on performance and incremental inductances of a Permanent Magnet Assisted Synchronous Reluctance Motor," IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019, pp. 1072-1076 [9] J. Zhenxing, L. Hongmei, C. Zhiwei, Y. Tian, L. Liwen and M. Mingna, "Design and Optimization of Permanent Magnet Assisted Synchronous Reluctance Motor for Better Torque Performance," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1-4 [10] S. S. Maroufian and P. Pillay, "Design and Analysis of a Novel PM-Assisted Synchronous Reluctance Machine Topology With AlNiCo Magnets," in IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4733-4742 [11] A. Kersten, Y. Liu, D. Pehrman and T. Thiringer, "Rotor Design of Line-Start Synchronous Reluctance Machine With Round Bars," in IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3685-3696, July-Aug. 2019. [12] M. Villani, M. Santececca and F. Parasiliti, "High-Efficiency Line-Start Synchronous Reluctance Motor for Fan and Pump Applications," 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, 2018, pp. 2178-2184. [13] P. Huang, M. Tsai and I. Jiang, "3-D Structure Line-Start Synchronous Reluctance Motor Design Based on Selective Laser Melting of 3-D Printing," in IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-4, Nov. 2018. [14] A. Negahdari, V. M. Sundaram and H. A. Toliyat, "An analytical approach for determining harmonic cusps and torque dips in line start synchronous reluctance motors," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-6. [15] Y. Hu, B. Chen, Y. Xiao, J. Shi and L. Li, "Study on the Influence of Design and Optimization of Rotor Bars on Parameters of a Line-Start Synchronous Reluctance Motor," in IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1368-1376, March-April 2020. [16] Y. Hu, B. Chen, Y. Xiao, J. Shi, L. Li and X. Li, "Rotor Design and Optimization of the Three-phase Line-start Synchronous Reluctance Motor," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1-6. [17] S. Baka, S. Sashidhar and B. G. Fernandes, "Effect of Flux Barrier Shape on the Performance of a Two-Pole Line-Start Synchronous Reluctance Motor," 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, 2018, pp. 1-6. [18] M. Gamba, E. Armando, G. Pellegrino, A. Vagati, B. Janjic and J. Schaab, "Line-start synchronous reluctance motors: Design guidelines and testing via active inertia emulation," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 4820-4827. [19] K. Smółka and Z. Gmyrek, "Dynamics of the line-start reluctance motor with SMC rotor," 2017 18th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF) Book of Abstracts, Lodz, 2017, pp. 1-2. [20] K. Tang, L. Zhou, J. Wang, Y. Xiao and S. Wang, "Rotor design and optimization of the single-phase line-start synchronous reluctance motor," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, 2017, pp. 1-4. [21] J. L. Yeswanth, G. A. Uvaraj and N. C. Lenin, "A novel line start synchronous reluctance motor," 2015 IEEE International Magnetics Conference (INTERMAG), Beijing, 2015, pp. 1-1. [22] A. Senhaji, M. Abdelouhab, A. Attar, and J. Bouchnaif, "Backstepping control of a permanent magnet synchronous motor," Laboratory of Electrical Engineering and Maintenance, Higher School of Technology, Mohammed First University, Oujda, Morocco, pp. 1-5, Sep. 2022. [23] T. L. Nguyen, T. H. Vo, and N. D. Le, "Backstepping control for induction motors with input and output constrains," *Engineering, Technology & Applied Science Research*, vol. 10, no. 4, pp. 5998-6003, Aug. 2020 [24] H. Echeikh, R. Trabelsi, A. Iqbal, N. Bianchi, and M. F. Mimouni, "Non-linear backstepping control of five-phase IM drive at low speed conditions – experimental implementation," *ISA Trans.*, vol. 65, pp. 244–253, 2016. [25] Y. Yu, D. Chang, X. Zheng, Z. Mi, X. Li, and C. Sun, "Adaptive Backstepping Based MTPA Sensorless Control of PM-Assisted SynRM with Fully Uncertain Parameters," *Mathematical Problems in Engineering*, vol. 2018, Article ID 8405847, 14 pages, Jan. 2018. [26] H. Zhang, H. Zhu, D. Zhang, H. Zhao, Y. Zhang, S. Li, F. Shuang, and T. Wu, "Improved energy saving control of IPMSM based on the weighted average current method," presented at the 4th International Conference on Electrical Engineering and Green Energy (CEEGE 2021), Munich, Germany, Jun. 10-13, 2021. [27] M. Alzayed and H. Chaoui, "Direct Voltage MTPA Speed Control of IPMSM-Based Electric Vehicles," IEEE Access, vol. 11, pp. 3268315-3268325, Apr. 2023 [28] S. M. Ferdous, P. Garcia, M. A. M. Oninda, and M. A. Hoque, "MTPA and Field Weakening Control of Synchronous Reluctance Motor," in *Proc. 9th Int. Conf. Electr. Comput. Eng.*, Dhaka, Bangladesh, Dec. 2016, pp. 598. [29] C. Li, W. Zhang, J. Gao, and S. Huang, "Permanent Magnet Flux Linkage Analysis and Maximum Torque per Ampere (MTPA) Control of High Saturation IPMSM," Energies, vol. 16, no. 12, p. 4717, Jun. 2023. [30] S. D. Sudhoff, S. D. Pekarek, "Techniques for Analysis and Design of Electromechanical Systems," Purdue University, USA, 2003. [31] A. Takahashi, S. Kikuchi, K. Miyata and A. Binder, "Asynchronous Torque of Line-Starting Permanent-Magnet Synchronous Motors," in IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 498-506, June 2015. [32] Y. C. Luo and Y. P. Yang, "Modeling and Characteristics Analysis of Line-Start Synchronous Reluctance Motor," Electrical Machines and Systems , Taiwan, July 2019,pp.1-99. [33] C.-H. Yang, "Control Strategy and Characteristics Analysis of Line-Start Permanent Magnet-Assisted Synchronous Reluctance Motor," M.S. thesis, Dept. of Mechanical Engineering, National Taiwan University, Taipei, Taiwan, 2021, pp.1-107. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95935 | - |
| dc.description.abstract | 本論文針對自啟動永磁輔助同步磁阻馬達,引用前人推導的動態方程式及內部力矩分析作為研究基礎,進行深入探討。首先分析氣隙函數和繞組函數在轉子座標系下的分布,並驗證動態方程式的正確性,進一步解析馬達內部力矩,將總力矩拆分為磁阻力矩、感應力矩和永磁轉矩,並將其歸類為各種內部力矩分布類型進行觀察和總結。基於此分析,本文著重於每安培最大轉矩控制策略的引入,驗證其對馬達性能的改善效果,發現其在提升馬達效率及動態性能方面具有顯著優勢,並且進一步設計了速度反推控制器,推導出Lyapunov函數以證明系統的穩定性,並將每安培最大轉矩控制與速度反推控制結合,從速度反推控制中產生的電流命令中計算出最佳的直軸與交軸電流。本文的模擬分析結果證實了該結合控制策略能顯著提高馬達的動態響應和能效,展示了其在實際應用中的潛力。 | zh_TW |
| dc.description.abstract | This thesis examines the line-start permanent magnet-assisted synchronous reluctance motor using dynamic equations and internal torque analysis derived by my predecessors. The study begins by analyzing air-gap and winding functions within the rotor coordinate system to validate the dynamic equations. The total torque is decomposed into reluctance, induction, and permanent magnet components, categorized into different torque distribution types for analysis. The introduction of the maximum torque per ampere (MTPA) control strategy is explored for enhancing motor performance, showing significant improvements in efficiency and dynamics. A backstepping speed controller is developed with the Lyapunov function ensuring stability, and it calculates optimal direct and quadrature-axis currents from backstepping control commands. Simulations confirm that this integrated control strategy significantly improves dynamic response and efficiency, underscoring its practical application potential. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:13:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-25T16:13:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 圖次 vi 表次 vii 符號表 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文架構 6 第二章 LSPMASRM理論介紹及動態方程式推導 7 2.1 自啟動永磁輔助同步磁阻馬達介紹 7 2.2 動態方程式之推導 9 2.2.1 d-q軸座標轉換 9 2.2.2 電壓方程式 15 2.2.3 機械方程式 17 第三章 LSPMASRM之動態方程式驗證 19 3.1 定性法與定量法搭配SIMULINK模擬驗證 19 3.1.1 定性法和定量法 19 3.1.2 應用定性法於LSPMASRM之動態方程式驗證 20 3.1.3 應用定量法搭配模擬分析於LSPMASRM之動態方程式驗證 21 3.2 利用Ansys Maxwell進行有限元素分析 29 3.2.1 LSPMASRM之Maxwell 2D模型 29 3.2.2 以Ansys輔助工具做LSPMASRM動態分析 30 第四章 LSPMASRM之控制策略介紹與推導 32 4.1 速度反推控制 32 4.1.1 速度反推控制介紹 32 4.1.2 速度反推控制推導 33 4.2 每安培最大轉矩控制 37 4.2.1 每安培最大轉矩控制介紹 37 4.2.2 每安培最大轉矩控制推導 37 第五章 LSPMASRM控制策略下之模擬分析 39 5.1 每安培最大轉矩控制與id為0控制之模擬分析 39 5.1.1 每安培最大轉矩控制與id為0控制之模擬架構 39 5.1.2 每安培最大轉矩控制與id為0控制之模擬分析 43 5.2 速度反推控制之模擬 49 5.2.1 速度反推控制之模擬架構 49 5.2.2 速度反推控制之模擬分析 51 5.3 速度反推控制結合每安培最大轉矩控制之模擬 55 5.3.1 速度反推控制結合每安培最大轉矩控制之模擬架構 55 5.3.2 速度反推控制結合每安培最大轉矩控制之模擬分析 57 第六章 結論與未來展望 68 6.1 結論 68 6.2 未來展望 68 參考文獻 69 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 自啟動永磁輔助同步磁阻馬達基於每安培最大轉矩下的速度反推控制及特性分析 | zh_TW |
| dc.title | Backstepping Control and Characteristic Analysis of Line-Start Permanent Magnet-Assisted Synchronous Reluctance Motor Based on MTPA | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊士進;徐銘懋 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Chin Yang;Ming-Mao Hsu | en |
| dc.subject.keyword | 永磁輔助同步磁阻馬達,自啟動,同步化,速度反推控制,每安培最大轉矩控制, | zh_TW |
| dc.subject.keyword | permanent magnet-assisted synchronous reluctance motor,line-start,synchronization,backstepping control,Maximum Torque Per Ampere Control, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202402240 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
