Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95929
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群zh_TW
dc.contributor.advisorPei-Chun Linen
dc.contributor.author劉軍zh_TW
dc.contributor.authorChun Liuen
dc.date.accessioned2024-09-25T16:11:08Z-
dc.date.available2024-09-26-
dc.date.copyright2024-09-25-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citationM. Dutton, Dutton’s Orthopaedic Examination, Evaluation, and Intervention, 6th ed. New York: McGraw Hill Medical, 2023.
P. J. McMahon, "Sports Medicine: Upper Extremity," in Current Diagnosis & Treatment in Orthopedics, 6th ed. New York: McGraw-Hill Education, 2021.
L. Yan, I. -M. Chen, C. K. Lim, G. Yang, W. Lin and K. -M. Lee, “Design and analysis of a permanent magnet spherical actuator,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta., 2005, pp. 691-696, doi: 10.1109/IROS.2005.1545369.
K. Bai, R. Xu, K. -M. Lee, W. Dai and Y. Huang, “Design and Development of a Spherical Motor for Conformal Printing of Curved Electronics,” in IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 9190-9200, Nov. 2018, doi: 10.1109/TIE.2018.2808931.
K. Bai, W. Chen, K. -M. Lee, Z. Que and R. Huang, “Spherical Wrist With Hybrid Motion-Impedance Control for Enhanced Robotic Manipulations,” in IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1174-1185, April 2022, doi: 10.1109/TRO.2021.3099310.
K. Bai et al., “Regulation and Tracking Control of Omnidirectional Rotation for Spherical Motors,” in IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1696-1705, Feb. 2023, doi: 10.1109/TIE.2022.3163566.
K. Abe, K. Tadakuma and R. Tadakuma, “ABENICS: Active Ball Joint Mechanism With Three-DoF Based on Spherical Gear Meshings,” in IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1806-1825, Oct. 2021, doi: 10.1109/TRO.2021.3070124.
H. C. Seherr-Thoss, E. Aucktor, and F. Schmelz, “Universal Joints and Driveshafts Analysis, Design, Applications,” 2nd ed. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2006.
M. Hutter et al., “ANYmal - a highly mobile and dynamic quadrupedal robot,” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 38-44, doi: 10.1109/IROS.2016.7758092.
G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing and S. Kim, “MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 2245-2252, doi: 10.1109/IROS.2018.8593885.
K. Hirai, M. Hirose, Y. Haikawa and T. Takenaka, “The development of Honda humanoid robot,” Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium, 1998, pp. 1321-1326 vol.2, doi: 10.1109/ROBOT.1998.677288.
T. Jung, J. Lim, H. Bae, K. K. Lee, H. -M. Joe and J. -H. Oh, “Development of the Humanoid Disaster Response Platform DRC-HUBO+,” in IEEE Transactions on Robotics, vol. 34, no. 1, pp. 1-17, Feb. 2018, doi: 10.1109/TRO.2017.2776287.
I. -W. Park, J. -Y. Kim, J. Lee and J. -H. Oh, “Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO),” 5th IEEE-RAS International Conference on Humanoid Robots, 2005., Tsukuba, Japan, 2005, pp. 321-326, doi: 10.1109/ICHR.2005.1573587.
J. Englsberger et al., “Overview of the torque-controlled humanoid robot TORO,” 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 2014, pp. 916-923, doi: 10.1109/HUMANOIDS.2014.7041473.
Y. Ogura et al., “Development of a new humanoid robot WABIAN-2,” Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., Orlando, FL, USA, 2006, pp. 76-81, doi: 10.1109/ROBOT.2006.1641164.
[16] S. Rader, L. Kaul, H. Fischbach, N. Vahrenkamp and T. Asfour, “Design of a high-performance humanoid dual arm system with inner shoulder joints,” 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 2016, pp. 523-529, doi: 10.1109/HUMANOIDS.2016.7803325.
A. Albers, S. Brudniok, J. Ottnad, C. Sauter and K. Sedchaicharn, “Upper Body of a new Humanoid Robot - the Design of ARMAR III,” 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 2006, pp. 308-313, doi: 10.1109/ICHR.2006.321289.
T. Asfour et al., “ARMAR-6: A Collaborative Humanoid Robot for Industrial Environments,” 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 2018, pp. 447-454, doi: 10.1109/HUMANOIDS.2018.8624966.
A. M. M. Omer et al., “Development of a humanoid robot having 2-DOF waist and 2-DOF trunk,” 5th IEEE-RAS International Conference on Humanoid Robots, 2005., Tsukuba, Japan, 2005, pp. 333-338, doi: 10.1109/ICHR.2005.1573589.
N. G. Tsagarakis, F. Becchi, L. Righetti, A. J. Ijspeert and D. G. Caldwell, “Lower body realization of the baby humanoid - ‘iCub’,” 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 2007, pp. 3616-3622, doi: 10.1109/IROS.2007.4399096.
D. Gouaillier et al., “Mechatronic design of NAO humanoid,” 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, pp. 769-774, doi: 10.1109/ROBOT.2009.5152516.
C. Ott et al., “Development of a biped robot with torque controlled joints,” 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 2010, pp. 167-173, doi: 10.1109/ICHR.2010.5686340.
S. Lohmeier, T. Buschmann and H. Ulbrich, “Humanoid robot LOLA,” 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009, pp. 775-780, doi: 10.1109/ROBOT.2009.5152578.
K. Nishiwaki, T. Sugihara, S. Kagami, F. Kanehiro, M. Inaba and H. Inoue, “Design and development of research platform for perception-action integration in humanoid robot: H6,” Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), Takamatsu, Japan, 2000, pp. 1559-1564 vol.3, doi: 10.1109/IROS.2000.895195.
K. Kaneko et al., “Design of prototype humanoid robotics platform for HRP,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2002, pp. 2431-2436 vol.3, doi: 10.1109/IRDS.2002.1041632.
K. Kaneko et al., “Humanoid robot HRP-2,” IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, New Orleans, LA, USA, 2004, pp. 1083-1090 Vol.2, doi: 10.1109/ROBOT.2004.1307969.
K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori and K. Akachi, “Humanoid robot HRP-3,” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008, pp. 2471-2478, doi: 10.1109/IROS.2008.4650604.
K. Kaneko et al., “Humanoid robot HRP-2Kai — Improvement of HRP-2 towards disaster response tasks,” 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea (South), 2015, pp. 132-139, doi: 10.1109/HUMANOIDS.2015.7363526.
T. Asfour et al., “ARMAR-4: A 63 DOF torque controlled humanoid robot,” 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, USA, 2013, pp. 390-396, doi: 10.1109/HUMANOIDS.2013.7030004.
K. Kojima et al., “Development of life-sized high-power humanoid robot JAXON for real-world use,” 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea (South), 2015, pp. 838-843, doi: 10.1109/HUMANOIDS.2015.7363459.
N. A. Radford et al., “Valkyrie: NASA's First Bipedal Humanoid Robot,” Journal of Field Robotics, vol. 32, no. 3, pp. 397-419, 2015, doi: https://doi.org/10.1002/rob.21560.
K. Mohammed Rafiq Abdul, Computational Biomechanics of the Hip Joint. Heidelberg: Springer Berlin Heidelberg, 2014.
N. M. Bajaj, A. J. Spiers and A. M. Dollar, “State of the Art in Artificial Wrists: A Review of Prosthetic and Robotic Wrist Design,” in IEEE Transactions on Robotics, vol. 35, no. 1, pp. 261-277, Feb. 2019, doi: 10.1109/TRO.2018.2865890.
F. Montagnani, M. Controzzi and C. Cipriani, “Preliminary design and development of a two degrees of freedom passive compliant prosthetic wrist with switchable stiffness,” 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 2013, pp. 310-315, doi: 10.1109/ROBIO.2013.6739477.
S. Hirose and H. Yamada, “Snake-like robots [Tutorial],” in IEEE Robotics & Automation Magazine, vol. 16, no. 1, pp. 88-98, March 2009, doi: 10.1109/MRA.2009.932130.
C. H. Kuo, J. S. Dai, and P. Dasgupta, “Kinematic design considerations for minimally invasive surgical robots: an overview,” Int J Med Robot, vol. 8, no. 2, pp. 127-45, Jun 2012, doi: 10.1002/rcs.453.
W. Zhang, Z. Wang, K. Ma, F. Liu, P. Cheng, and X. Ding, “State of the art in movement around a remote point: a review of remote center of motion in robotics,” Frontiers of Mechanical Engineering, vol. 19, no. 2, pp. 14, May 2024, doi: 10.1007/s11465-024-0785-3.
M. J. H. Lum, J. Rosen, M. N. Sinanan and Hannaford B, "Kinematic optimization of a spherical mechanism for a minimally invasive surgical robot," IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, New Orleans, LA, USA, 2004, pp. 829-834 vol.1, doi: 10.1109/ROBOT.2004.1307252.
M. J. H. Lum, J. Rosen, M. N. Sinanan and B. Hannaford, “Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches,” in IEEE Transactions on Biomedical Engineering, vol. 53, no. 7, pp. 1440-1445, July 2006, doi: 10.1109/TBME.2006.875716.
M. Afshar et al., “Optimal Design of a Novel Spherical Scissor Linkage Remote Center of Motion Mechanism for Medical Robotics,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 6459-6465, doi: 10.1109/IROS45743.2020.9341365.
J. Li, J. Wang, J. Zhao, and G. Wei, “Design, Dimensional Synthesis and Evaluation of a Novel Two-Degrees-of-Freedom Spherical Remote Center of Motion Mechanism for Minimally Invasive Surgery,” Journal of Mechanisms and Robotics, vol. 16, no. 5, 2023, doi: 10.1115/1.4062673.
E. Pezent, C. G. Rose, A. D. Deshpande and M. K. O'Malley, “Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation,” 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 2017, pp. 720-725, doi: 10.1109/ICORR.2017.8009333.
C. R. Carignan and R. D. Howard, “A skew-axis design for a 4-joint revolute wrist,” Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Washington, DC, USA, 2002, pp. 3636-3642 vol.4, doi: 10.1109/ROBOT.2002.1014274.
H. S. Lo and S. S. Q. Xie, “An upper limb exoskeleton with an optimized 4R spherical wrist mechanism for the shoulder joint,” 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon, France, 2014, pp. 269-274, doi: 10.1109/AIM.2014.6878090.
B. Kim and A. D. Deshpande, “An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation,” The International Journal of Robotics Research, vol. 36, no. 4, pp. 414-435, 2017, doi: 10.1177/0278364917706743.
A. Toedtheide, E. P. Fortunić, J. Kühn, E. R. Jensen and S. Haddadin, “A Wearable Force-Sensitive and Body-Aware Exoprosthesis for a Transhumeral Prosthesis Socket,” in IEEE Transactions on Robotics, vol. 39, no. 3, pp. 2203-2223, June 2023, doi: 10.1109/TRO.2023.3251947.
S. Christensen and S. Bai, “Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage,” Journal of Mechanisms and Robotics, vol. 10, no. 4, 2018, doi: 10.1115/1.4040132.
S. R. Hummel and C. Chassapis, “Configuration design and optimization of universal joints with manufacturing tolerances,” Mechanism and Machine Theory, vol. 35, no. 3, pp. 463-476, 2000, doi: https://doi.org/10.1016/S0094-114X(98)00092-5.
K. Kaneko et al., “Humanoid Robot HRP-5P: An Electrically Actuated Humanoid Robot With High-Power and Wide-Range Joints,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1431-1438, 2019, doi: 10.1109/LRA.2019.2896465.
A. Albers, C. Sander and A. Simsek, “Development of the actuation of a new wrist for the next generation of the humanoid Robot ARMAR,” 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 2010, pp. 677-682, doi: 10.1109/ICHR.2010.5686838.
C. Liu, T. -H. Wang, and P. -C. Lin, “Development of an Innovative 2-DOF Continuous–Rotatable Mechanism,” in Robotics and Mechatronics, 2020, pp. 125-137, doi: https://doi.org/10.1007/978-3-030-30036-4_11.
C. Liu, W. -J. Chang, and P. -C. Lin, “Development of a 2-DOF Spherical Joint with Extended Range of Motion Achieves Continuous Rotation,” Mechanism and Machine Theory, vol. 177, pp. 105057, 2022, doi: https://doi.org/10.1016/j.mechmachtheory.2022.105057.
D. Stewart, “A Platform with Six Degrees of Freedom,” Proceedings of the Institution of Mechanical Engineers, vol. 180, no. 1, pp. 371-386, 1965, doi: 10.1243/PIME_PROC_1965_180_029_02.
S. Bai, X. Li, and J. Angeles, “A review of spherical motion generation using either spherical parallel manipulators or spherical motors,” Mechanism and Machine Theory, vol. 140, pp. 377-388, 2019, doi: https://doi.org/10.1016/j.mechmachtheory.2019.06.012.
C. M. Gosselin, E. St. Pierre and M. Gagne, “On the development of the Agile Eye,” in IEEE Robotics & Automation Magazine, vol. 3, no. 4, pp. 29-37, Dec. 1996, doi: 10.1109/100.556480.
T. Li and S. Payandeh, “Design of spherical parallel mechanisms for application to laparoscopic surgery,” Robotica, vol. 20, no. 2, pp. 133-138, 2002, doi: 10.1017/S0263574701003873.
G. Wu, S. Caro, S. Bai, and J. Kepler, “Dynamic modeling and design optimization of a 3-DOF spherical parallel manipulator,” Robotics and Autonomous Systems, vol. 62, no. 10, pp. 1377-1386, 2014, doi: https://doi.org/10.1016/j.robot.2014.06.006.
A. Shintemirov, A. Niyetkaliyev and M. Rubagotti, “Numerical Optimal Control of a Spherical Parallel Manipulator Based on Unique Kinematic Solutions,” in IEEE/ASME Transactions on Mechatronics, vol. 21, no. 1, pp. 98-109, Feb. 2016, doi: 10.1109/TMECH.2015.2474707.
M. Djennane, S. E. Chehaidia, C. Yakoub, K. Mesbah, M. Aljohani and M. I. Mosaad, “Design, Analysis, and Implementation of a 3-DOF Spherical Parallel Manipulator,” in IEEE Access, vol. 12, pp. 52837-52850, 2024, doi: 10.1109/ACCESS.2024.3386549.
U. Koji, H. Yamada, H. Ishida, and S. Hirose, “Design of Large Motion Range and Heavy Duty 2-DOF Spherical Parallel Wrist Mechanism,” Journal of Robotics and Mechatronics, vol. 25, no. 2, pp. 294-305, 2013, doi: 10.20965/jrm.2013.p0294.
A. Cammarata, “Optimized design of a large-workspace 2-DOF parallel robot for solar tracking systems,” Mechanism and Machine Theory, vol. 83, pp. 175-186, 2015, doi: https://doi.org/10.1016/j.mechmachtheory.2014.09.012.
X. Duan, Y. Yang, and B. Cheng, “Modeling and Analysis of a 2-DOF Spherical Parallel Manipulator,” Sensors, vol. 16, no. 9, pp. 1485, 2016, doi: https://doi.org/10.3390/s16091485.
J. Sofka, V. Skormin, V. Nikulin, and D. J. Nicholson, “Omni-Wrist III - a new generation of pointing devices. Part I. Laser beam steering devices - mathematical modeling,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2, pp. 718-725, 2006, doi: 10.1109/TAES.2006.1642584.
K. Wu, J. Yu, G. Zong, and X. Kong, “A Family of Rotational Parallel Manipulators With Equal-Diameter Spherical Pure Rotation,” Journal of Mechanisms and Robotics, vol. 6, no. 1, 2013, doi: 10.1115/1.4025860.
D. Yoon, L. Kang, S. Manzoor, and Y. Choi, “The Improved DLR Wrist: Design and Analysis of 2-Degrees-of-Freedom Rotational Mechanism Using Spatial Antiparallelogram Linkages,” Journal of Mechanical Design, vol. 143, no. 5, 2020, doi: 10.1115/1.4048719.
H. Xiu et al., “Design, development, and clinical validation of a two degrees of freedom compliant ankle-foot prosthesis based on a 4-4r parallel mechanism,” Mechanism and Machine Theory, vol. 172, pp. 104818, 2022, doi: https://doi.org/10.1016/j.mechmachtheory.2022.104818.
R. Ghaedrahmati and C. Gosselin, “Kinematic analysis of a new 2-DOF parallel wrist with a large singularity-free rotational workspace,” Mechanism and Machine Theory, vol. 175, pp. 104942, 2022, doi: https://doi.org/10.1016/j.mechmachtheory.2022.104942.
Y. -J. Kim, J. -I. Kim and W. Jang, “Quaternion Joint: Dexterous 3-DOF Joint Representing Quaternion Motion for High-Speed Safe Interaction,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, pp. 935-942, doi: 10.1109/IROS.2018.8594301.
H. C. Hsieh, D. F. Chen, L. Chien, and C. C. Lan, “Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 5, pp. 2034-2045, 2017, doi: 10.1109/TMECH.2017.2717874.
D. Buongiorno, E. Sotgiu, D. Leonardis, S. Marcheschi, M. Solazzi and A. Frisoli, “WRES: A Novel 3 DoF WRist ExoSkeleton With Tendon-Driven Differential Transmission for Neuro-Rehabilitation and Teleoperation,” in IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2152-2159, July 2018, doi: 10.1109/LRA.2018.2810943.
M. B. Hong, G. T. Kim, and Y. H. Yoon, “ACE-Ankle: A Novel Sensorized RCM (Remote-Center-of-Motion) Ankle Mechanism for Military Purpose Exoskeleton,” Robotica, vol. 37, no. 12, pp. 2209-2228, 2019, doi: 10.1017/S0263574719000845.
G. Chen, J. Wang, H. Wang, C. Chen, V. Parenti-Castelli, and J. Angeles, “Design and validation of a spatial two-limb 3R1T parallel manipulator with remote center-of-motion,” Mechanism and Machine Theory, vol. 149, pp. 103807, 2020, doi: https://doi.org/10.1016/j.mechmachtheory.2020.103807.
U. Kim, D. -H. Lee, Y. B. Kim, D. -Y. Seok, J. So and H. R. Choi, “S-Surge: Novel Portable Surgical Robot with Multiaxis Force-Sensing Capability for Minimally Invasive Surgery,” in IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1717-1727, Aug. 2017, doi: 10.1109/TMECH.2017.2696965.
A. Degirmenci, F. L. Hammond, J. B. Gafford, C. J. Walsh, R. J. Wood and R. D. Howe, “Design and control of a parallel linkage wrist for robotic microsurgery,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, pp. 222-228, doi: 10.1109/IROS.2015.7353378.
L. -J. Zhang, Y. -W. Niu, Y. -Q. Li and Z. Huang, “Analysis of the workspace of 2-DOF spherical 5R parallel manipulator,” Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., Orlando, FL, USA, 2006, pp. 1123-1128, doi: 10.1109/ROBOT.2006.1641860.
X. Kong, “Forward displacement analysis of a 2-DOF RR-R̲R̲R-RRR spherical parallel manipulator,” Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, QingDao, China, 2010, pp. 446-451, doi: 10.1109/MESA.2010.5551993.
M. E. Hesar, M. T. Masouleh, A. Kalhor, M. B. Menhaj and N. Kashi, “Ball tracking with a 2-DOF spherical parallel robot based on visual servoing controllers,” 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 2014, pp. 292-297, doi: 10.1109/ICRoM.2014.6990916.
T. Essomba and L. Nguyen Vu, “Kinematic analysis of a new five-bar spherical decoupled mechanism with two-degrees of freedom remote center of motion,” Mechanism and Machine Theory, vol. 119, pp. 184-197, 2018, doi: https://doi.org/10.1016/j.mechmachtheory.2017.09.010.
A. Alamdar, F. Farahmand, S. Behzadipour, and A. Mirbagheri, “A geometrical approach for configuration and singularity analysis of a new non-symmetric 2DOF 5R Spherical Parallel Manipulator,” Mechanism and Machine Theory, vol. 147, pp. 103747, 2020, doi: https://doi.org/10.1016/j.mechmachtheory.2019.103747.
M. Wang, J. -A. Leal-Naranjo, M. Ceccarelli and S. Blackmore, “A Novel Two-Degree-of-Freedom Gimbal for Dynamic Laser Weeding: Design, Analysis, and Experimentation,” in IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 5016-5026, Dec. 2022, doi: 10.1109/TMECH.2022.3169593.
T. Essomba and W.-H. Wang, “Design of a spherical parallel mechanism with controllable center of rotation using a spherical reconfiguration linkage,” Mechanism and Machine Theory, vol. 199, pp. 105672, 2024, doi: https://doi.org/10.1016/j.mechmachtheory.2024.105672.
F. L. Hammond, R. D. Howe and R. J. Wood, “Dexterous high-precision robotic wrist for micromanipulation,” 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 2013, pp. 1-8, doi: 10.1109/ICAR.2013.6766578.
W. -A. Cao, S.-J. Xu, K. Rao, and T. Ding, “Kinematic Design of a Novel Two Degree-of-Freedom Parallel Mechanism for Minimally Invasive Surgery,” Journal of Mechanical Design, vol. 141, no. 10, 2019, doi: 10.1115/1.4043583.
H. Jeong, H. Shin and B. -J. Yi, “Development of a New 2-DOF Wrist Mechanism Using Reverse Motion Transmission,” in IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6947-6954, Oct. 2021, doi: 10.1109/LRA.2021.3096504.
J. Arata, Y. Kobayashi, R. Nakadate, S. Onogi, K. Kiguchi, and M. Hashizume, “Spherical and Non-Spherical Combined Two Degree-of-Freedom Rotational Parallel Mechanism for a Microsurgical Robotic System,” Journal of Robotics and Mechatronics, vol. 30, no. 6, pp. 846-854, 2018, doi: 10.20965/jrm.2018.p0846.
Z. Tao and Q. An, “Interference analysis and workspace optimization of 3-RRR spherical parallel mechanism,” Mechanism and Machine Theory, vol. 69, pp. 62-72, 2013, doi: https://doi.org/10.1016/j.mechmachtheory.2013.05.004.
M. Badescu and C. Mavroidis, “Workspace Optimization of 3-Legged UPU and UPS Parallel Platforms With Joint Constraints,” Journal of Mechanical Design, vol. 126, no. 2, pp. 291-300, 2004, doi: 10.1115/1.1667922.
S. Bai, “Optimum design of spherical parallel manipulators for a prescribed workspace,” Mechanism and Machine Theory, vol. 45, no. 2, pp. 200-211, 2010, doi: https://doi.org/10.1016/j.mechmachtheory.2009.06.007.
L. -T. Schreiber and C. Gosselin, “Passively Driven Redundant Spherical Joint With Very Large Range of Motion,” Journal of Mechanisms and Robotics, vol. 9, no. 3, 2017, doi: 10.1115/1.4035802.
J. Flight and C. Gosselin, “Kinematically redundant (6+2)-dof HEXA robot for singularity avoidance and workspace augmentation,” Mechanism and Machine Theory, vol. 195, pp. 105615, 2024, doi: https://doi.org/10.1016/j.mechmachtheory.2024.105615.
G. Gogu, “Fully-Isotropic Over-Constrained Parallel Wrists with Two Degrees of Freedom,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 4014-4019, doi: 10.1109/ROBOT.2005.1570735.
B. Bian and L. Wang, “Design, Analysis, and Test of a Novel 2-DOF Spherical Motion Mechanism,” in IEEE Access, vol. 8, pp. 53561-53574, 2020, doi: 10.1109/ACCESS.2020.2981548.
S. Yang, P. Chen, D. Wang, Y. Yu, and Y. Liu, “Design and Analysis of a 2-DOF Actuator with Variable Stiffness Based on Leaf Springs,” Journal of Bionic Engineering, vol. 19, no. 5, pp. 1392-1404, Sept. 2022, doi: 10.1007/s42235-022-00205-0.
H. Jeong, S. Baek, W. Kim and B. -J. Yi, “Development of a Spherical 2-DOF Wrist Employing Spatial Parallelogram Structure,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 6434-6439, doi: 10.1109/IROS45743.2020.9340844.
Z. Wang, W. Zhang, and X. Ding, “Design and analysis of a novel mechanism with a two-DOF remote centre of motion,” Mechanism and Machine Theory, vol. 153, pp. 103990, 2020, doi: https://doi.org/10.1016/j.mechmachtheory.2020.103990.
C. Liu and P. C. Lin, “Development of a 2-DOF Singularity-Free Spherical Parallel Remote Center of Motion Mechanism With Extensive Range of Motion,” IEEE Robotics and Automation Letters, vol. 9, no. 6, pp. 5663-5670, 2024, doi: 10.1109/LRA.2024.3396113.
K. Erbatur et al., “SURALP: A new full-body humanoid robot platform,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 2009, pp. 4949-4954, doi: 10.1109/IROS.2009.5354276.
Z. Yu et al., “Design and Development of the Humanoid Robot BHR-5,” Advances in Mechanical Engineering, vol. 6, pp. 852937, 2014, doi: 10.1155/2014/852937.
O. Stasse et al., “TALOS: A new humanoid research platform targeted for industrial applications,” 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham, UK, 2017, pp. 689-695, doi: 10.1109/HUMANOIDS.2017.8246947.
M. B. Hong and Y. -H. Jo, “Design of a Novel 4-DOF Wrist-Type Surgical Instrument With Enhanced Rigidity and Dexterity,” in IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 500-511, April 2014, doi: 10.1109/TMECH.2013.2245143.
M. Bazman, N. Yilmaz, and U. Tumerdem, “An Articulated Robotic Forceps Design With a Parallel Wrist-Gripper Mechanism and Parasitic Motion Compensation,” Journal of Mechanical Design, vol. 144, no. 6, 2022, doi: 10.1115/1.4053465.
J. J. Craig, Introduction to Robotics : Mechanics and Control, 3rd ed. Harlow, Essex: Pearson, 2014.
J. J. Uicker, G. R. Pennock, and J. E. Shigley, Theory of machines and mechanisms, 5th ed. New York: Oxford University Press, 2017.
K. Lynch and F. C. Park, Modern Robotics : mechanics, planning, and control, Cambridge, UK: Cambridge University Press, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95929-
dc.description.abstract本研究致力於二自由度球型機構開發,其中二自由度為可驅動之旋轉自由度,且旋轉軸相互正交。機構設計分為兩個方向,分別是串聯式機構與並聯式機構。針對串聯式機構的設計,旨在降低兩個連接的桿件,對另一方旋轉範圍的限制,進而擴增工作範圍。另一方面,針對並聯式機構的設計,旨在引進遠端運動中心(Remote Center of Motion, RCM)的運動方式,來移除萬向關節與球關節作為連接點的使用,以此增加末端平台工作空間。
本篇內容講述針對這兩種型式的機構設計流程,並推導對應機構的順、逆向運動學,再經由實作來驗證機構的表現。其中,串聯式機構有進行額外的動力學分析與模擬。最後,鑒於兩種型式的機構皆呈現球型的工作空間,本篇使用物體雅可比(Body Jacobian)與其可操作性(Manipulability)這項指標,來呈現末端點移動的不同之處,更進一步揭露出機構在球面上是否存在奇異點位置(Singular Point),造成末端無法移動的狀況。機構實作後其實驗結果證明本篇所提出之設計的可行性。而操作性指標顯示出,串聯式球型機構具有較大的工作空間,但末端點會在特定位置無法移動;反之,並聯式球型機構的工作空間較小,但末端點在球面任何位置都可以移動。
zh_TW
dc.description.abstractThis dissertation focuses on developing a spherical mechanism with two active rotations (2-DOF) whose rotation axes are placed orthogonally. The mechanism design is divided into two aspects: serial and parallel types. The design for the serial type of mechanism aims to reduce the structural limitations caused by the connection method of two linkages, thereby increasing the range of motion of two DOFs. On the other hand, the design for the parallel type of mechanism aims to incorporate the concept of the Remote Center of Motion (RCM) to eliminate universal joints or ball joints as connection components, expanding the workspace of the end effector plate.
This dissertation describes the process of designing mechanisms, deriving both forward and inverse kinematics, and implementing prototypes to assess performance. Additionally, the dynamics is derived and simulated for the serial type mechanism. Eventually, because both mechanisms have a spherical workspace, the Body Jacobian and Manipulability are displayed to show the differences in their movement capabilities. The results illustrate that the serial type mechanism provides a larger workspace with singular positions; conversely, the parallel type mechanism offers a smaller workspace without a singular position, meaning that the parallel type mechanism is better at moving the end effector across the workspace.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:11:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-25T16:11:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments I
中文摘要 II
Abstract III
Contents IV
List of Figures VI
List of Tables XI
CHAPTER 1 Introduction 1
1.1 Literature Review 2
1.1.1 Spherical Serial Mechanism (SSM) 2
1.1.2 Spherical Parallel Mechanism (SPM) 5
1.2 Motivation 11
1.3 Contributions 11
1.4 Structure of the Dissertation 12
CHAPTER 2 2-DOF Spherical Serial Mechanism 13
2.1 Kinematics and Workspace Analysis 14
2.1.1 Forward and Inverse Kinematics 16
2.1.2 Workspace Analysis 18
2.2 Mechanism and Mechatronic Design 25
2.2.1 Mechanism Design 25
2.2.2 Mechatronic System 37
2.3 Dynamics Analysis 41
2.3.1 Model Derivation 41
2.3.2 Simulation 47
2.4 Experimental Validation 59
2.5 Conclusion of 2-DOF SSM-VDS 71
CHAPTER 3 2-DOF Spherical Parallel Mechanism 72
3.1 Mechanism Design of the 2-DOF SPRCMM 72
3.2 Forward and Inverse Kinematics 83
3.3 Experimental Validation 88
3.4 Conclusion of 2-DOF SPRCMM 95
CHAPTER 4 Jacobian and Manipulability Analysis 96
4.1 Jacobian and Manipulability of 2-DOF SSM-VDS 98
4.2 Jacobian and Manipulability of 2-DOF SPRCMM 103
4.3 Conclusion 109
CHAPTER 5 Conclusion and Future Work 110
5.1 Conclusion 110
5.2 Future Work 111
Reference 112
Appendix 123
A. Forward Kinematics of 2-DOF SSM-VDS 123
B. Dynamics of 2-DOF SSM-VDS 124
C. Tables provided with maximum error 131
-
dc.language.isoen-
dc.title二自由度球型機構設計zh_TW
dc.titleDesign of 2-DOF Spherical Mechanismsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee李志中;連豊力;顏炳郎;翁慶昌;林紀穎;徐冠倫zh_TW
dc.contributor.oralexamcommitteeJyh-Jone Lee;Feng-Li Lian;Ping-Lang Yen;Ching-Chang Wong ;Chi-Ying Lin;Kuan-Lun Hsuen
dc.subject.keyword二自由度球型機構,串聯式球型機構,並聯式球型機構,遠端運動中心,平行四邊形機構,可操作性,zh_TW
dc.subject.keyword2-DOF spherical mechanism,spherical serial mechanism (SSM),spherical parallel mechanism (SPM),remote center of motion (RCM),parallelogram mechanism,manipulability,en
dc.relation.page131-
dc.identifier.doi10.6342/NTU202401390-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-07-21-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
18.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved