請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95928
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐振哲 | zh_TW |
dc.contributor.advisor | Cheng-Che Hsu | en |
dc.contributor.author | 陳建堤 | zh_TW |
dc.contributor.author | Jian-Ti Chen | en |
dc.date.accessioned | 2024-09-25T16:10:48Z | - |
dc.date.available | 2024-09-26 | - |
dc.date.copyright | 2024-09-25 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | 1. Pappas, D., "Status and potential of atmospheric plasma processing of materials." Journal of Vacuum Science & Technology A, 2011. 29(2).
2. Tachibana, K., "Current status of microplasma research." Ieej Transactions on Electrical and Electronic Engineering, 2006. 1(2): p. 145-155. 3. Bruggeman, P.J., F. Iza, and R. Brandenburg, "Foundations of atmospheric pressure non-equilibrium plasmas." Plasma Sources Science & Technology, 2017. 26(12). 4. Li, Y.M., et al., "Microplasma characteristics of direct-current atmospheric pressure glow discharge in dependence of gap distance and discharge current." Journal of Physics D-Applied Physics, 2024. 57(12). 5. Xu, S.F., X.X. Zhong, and A. Majeed, "Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air." Physics of Plasmas, 2015. 22(3). 6. Khoja, A.H., et al., "Recent developments in catalyst synthesis using DBD plasma for reforming applications." International Journal of Hydrogen Energy, 2021. 46(29): p. 15367-15388. 7. Yuan, X., J. Tang, and Y.X. Duan, "Microplasma Technology and Its Applications in Analytical Chemistry." Applied Spectroscopy Reviews, 2011. 46(7): p. 581-605. 8. Matsusaka, S., "Control of particle charge by atmospheric pressure plasma jet (APPJ): A review." Advanced Powder Technology, 2019. 30(12): p. 2851-2858. 9. Lee, O.J., et al., "An experimental burn wound-healing study of non-thermal atmospheric pressure microplasma jet arrays." Journal of Tissue Engineering and Regenerative Medicine, 2016. 10(4): p. 348-357. 10. Kumar, A., et al., "Cold atmospheric plasma technology for removal of organic micropollutants from wastewater-a review." European Physical Journal D, 2021. 75(11). 11. Adamovich, I., et al., "The 2017 Plasma Roadmap: Low temperature plasma science and technology." Journal of Physics D-Applied Physics, 2017. 50(32). 12. Kovacevic, V.V., et al., "Low-temperature plasmas in contact with liquids-a review of recent progress and challenges." Journal of Physics D-Applied Physics, 2022. 55(47). 13. Zhao, X.Y. and Y.H. Tian, "Sustainable nitrogen fixation by plasma-liquid interactions." Cell Reports Physical Science, 2023. 4(10). 14. Vanraes, P. and A. Bogaerts, "Plasma physics of liquids-A focused review." Applied Physics Reviews, 2018. 5(3). 15. Bruggeman, P. and C. Leys, "Non-thermal plasmas in and in contact with liquids." Journal of Physics D-Applied Physics, 2009. 42(5). 16. Machala, Z., I. Jedlovsky, and V. Martisovits, "DC discharges in atmospheric air and their transitions." Ieee Transactions on Plasma Science, 2008. 36(4): p. 918-919. 17. Rezaei, F., et al., "Applications of Plasma-Liquid Systems: A Review." Materials, 2019. 12(17). 18. Mariotti, D., et al., "Plasma-Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering." Plasma Processes and Polymers, 2012. 9(11-12): p. 1074-1085. 19. Chen, Q., J.S. Li, and Y.F. Li, "A review of plasma-liquid interactions for nanomaterial synthesis." Journal of Physics D-Applied Physics, 2015. 48(42). 20. Yang, Y., Y.I. Cho, and A. Fridman, Plasma Discharge in Liquid: Water Treatment and Applications. Plasma Discharge in Liquid: Water Treatment and Applications. 2012. 1-175. 21. Cherkasov, N., A.O. Ibhadon, and P. Fitzpatrick, "A review of the existing and alternative methods for greener nitrogen fixation." Chemical Engineering and Processing-Process Intensification, 2015. 90: p. 24-33. 22. Zamora-Ledezma, C., et al., "Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods." Environmental Technology & Innovation, 2021. 22. 23. Bansod, B., et al., "A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms." Biosensors & Bioelectronics, 2017. 94: p. 443-455. 24. Chen, Q.Y., et al., "Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates." Journal of Water Process Engineering, 2018. 26: p. 289-300. 25. Lukyanenko, K.A., et al., "Handheld Enzymatic Luminescent Biosensor for Rapid Detection of Heavy Metals in Water Samples." Chemosensors, 2019. 7(1). 26. Ingale, S.A. and F. Seela, "A Ratiometric Fluorescent On-Off Zn2+ Chemosensor Based on a Tripropargylamine Pyrene Azide Click Adduct." Journal of Organic Chemistry, 2012. 77(20): p. 9352-9356. 27. Cai, Y., et al., "Metal Carbonyl Vapor Generation Coupled with Dielectric Barrier Discharge To Avoid Plasma Quench for Optical Emission Spectrometry." Analytical Chemistry, 2015. 87(2): p. 1366-1372. 28. Liu, X.Y., et al., "A portable electromagnetic heating-microplasma atomic emission spectrometry for direct determination of heavy metals in soil." Talanta, 2020. 219. 29. Pavlinák, D., et al., "Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges." Applied Physics Letters, 2014. 105(15). 30. Li, M.T., et al., "Point Discharge Microplasma Optical Emission Spectrometer: Hollow Electrode for Efficient Volatile Hydride/Mercury Sample Introduction and 3D-Printing for Compact Instrumentation." Analytical Chemistry, 2019. 91(11): p. 7001-7006. 31. Cserfalvi, T. and P. Mezei, "Direct solution analysis by glow-discharge-electrolyte-cathode discharge spectrometry." Journal of Analytical Atomic Spectrometry, 1994. 9(3): p. 345-349. 32. Zhang, Y.R., et al., "Review of miniaturized and portable optical emission spectrometry based on microplasma for elemental analysis." Trac-Trends in Analytical Chemistry, 2021. 144. 33. Shirai, N., et al., "Formation of ethanol filament and its pulsed discharge for microplasma generation." Japanese Journal of Applied Physics, 2008. 47(4): p. 2244-2249. 34. Shirai, N., et al., "Atmospheric DC Glow Microplasmas Using Miniature Gas Flow and Electrolyte Cathode." Japanese Journal of Applied Physics, 2009. 48(3). 35. Khoai, D.V., et al., "Development of high sensitive liquid electrode plasma - Atomic emission spectrometry (LEP-AES) integrated with solid phase pre-concentration." Microelectronic Engineering, 2013. 111: p. 343-347. 36. Kitano, A., et al., "Highly Sensitive Elemental Analysis for Cd and Pb by Liquid Electrode Plasma Atomic Emission Spectrometry with Quartz Glass Chip and Sample Flow." Analytical Chemistry, 2011. 83(24): p. 9424-9430. 37. Yamamoto, T. Micro Emission Products. [cited 2024 05]; Available from: https://www.micro-emission.com/products/index.html. 38. Zhu, Y.B., R.E. Russo, and G.C.Y. Chan, "Temporal characterization of fundamental plasma parameters in pulsed liquid electrode plasma (LEP) optical emission spectrometry." Spectrochimica Acta Part B-Atomic Spectroscopy, 2021. 179. 39. Chang, H.W. and C.C. Hsu, "Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior." Plasma Sources Science & Technology, 2011. 20(4). 40. Chang, H.W. and C.C. Hsu, "Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour." Journal of Physics D-Applied Physics, 2012. 45(25). 41. Chang, H.W. and C.C. Hsu, "Plasmas in Saline Solution Sustained Using Bipolar Pulsed Power Source: Tailoring the Discharge Behavior Using the Negative Pulses." Plasma Chemistry and Plasma Processing, 2013. 33(3): p. 581-591. 42. Hsieh, A.H., H.W. Chang, and C.C. Hsu, "The bubble to jetting transition mechanism of plasmas in NaNO3 solutions sustained by pulsed power." Journal of Physics D-Applied Physics, 2012. 45(41). 43. Wang, C.Y. and C.C. Hsu, "Characterization of plasma in aqueous solution using bipolar pulsed power: Tailoring plasma and optical emission with implication for detecting lead." Plasma Processes and Polymers, 2020. 17(2). 44. Wang, C.Y. and C.C. Hsu, "Online, Continuous, and Interference-Free Monitoring of Trace Heavy Metals in Water Using Plasma Spectroscopy Driven by Actively Modulated Pulsed Power." Environmental Science & Technology, 2019. 53(18): p. 10888-10896. 45. Greda, K., et al., "Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn." Analytical Chemistry, 2016. 88(17): p. 8812-8820. 46. Ltd, M.W.M. PDV6000ultra. 2012 [cited 2024 06]; Available from: https://www.modernwater.com/assets/manuals/PDV6000ultra%20operation%20manual.issue%201.5.pdf. 47. Technology, A. MAS-G1. [cited 2024 6]; Available from: https://www.accusensing.com/product_en_MASG1.html. 48. Douvris, C., et al., "How ICP-OES changed the face of trace element analysis: Review of the global application landscape." Science of the Total Environment, 2023. 905. 49. Mulindi, J. Flame Atomic Absorption Spectrometry. 2023 [cited 2024 05]; Available from: https://www.biomedicalinstrumentationsystems.com/flame-atomic-absorption-spectrometry/. 50. Geesink, H., I. Jerman, and D. Meijer, "Water, The Cradle of Life via its Coherent Quantum Frequencies." Water, 2020. 11: p. 78. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95928 | - |
dc.description.abstract | 電漿被稱為物質的第四態,其高能量與高反應性的特性被廣泛應用於各種領域,而當電漿與水溶液接觸或產生在水中時,則被稱為水溶液電漿,藉由電漿與水溶液間的化學反應產生許多高反應性物質,並利用這些高反應物質來達到材料合成、分析檢測等應用。本研究以白金電極為電路之正極,水溶液作為負極,並利用微型電腦與微型控制器結合作為控制系統,配合高壓電源製造脈衝式直流高壓以產生電漿,目標為開發一線上重金屬檢測平台,實現即時檢測多種重金屬。研究內容分為三個部分,分別為水對電漿光譜強度之影響、電極狀態之影響、操作參數之研究。
第一部分為水對電漿光譜強度之影響,由於水會吸收某範圍內之光強度,本研究藉由調控電極與光纖間距進行強度上的分析,以找出較合適之間距,並比較了不同間距下對於重金屬檢測的影響,發現縮短間距有助於鋅及鎳的檢測。此外,由於電漿於電極上方加熱後產生之氣泡內生成,故可藉由被吸收之光強度分析各條件下產生之氣泡大小,結果顯示當單一脈衝長度較短時,所生成之氣泡較小,而加大電壓則使氣泡較大。 第二部分為電極狀態之影響,為實現遠端檢測,我們必須確保長時間下能夠維持一定的檢測水準,故電極狀態之衰退成為了其中一個課題。我們研究了在不同脈衝條件下產生之電漿對於電極表面的損傷以及對於所得到之光譜的影響,發現較短脈衝長度會使電極表面周圍受損較為嚴重,且隨著電極狀態衰退,鉛之放光強度也隨之變弱。 第三部分為操作參數之研究,將此系統之電極尺寸、單一脈衝長度以及電壓進行調控,觀察其產生電漿時所伴隨之電訊號,並分析調控這些參數所產生之電漿對於銅、鎳、鉛與鋅四種重金屬所得到之光譜影響,期望能達到最佳之檢測效果,將檢測能力以偵測極限與線性程度作為指標進行比較。結果顯示鉛及鋅適合較大之電極尺寸與較低電壓,而銅及鎳適合較小之電極尺寸與較長單一脈衝長度。 | zh_TW |
dc.description.abstract | Plasma is known as the fourth state of matter and is characterized by its high energy and reactivity, making it widely applicable in various fields. When plasma interacts with solutions, it is called plasma in solution. Through chemical reactions between plasma and the solution, numerous highly reactive species are produced, which are used for material synthesis and analytical detection applications. This study uses a platinum wire as the positive electrode and solution as the negative electrode, utilizing a microcomputer and microcontroller as a control system. Combined with a high voltage power supply, this system generates pulsed DC high voltage to ignite plasma. We aim to develop an online heavy metal detection platform for real-time detection of multiple heavy metals. This study consists of three parts: the effect of water on plasma spectral intensity, the impact of electrode conditions, and parametric studies.
The first part is the effect of water on plasma spectral intensity. Since water absorbs light intensity within a certain range, this study analyzes the intensity by adjusting the distance between the electrodes and the optical fiber to find an optimal distance. It compares the effects of different distances on the detection of heavy metals and finds that shortening the distance helps in the detection of zinc and nickel. Additionally, because the plasma is generated within bubbles formed above the electrode after heating, the size of the bubbles can be analyzed by the absorbed light intensity under various conditions. The results show that shorter single pulse lengths produce smaller bubbles, while increasing the voltage results in larger bubbles. The second part is the impact of electrode conditions. For remote detection, it is important to maintain detection capability over a long time. Therefore, electrode decay is a significant issue. This study investigates the damage to the electrode surface caused by plasma under different pulsed conditions and its effect on the resulting spectra. The results show that shorter pulse lengths cause more severe damage to the area around the electrode surface, and as the electrode condition decays, the emission intensity of lead becomes weaker. The third part is the parametric studies. This system's electrode size, single pulse duration, and voltage are adjusted to observe the electrical signals during plasma generation. The influence of these parameters on the spectra of these four heavy metals: copper, nickel, lead and zinc is analyzed to achieve optimal detection results. Detection capability is compared based on detection limits and linearity. The results show that larger electrode sizes and lower voltages are suitable for lead and zinc, while smaller electrode sizes and longer single pulse lengths are suitable for copper and nickel. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:10:48Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-25T16:10:48Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目 次 v 圖 次 viii 表 次 xiii 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第 2 章 文獻回顧 3 2.1 電漿之簡介 3 2.1.1 電漿產生機制與分類 3 2.1.2 微電漿系統之簡介 6 2.2 水溶液電漿系統之簡介 12 2.2.1 水溶液電漿系統之架構 13 2.2.2 水溶液電漿系統之應用 19 2.3 重金屬檢測方法與目前技術 21 2.3.1 現行常用之檢測方法22 21 2.3.2 微電漿光譜法 23 2.3.3 市售重金屬檢測儀器 31 第 3 章 實驗設備與架構 36 3.1 脈衝式電源驅動水溶液電漿之架構 36 3.1.1 水溶液電漿產生單元 37 3.1.2 電極與光纖間距之調控 37 3.1.3 調控式脈衝電源模組 38 3.1.4 水溶液成分 40 3.2 檢測設備 41 3.3 光譜數據分析 43 第 4 章 實驗結果與討論 47 4.1 水對電漿光譜強度吸收之影響 47 4.1.1 光纖位置及其與電極間距分析 47 4.1.2 電極與光纖間距對於檢測鋅之影響 50 4.1.3 各操作條件與氣泡大小之關係 52 4.2 電極狀態之影響 56 4.2.1 操作條件對電極表面之影響 56 4.2.2 重金屬光譜訊號對電極狀態之響應 58 4.3 水溶液電漿之操作參數研究 61 4.3.1 電極尺寸對重金屬光譜訊號之影響 61 4.3.2 不同條件下之電訊號分析 65 4.3.3 電訊號對重金屬光譜訊號之影響 67 4.3.4 脈衝間隔時間之影響 69 4.3.5 重金屬定量分析 73 第 5 章 結論與未來展望 79 第 6 章 參考文獻 82 | - |
dc.language.iso | zh_TW | - |
dc.title | 以微電漿光譜法檢測水中重金屬之系統硬體優化與操作參數之研究 | zh_TW |
dc.title | Hardware Optimization and Parametric Studies on Plasma Spectroscopy Using Plasmas in Solution for Heavy Metal Detection in Water | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳建彰;陳奕君 | zh_TW |
dc.contributor.oralexamcommittee | Jian-Zhang Chen;I-Chun Cheng | en |
dc.subject.keyword | 水溶液電漿,重金屬線上即時檢測,重金屬定量分析,電漿放射光譜,參數研究,電極狀態, | zh_TW |
dc.subject.keyword | Plasma in solution,online and real-time heavy metal detection,heavy metal quantitative analysis,plasma optical emission spectroscopy,parametric study,electrode conditions, | en |
dc.relation.page | 86 | - |
dc.identifier.doi | 10.6342/NTU202403157 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 6.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。