請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95926
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林乃君 | zh_TW |
dc.contributor.advisor | Nai-Chun Lin | en |
dc.contributor.author | 蔡佳祐 | zh_TW |
dc.contributor.author | Jia-You Tsai | en |
dc.date.accessioned | 2024-09-25T16:10:10Z | - |
dc.date.available | 2024-10-04 | - |
dc.date.copyright | 2024-09-25 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | 王梓傑。2017。施用內生細菌增加番茄生長及抗生物性逆境之探討。碩士論文。國立臺灣大學植物醫學碩士學位學程。臺北。臺灣。
李阿嬌。2006。番茄品種介紹。桃園區農業專訊 56:15-18。 李美娟。2004。番茄健康管理。2004果菜健康管理研討會專集 83-93。 林浩潭。1999。施肥與土壤鹽份累積。青蒜綜合管理 17-24。 洪瑛穗、周明燕、郭宏遠、劉明宗、李美娟。2019。番茄生產、抗病育種及品種育成概況。種苗科技專訊 105:2-5。 袁秋英、謝奉家。2021。植物生物刺激素 (plant biostimulants) 之特性與歐美立法管理之現況。臺灣農藥科學專論 11:1-27。 張育誠。2020。液化澱粉芽孢桿菌 Bacillus amyloliquefaciens HS3 分離株可經由水楊酸及葉部型硫鐵蛋白介導的路徑增強植物對於生物性及非生物性逆境的耐受能力。碩士論文。國立臺東大學生命科學系。臺東。臺灣。 梁雁茹、何坤益、王瓊華、洪雅惠、廖一光。2011。臺灣西南沿海鹽田整治與植栽復育。環境綠化 57:13-23。 陳正次、盧淑芬、陳福全、黃永光。2009。番茄種原蒐集及利用。農業生技產業應用研討會專輯 1-20。 陳正次。2013。番茄品種特性簡介。設施小果番茄生產概況資訊。小果番茄產銷技術與經驗分享研討會專輯 3-12。 陳玉芹、聶姬鋒、客紹英、陳桂平、宋麗莎。2008。不同倍性菘藍超氧化物岐化酶的活性變化。唐山師範學院報 30:47。 陳佳翰。2019。提昇番茄抗生物及非生物逆境之內生菌特性分析研究。碩士論文。國立臺灣大學植物醫學碩士學位學程。臺北。臺灣。 葉昕祐、韋煙灶。2008。雲林縣口湖地區土壤鹽化現象的研究。地理研究 48:1-24。 農業部動植物防疫檢疫署。2021。農藥資訊服務網。檢索日期:2024 年 7 月 5 號。檢自:https://pesticide.aphia.gov.tw/information/ 劉依昌、黃木蘭、陳正次、盧子淵、吳雅芳。2013。設施小果番茄生產概況資訊。小果番茄產銷技術與經驗分享研討會專輯 17-25。 劉依昌、黃瑞彰、蔡孟旅、黃秀雯。2016。小果番茄設施栽培及健康管理技術。台南區農業改良場專刊 164:1-48。 劉依昌。2017。臺灣番茄的品種演進及迷思。科學發展 533:42-47。 蔣永正。2011。植物對環境逆境之調控與應用。農政與農情 231。 賴森雄。1993。臺灣的番茄生產概況。臺灣蔬菜產業演進四十年專集 277-292。 羅筱君。2021。應用幾丁寡醣防治草莓病害之研究。碩士論文。臺灣大學植物醫學碩士學位學程。臺北。臺灣。 Abbas, R., S. Rasul, K. Aslam, M. Baber, M. Shahid, F. Mubeen, and T. Naqqash. 2019. Halotolerant PGPR: A hope for cultivation of saline soils. Journal of King Saud University-Science. 31: 1195-1201. Acosta-Motos, J. R., M. F. Ortuño, A. Bernal-Vicente, P. Diaz-Vivancos, M. J. Sanchez-Blanco, and J. A. Hernandez. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy Journal. 7: 18. Adhikary, A., R. Kumar, R. Pandir, P. Bhardwaj, R. Wusirika, and S. Kumar. 2019. Pseudomonas citronellolis; a multi-metal resistant and potential plant growth promoter against arsenic (V) stress in chickpea. Plant Physiology and Biochemistry. 142: 179-192. Adhikary, A., R. Saini, R. Kumar, I. Singh, W. Ramakrishna, and S. Kumar. 2022. Pseudomonas citronellolis alleviates arsenic toxicity and maintains cellular homeostasis in chickpea (Cicer arietinum L.). Plant Physiology and Biochemistry. 184: 26-39. Agwu, E., C. Ezihe, and G. Kaigama. 2024. Antioxidant roles/functions of ascorbic acid (Vitamin C). A. Kükürt, and V. Gelen (Eds.). Ascorbic acid - biochemistry and functions. IntechOpen. Chapter 4. Ahanger, M. A., M. Ashraf, A. Bajguz, and P. Ahmad. 2018. Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. Journal of Plant Growth Regulation. 37: 1007-1024. Aibdin, Z., M. Nafees, M. Rizwan, S. Ahmad, S. Ali, W. A. Obaid, M. S. Alsubeie, D. B. E. Darwish, and A. H. A. Abeed. 2022. Combined effect of Zinc lysine and biochar on growth and physiology of wheat (Triticum aestivum L.) to alleviate salinity stress. Frontiers in Plant Science. 13: 1017282. Akita, H., Z.-I. Kimura, and T. Hoshino. 2019. Pseudomonas humi sp. nov., isolated from leaf soil. Archives of Microbiology. 201: 245-251. Alexander, D. B., and D. Zuberer. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils. 12: 39-45. Allito, B. B., E. M. Nana, and A. A. Alemneh. 2015. Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: A review. Molecular Soil Biology. 6: 1-6. Al-Tamimi, N., C. Brien, H. Oakey, B. Berger, S. Saade, Y. S. Ho, S. M. Schmöckel, M. Tester, and S. Negrão. 2016. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications. 17: 13342. Alzahrani, F. O. 2021. Metabolic engineering of osmoprotectants to elucidate the mechanism(s) of salt stress tolerance in crop plants. Planta. 253: 24. An, R., Q. J. Chen, M. F. Chai, P. L. Lu, Z. Su, Z. X. Qin, J. Chen, and X. C. Wang. 2007. AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. The Plant Journal. 49: 718-728. Andreani, N. A., M. E. Martino, L. Fasolato, L. Carraro, F. Montemurro, R. Mioni, P. Bordin, and B. Cardazzo. 2014. Tracking the blue: A MLST approach to characterise the Pseudomonas fluorescens group. Food Microbiology. 39: 116-126. Apse, M. P., and E. Blumwald. 2007. Na+ transport in plants. FEBS Letters. 581: 2247-2254. Aras, S., Ş. Arıkan, M. İpek, A. Eşitken, L. Pırlak, M. F. Dönmez, and M. Turan. 2018. Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiologiae Plantarum. 40: 120. Arora, R., D. S. Pitchay, and B. C. Bearce. 1998. Water-stress-induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins? Physiologia Plantarum. 103: 24-34. Arora, N. K., T. Fatima, J. Mishra, I. Mishra, S. Verma, R. Verma, M. Verma, A. Bhattacharya, P. Verma, P. Mishra, and C. Bharti. 2020. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research. 26: 69-82. Ayers, R. S. 1977. Quality of water for irrigation. Journal of Irrigation and Drainage Division. 103: 135-154. Azarmi, R., R. D. Taleshmikail, and A. Gikloo. 2010. Effects of salinity on morphological and physiological changes and yield of tomato in hydroponic system. Journal of Food, Agriculture & Environment. 8: 573-576. Barragán, V., E. O. Leidi, Z. Andrés, L. Rubio, A. De Luca, J. A. Fernández, B. Cubero, and J. M. Pardo. 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis [W] [OA]. The Plant Cell. 24: 1127-1142. Barrs, H. D., and P. E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences. 15: 413-428. Bassil, E., M. A. Ohto, T. Esumi, H. Tajima, Z. Zhu, O. Cagnac, M. Belmonte, Z. Peleg, T. Yamaguchi, and E. Blumwald. 2011. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. The Plant Cell. 23: 224-239. Basu, S., A. Kumar, I. Benazir, and G. Kumar. 2021. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Plant Physiology and Biochemistry. 171: 502-519. Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39: 205-207. Battilani, A., M. H. Prieto, C. Argerich, C. Campillo, and V. Cantore. 2012. Tomato. P. Steduto, T. C. Hsiao, E. Fereres, and D. Raes (Eds.). Crop Yield Response to Water. Irrigation and Drainage Paper No. 66. Food and Agriculture Organization of the United Nations. 192-198. Bayubaskara, M. F., M. Ohme-Takagi, and M. T. Chan. 2023. Optimal culture conditions of Piriformospora indica for volatile compound release to promote effective plant growth. Plant Biotechnology (Tokyo). 40: 117-121. Bhattacharya, D., P. M. Sarma, S. Krishnan, S. Mishra, and B. Lal. 2003. Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Applied and Environmental Microbiology. 69: 1435-1441. Blumwald, E., G. S. Aharon, and M. P. Apse. 2000. Sodium transport in the plant cells. Biochimica et Biophysica Acta. 1465: 140-151. Bonaterra, A., E. Badosa, N. Daranas, J. Francés, G. Roselló, and E. Montesinos. 2022. Bacteria as biological control agents of plant diseases. Microorganisms. 10: 1759. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254. Brett, C. L., M. Donowitz, and R. Rao. 2005. The evolutionary origins of eukaryotic sodium/proton exchangers. American Journal of Physiology - Cell Physiology. 288: C223-C239. Cao, W. H., J. Liu, X. J. He, R. L. Mu, H. L. Zhou, S. Y. Chen, and J. S. Zhang. 2007. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiology. 143: 707-719. Cardinale, M., S. Ratering, C. Suarez, A. M. Z. Montoya, R. Geissler-Plaum, and S. Schnell. 2015. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiological Research. 181: 22-32. Castiglioni, P., E. Bell, A. Lund, A. F. Rosenberg, M. Galligan, B. S. Hinchey, S. Bauer, D. E. Nelson, and R. J. Bensen. 2018. Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. Plant Direct. 2: e00040. Chanroj, S., G. Wang, K. Venema, M. W. Zhang, C. F. Delwiche, and H. Sze. 2012. Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Frontiers in Plant Science. 3: 25. Chen, H., and J. G. Jiang. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews. 18: 309-319. Chen, J., F. Yu, Y. Liu, C. Du, X. Li, S. Zhu, X. Wang, W. Lan, P. L. Rodriguez, X. Liu, D. Li, L. Chen, and S. Luan. 2016. FERONIA interacts with ABI2-type phosphatases to facilitate signaling crosstalk between abscisic acid and RALF peptide in Arabidopsis. Proceedings of the National Academy of Sciences. 113: E5519-E5527. Chen, L., C. Li, Q. Feng, Y. Wei, H. Zheng, Y. Zhao, Y. Feng, and H. Li. 2017. Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China. Science Total Environment. 598: 64-70. Chérel, I. 2004. Regulation of K+ channel activities in plants: from physiological to molecular aspects. Journal of Experimental Botany. 55: 337-351. Chookhampaeng, S., W. Pattanagul, and P. Theerakulpisut. 2008. Effects of salinity on growth, activity of antioxidant enzymes and sucrose content in tomato (Lycopersicon esculentum Mill.) at the reproductive stage. Science Asia. 34: 69-75. Chu, T. N., B. T. H. Tran, L. V. Bui, and M. T. T. Hoang. 2019. Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Research Notes. 12: 11. Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews. 53: 121-147. Cuartero, J., and R. Fernández-Munoz. 1999. Tomato and salinity. Scientia Horticulturae. 78: 83-125. Cushman, J. C. 2001. Osmoregulation in plants: implications for agriculture. American Zoologist. 41: 758-769. Damodaran, T., R. B. Rai, S. K. Jha, R. Kannan, B. K. Pandey, V. Sah, V. K. Mishra, and D. K. Sharma. 2014. Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. Journal of Plant Interactions. 9: 577-584. Deinlein, U., A. B. Stephan, T. Horie, W. Luo, G. Xu, and J. I. Schroeder. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science. 19: 371-379. Dewanjee, S., N. Bhattacharjee, P. Chakraborty, and S. Bhattacharjee. 2021. Carotenoids as antioxidants. M. Zia-Ul-Haq, S. Dewanjee, and M. Riaz (Eds.). Carotenoids: Structure and function in the human body. Biomedical and Life Sciences (R0). 447-473. Dhindsa, R. S., P. L. Plumb-Dhindsa, and D. M. Reid. 1982. Leaf senescence and lipid peroxidation: effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiologia Plantarum. 56: 453-457. Dukare, A. S., S. Paul, V. E. Nambi, R. K. Gupta, R. Singh, K. Sharma, and R. K. Vishwakarma. 2019. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Critical Reviews in Food Science and Nutrition. 59: 1498-1513. Dwivedi, D., and B. N. Johri. 2003. Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Current Science. 85: 1693-1703. Edel, K. H., and J. Kudla. 2016. Integration of calcium and ABA signaling. Current Opinion in Plant Biology. 33: 83-91. Elnahal, A. S. M., M. T. El-Saadony, A. M. Saad, E. S. M. Desoky, A. M. El-Tahan, M. M. Rady, S. F. A. Qamar, and K. A. El-Tarabily. 2022. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology. 162: 759-792. Etesami, H., S. Emami, and H. A. Alikhani. 2017. Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects A review. Journal of Soil Science and Plant Nutrition. 17: 897-911. Etesami, H., and G. A. Beattie. 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol. 9: 148. Etesami, H., and B. R. Glick. 2020. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany. 178: 104124. Fan, D., S. Subramanian, and D. L. Smith. 2020. Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana. Scientific Reports. 10: 12740. Fariduddin, Q., R. R. Khalil, B. A. Mir, M. Yusuf, and A. Ahmad. 2013. 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environmental Monitoring and Assessment. 185: 7845-7856. Fariñas, M. D., D. Jimenez-Carretero, D. Sancho-Knapik, J. J. Peguero-Pina, E. Gil-Pelegrín, and T. G. Álvarez-Arenas. 2019. Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves. Plant Methods. 15: 128. Flowers, T. J. 2004. Improving crop salt tolerance. Journal of Experimental Botany. 55: 307-319. Foyer, C. H., and G. Noctor. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants and Redox Signaling. 11: 861-905. Gao, Z., M. Sagi, and S. H. Lip. 1998. Carbohydrate metabolism in leaves and assimilate partitioning in fruit of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Science. 135: 149-159. Gaxiola, R. A., M. G. Palmgren, and K. Schumacher. 2007. Plant proton pumps. FEBS Letters. 581: 2204-2214. Geilfus, C. M. 2018. Review on the significance of chlorine for crop yield and quality. Plant Science. 270: 114-122. Gharsallah, C, H. Fakhfakh, D. Grubb, and F. Gorsane. 2016. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. 8: plw055. Ghosh, B., N. A. Md, and S. Gantait. 2016. Response of rice under salinity stress: a review update. Rice Research: Open Access. 4: 167. Giacomucci, L., N. Raddadi, M. Soccio, N. Lotti, and F. Fava. 2019. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnology. 52: 35-41. Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48: 909-930. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology. 41: 109-117. Gomila, M., A. Peña, M. Mulet, J. Lalucat, and E. García-Valdés. 2015. Phylogenomics and systematics in Pseudomonas. Frontiers in Microbiology. 6: 214. González-Estrada, R. R., F. J. Blancas-Benitez, L. Aguirre-Güitrón, L. G. Hernandez-Montiel, C. Moreno-Hernández, H. J. Cortés-Rivera, J. A. Herrera-González, E. Rayón-Díaz, R. M. Velázquez-Estrada, M. A. Santoyo-González, and P. Gutierrez-Martinez. 2021. Alternative management technologies for postharvest disease control. In Food Losses, Sustainable Postharvest and Food Technologies. 153-190. Goris, J., K. T. Konstantinidis, J. A. Klappenbach, T. Coenye, P. Vandamme, and J. M. Tiedje. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology. 57: 81-91. Groß, F., J. Durner, and F. Gaupels. 2013. Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science. 4: 419. Gupta, B., and B. Huang. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics. 2014: 701596. Haj-Amor, Z., T. Araya, D. G. Kim, S. Bouri, J. Lee, W. Ghiloufi, Y. Yang, H. Kang, M. K. Jhariya, A. Banerjee, and R. Lal. 2022. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. The Science of The Total Environment. 843: 156946. Hajer, A. S., A. A. Malibari, H. S. Al-Zahrani, and O. A. Almaghrabi. 2006. Response of three tomato cultivars to sea water salinity and effect of salinity on seedling growth. African Journal of Biotechnology. 5: 855-861. Halfter, U., M. Ishitani, and J. K. Zhu. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America. 97: 3735-3740. Hamza, B., and A. Suggars. 2001. Biostimulants: Myths and realities. TurfGrass Trends. 8: 6-10. Haque, Md. M., Md. S. Biswas, Md. K. Mosharaf, Md. A. Haque, Md. S. Islam, K. Nahar, Md. M. Islam, H. B. Shozib, Md. M. Islam, and Ferdous-E-Elahi. 2022. Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato. Scientific Reports. 12: 5599. Hassan, M. M., T. A. El Masey, and A. A. Abou Arab. 1999. Effect of salinity on growth, yield and elemental concentration in tomato. Egyptian Journal of Horticulture. 26: 187-198. Havre, N. 1962. The flame photometric determination of sodium, potassium and calcium in plant extracts with special reference to interference effects. Analytica Chimica Acta. 25: 557-566. Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125: 189-198. Hector, M. L., and R. R. Fall. 1976. Multiple acyl-coenzyme A carboxylases in Pseudomonas citronellolis. Biochemistry. 15: 3465-3472. Honma, M., and T. Shimomura. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry. 42: 1825-1831. Horie, T., T. Kaneko, G. Sugimoto, S. Sasano, S. K. Panda, M. Shibasaka, and M. Katsuhara. 2011. Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant and Cell Physiology. 52: 663-675. Hrabak, E. M., C. W. Chan, M. Gribskov, J. F. Harper, J. H. Choi, N. Halford, J. Kudla, S. Luan, H. G. Nimmo, M. R. Sussman, M. Thomas, K. Walker-Simmons, J.-K. Zhu, and A. C. Harmon. 2003. The arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology. 132: 666-680. Hwang, M. S. H., R. L. Morgan, S. F. Sarkar, P. W. Wang, and D. S. Guttman. 2005. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Applied and Environmental Microbiology. 71: 5182-5191. Hwang, C. S., E. Rahmati, A. J. Gerbino, T. M. Rose, P. Verma, and M. A. Schwartz. 2023. An unusual presentation of Pseudomonas citronellolis bacteraemia and Campylobacter gastroenteritis infection in a human - a case report and literature review. Access Microbiology. 5: acmi000479.v3. Isayenkov, S. V., and F. J. M. Maathuis. 2019. Plant salinity stress: many unanswered questions remain. Front Plant Science. 10: 80. Ishitani, M., J. P. Liu, U. Halfter, C. S. Kim, W. M. Shi, and J. K. Zhu. 2000. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. The Plant Cell. 12: 1667-1677. Islam, F., T. Yasmeen, S. Ali, B. Ali, M. A. Farooq, and R. A. Gill. 2015. Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiologiae Plantarum. 37: 153. Jacob, J. H. 2012. Classification of halophilic heterotrophic bacteria thriving in the jordanian dead sea littoral zone. Journal of Biological Sciences. 12: 246-252. Janero, D. R. 1990. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine. 9: 515-540. Jayakannan, M., J. Bose, O. Babourina, Z. Rengel, and S. Shabala. 2013. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany. 64: 2255-2268. Jayakannan, M., J. Bose, O. Babourina, Z. Rengel, S. Shabala. 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation. 76: 25-40. Ji, H., J. M. Pardo, G. Batelli, M. J. V. Oosten, R. A. Bressan, and X. Li. 2013. The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Molecular Plant. 6: 275-286. Jiang, C., E. J. Belfield, Y. Cao, J. A. C. Smith, and N. P. Harberd. 2013. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. The Plant Cell. 25: 3535-3552. Joshi, S., J. Nath, A. K. Singh, A. Pareek, and R. Joshi. 2022. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum. 174: e13702. Kadam, J. R., and K. B. Patel. 2001. Effect of saline water through drip irrigation system on yield and quality of tomato. Journal of Maharashtra Agricultural University. 26: 8-9. Kalia, V. C., S. K. S. Patel, Y. C. Kang, and J. K. Lee. 2019. Quorum sensing inhibitors as antipathogens: Biotechnological applications. Biotechnology Advances. 37: 68-90. Kang, S. M., R. Shahzad, S. Bilal, A. L. Khan, Y. G. Park, K. E. Lee, S. Asaf, M. A. Khan, and I. J. Lee. 2019. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiology. 19: 80. Kato, M., and S. Shimizu. 1985. Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant and Cell Physiology. 26: 1291-1301. Keisham, M., S. Mukherjee, and S. C. Bhatla. 2018. Mechanisms of sodium transport in plants—progresses and challenges. International Journal of Molecular Sciences. 19: 647. Khumairah, F. H., M. R. Setiawati, B. N. Fitriatin, T. Simarmata, S. Alfaraj, M. J. Ansari, H. A. El Enshasy, R. Z. Sayyed, and S. Najafi. 2022. Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Frontiers in Microbiology. 13: 905210. Kim, K., Y. J. Jang, S. M. Lee, B. T. Oh, J. C. Chae, and K. J. Lee. 2014. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecular Cell. 37: 109-117. Köhl, J., R. Kolnaar, and W. J. Ravensberg. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science. 10: 845. Kolomazník, K., J. Pecha, V. Friebrová, D. Janáčová, and V. Vašek. 2012. Diffusion of biostimulators into plant tissues. Heat Mass Transfer. 48: 1505-1512. Koutinas, M., M. Kyriakou, K. Andreou, M. Hadjicharalambous, E. Kaliviotis, D. Pasias, G. Kazamias, C. Varavvas, and I. Vyrides. 2021. Enhanced biodegradation and valorization of drilling wastewater via simultaneous production of biosurfactants and polyhydroxyalkanoates by Pseudomonas citronellolis SJTE-3. Bioresource Technology. 340: 125679. Kumar, A., S. Singh, A. K. Gaurav, S. Srivastava, and J. P. Verma. 2020. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology. 11: 1216. Kumar, S., Diksha, S. S. Sindhu, and R. Kumar. 2022. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences. 3: 100094. Lai, S. H. 1975. Production of processing tomatoes in Taiwan. Journal of the Chinese Society for Horticultural Science. 21: 64-71. Lane, D. J., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America. 82: 6955-6959. Lane, D. J. 1991. 16S/23S rRNA sequencing. E. Stackebrandt, and M. Goodfellow, (Eds.). Nucleic acid techniques in bacterial systematic. John Wiley and Sons. 115-175. Larsen, H. 1986. Halophilic and halotolerant microorganisms—an overview and historical perspective. FEMS Microbiology Reviews. 2: 3-7. Legein, M., W. Smets, D. Vandenheuvel, T. Eilers, B. Muyshondt, E. Prinsen, R. Samson, and S. Lebeer. 2020. Modes of action of microbial biocontrol in the phyllosphere. Frontiers in Microbiology. 11: 1619. Li, R. S., and G. L. Kenyon. 1995. A spectrophotometric determination of α-dicarbonyl compounds and its application to the enzymatic formation of α-ketobutyrate. Analytical Biochemistry. 230: 37-40. Li, Z., S. Chang, L. Lin, Y. Li, and Q. An. 2011. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Letters in Applied Microbiology. 53: 178-185. Li, S., H. Zheng, L. Lin, F. Wang, and N. Sui. 2020. Roles of brassinosteroids in plant growth and abiotic stress response. Plant Growth Regulation. 93: 29-38. Liang, W., W. Cui, X. Ma, G. Wang, and Z. Huang. 2014. Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice. Biochemical and Biophysical Research Communications. 450: 794-801. Liang, W., X. Ma, P. Wan, and L. Liu. 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications. 495: 286-291. Lin, Y., Yanfen Li, and Chunxiu Lin. 2024. A case report of Pseudomonas citronellolis and Escherichia coli isolated from acute suppurative appendicitis: reveals the potential intestinal colonization and pathogenicity of Pseudomonas citronellolis. Front Cell Infect Microbiol. 14: 1280188. Litchfield, C. D. 1998. Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteoritics & Planetary Science. 33:813-819. Liu, J. P., M. Ishitani, U. Halfter, C. S. Kim, and J. K. Zhu. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America. 97: 3730-3734. Lozupone, C. A, and R. Knight. 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America. 104: 11436-11440. Lumactud, R., S. Y. Shen, M. Lau, and R. Fulthorpe. 2016. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination. Frontiers in Microbiology. 7: 755. MacAdam, J. W., C. J. Nelson, and R. E. Sharp. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiology. 99: 872-878. Mahmoud, O. M. B., R. Hidri, O. Talbi-Zribi, W. Taamalli, C. Abdelly, and N. Djébali. 2020. Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. South African Journal of Botany. 128: 209-217. Mahmud, F. M. A., Md. A. Islam, M. H. Rubel, S. K. Mukharjee, M. Kumar, P. Bhattacharya, and F. Ahmed. 2023. Effects of halotolerant rhizobacteria on rice seedlings under salinity stress. Science of The Total Environment. 892: 163774. Mangmang, J. S., R. Deaker, and G. Rogers. 2015. Germination characteristics of cucumber influenced by plant growth promoting Rhizobacteria. International Journal of Vegetable Science. 22: 66-75. Masmoudi, F., N. Abdelmalek, S. Tounsi, C. A. Dunlap, and M. Trigui. 2019. Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiological Research. 229: 126331. Masmoudi, F., S. Tounsi, C. A. Dunlap, and M. Trigui. 2021a. Endophytic halotolerant Bacillus velezensis FMH2 alleviates salt stress on tomato plants by improving plant growth and altering physiological and antioxidant responses. Plant Physiology and Biochemistry. 165: 217-227. Masmoudi, F., S. Tounsi, C. A. Dunlap, and M. Trigui. 2021b. Halotolerant Bacillus spizizenii FMH45 promoting growth, physiological, and antioxidant parameters of tomato plants exposed to salt stress. The Plant Cell Reports. 40: 1199-1213. Masmoudi, F., M. Alsafran, H. A. L. Jabri, H. Hosseini, M. Trigui, S. Sayadi, and S. Tounsi. 2023. Halobacteria-based biofertilizers: a promising alternative for enhancing soil fertility and crop productivity under biotic and abiotic stresses—a review. Microorganisms. 11: 1248. Mayak, S., T. Tirosh, and B. R. Glick. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry. 42: 565-572. Miller, G., N. Suzuki, S. Ciftci Yilmaz, and R. Mittler. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment. 33: 453-467. Misra, N., and R. Misra. 2012. Salicylic acid changes plant growth parameters and proline metabolism in Rauwolfia serpentina leaves grown under salinity stress. Journal of Agricultural and Environmental Sciences. 12: 1601-1609. Mittler, R., S. Vanderauwera, M. Gollery, and B. F. Van. 2004. Reactive oxygen gene network of plants. Trends in Plant Science. 9: 490-498. Mizrahi, Y. 1982. Effect of salinity on tomato fruit ripening. Plant Physiology. 69: 966-970. Moraditochaee, M., E. Azarpour, and H. R. Bozorgi. 2014. Study effects of bio-fertilizers, nitrogen fertilizer and farmyard manure on yield and physiochemical properties of soil in lentil farming. International Journal of Biosciences. 4: 41-48. Morales, M., S. Munné-Bosch. 2019. Malondialdehyde: Facts and Artifacts. Plant Physiology. 180: 1246-1250. Mukherjee, A., A. K. Gaurav, S. Singh, G. K. Chouhan, A. Kumar, and S. Das. 2019. Role of potassium (K) solubilising microbes (KSM) in growth and induction of resistance against biotic and abiotic stress in plant: a book review. Climate Change and Environmental Sustainability. 7: 212-214. Mulet, M., J. Lalucat, and E. García-Valdés. 2010. DNA sequence-based analysis of the Pseudomonas species. Environmental Microbiology. 12: 1513-1530. Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59: 651-681. Nadeem, S. M., M. Imran, M. Naveed, M. Y. Khan, M. Ahmad, Z. A. Zahir, and D. E. Crowley. 2017. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. Journal of the Science of Food and Agriculture. 97: 5139-5145. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters. 170: 265-270. Navarro, J. M., M. A. Botella, and V. Martinez. 1999. Yield and fruit quality of melon plants grown under saline conditions in relation to phosphate and calcium nutrition. Journal of Horticultural Science and Biotechnology. 74: 573-578. Nolan, T. M., N. Vukasinovic, D. Liu, E. Russinova, and Y. Yin. 2020. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. The Plant Cell. 32: 295-318. Nosheen, S., I. Ajmal, Y. Song. 2021. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability. 13: 1868. Nousiainen, A. O., K. Björklöf, S. Sagarkar, J. Lund Nielsen, A. Kapley, and K. S. Jørgensen. 2015. Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone. Applied Microbiology and Biotechnology. 23: 10249-10259. Olanrewaju, O. S., B. R. Glick, and O. O. Babalola. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology. 33: 197. Olías, R., Z. Eljakaoui., J. Li., P. A. D. Morales, M. C. Marín-Manzano, J. M. Pardo, and A. Belver. 2009. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell & Environment. 32: 904-916. Orozco-Mosqueda, M. del C., J. Duan, M. DiBernardo, E. Zetter, J. Campos-García, B. R. Glick, and G. Santoyo. 2019. The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Frontiers in Microbiology. 10: 1392. Özgur, R., B. Uzilday, A. H. Sekmen, and I. Turkan. 2013. Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology. 40: 832-847. Paleg, L. G., G. R. Stewart, and J. W. Bradbeer. 1984. Proline and glycine betaine influence protein solvation. Plant Physiology. 75: 974-978. Pallavi, R. K. Mishra, P. K. Sahu, V. Mishra, H. Jamal, A. Varma, and S. Tripathi. 2023. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. Frontiers in Plant Science. 14: 1122347. Pan, L. Y., J. J. Ma, and J. M. Li. 2022. Advances of salt stress-responsive transcription factors in plants. Chinese Journal of Biotechnology. 38: 50-65. Pandey, S., and S. Gupta. 2020. Evaluation of Pseudomonas sp. for its multifarious plant growth promoting potential and its ability to alleviate biotic and abiotic stress in tomato (Solanum lycopersicum) plants. Scientific Reports. 10: 20951. Pardo, J. M., B. Cubero, E. O. Leidi, and F. J. Quintero. 2006. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. Journal of Experimental Botany. 57: 1181-1199. Peix, A., M.-H. Ramírez-Bahena, and E. Velázquez. 2018. The current status on the taxonomy of Pseudomonas revisited: An update. Infect. Infection, Genetics and Evolution. 57: 106-116. Peng, J., Z. Li, X. Wen, W. Li, H. Shi, L. Yang, H. Zhu, and H. Guo. 2014. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genetics. 10: e1004664. Peng, W., S. Lin, Z. Deng, and R. Liang. 2023. Bioaugmentation removal and microbiome analysis of the synthetic estrogen 17α-ethynylestradiol from hostile conditions and environmental samples by Pseudomonas citronellolis SJTE-3. Chemosphere. 317: 137893. Penrose, D. M., and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia Plantarum. 118: 10-15. Pérez-Rodriguez, M. M., M. Pontin, P. Piccoli, M. A. L. Ureche, M. G. Gordillo, I. Funes-Pinter, and A. C. Cohen. 2022. Halotolerant native bacteria Enterobacter 64S1 and Pseudomonas 42P4 alleviate saline stress in tomato plants. Physiologia Plantarum. 174: e13742. Pogány, M., U. Rad, S. Grün, A. Dongó, A. Pintye, P. Simoneau, G. Bahnweg, L. Kiss, B. Barna, and J Durner. 2009. Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiology. 151: 1459-1475. Poulaki, E. G., I. Karamichali, O. Lianos, V. Alexopoulos, V. Dimitrakas, G. G. Amourgis, and S. E. Tjamos. 2024. Exploring the biocontrol potential of rocket (Eruca sativa) extracts and associated microorganisms against Verticillium wilt. Journal of Applied Microbiology. 135: lxae070. Qin, Yuan., I. S. Druzhinina, X. Pan, and Z. Yuan. 2016. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances. 34: 1245-1259. Qiu, Q. S., Y. Guo, M. A. Dietrich, K. S. Schumaker, and J. K. Zhu. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America. 99: 8436-8441. Quintero, F. J., M. Ohta, H. Shi, J. K. Zhu, and J. M. Pardo. 2002. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America. 99: 9061-9066. Raghavendra, A. S., V. K. Gonugunta, A. Christmann, and E. Grill. 2010. ABA perception and signalling. Trends in Plant Science. 15: 395-401. Rani, P., M. K. Sharma, S. Rani, N. Kumar, and S. K. Sharma. 2017. Effect of different saline environments on yield and quality of tomato (Lycopersicon esculentum L.). Annals of Agri- Bio Research. 22: 223-227. Rath, K. M., A. Maheshwari, P. Bengtson, and J. Rouska. 2016. Comparative toxicities of salts on microbial processes in soil. Applied and Environmental Microbiology. 82: 2012-2020. Rath, K. M., D. N. Murphy, and J. Rousk. 2019. The microbial community size, structure, and process rates along natural gradients of soil salinity. Soil Biology and Biochemistry. 138: 107607. Rawway, M., S. G. Ali, and A. S. Badawy. 2018. Isolation and identification of cellulose degrading bacteria from different sources at assiut governorate (Upper Egypt). Journal of Ecology of Health and Environment. 6: 15-24. Remus-Emsermann, M. N. P., M. Schmid, M. T. Gekenidis, C. Pelludat, J. E. Frey, C. H. Ahrens, and D. Drissner. 2016. Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites. Standards in Genomic Sciences. 11: 75. Riedelsberger, J., J. K. Miller, B. Valdebenito-Maturana, M. A. Piñeros, W. González, and I. Dreyer. 2021. Plant HKT channels: an updated view on structure, function and gene regulation. International Journal of Molecular Sciences. 22: 1892. Rojas-Solis, D., M. Á. Vences-Guzmán, C. Sohlenkamp, and G. Santoyo. 2023. Cardiolipin synthesis in Pseudomonas fluorescens UM270 plays a relevant role in stimulating plant growth under salt stress. Microbiological Research. 268:127295. Romero-Aranda, M. R., J. Espinosa, P. González-Fernández, E. Jaime-Fernández, J. Á. Traverso, M. J. Asins, and A. Belver. 2021. Role of Na+ transporters HKT1;1 and HKT1;2 in tomato salt tolerance. I. Function loss of cheesmaniae alleles in roots and aerial parts. Plant Physiology and Biochemistry. 168: 282-293. Rosas-Santiago, P., D. Lagunas-Gómez, B. J. Barkla, R. Vera-Estrella, S. Lalonde, A. Jones, W. B. Frommer, O. Zimmermannova, H. Sychrova, and O. Pantoja. 2015. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3. Journal of Experimental Botany. 66: 2733-2748. Ruppel, S., P. Franken, and K. Witzel. 2013. Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology. 40: 940-951. Safdar, H., A. Amin, Y. Shafiq, A. Ali, R. Yasin, A. Shoukat, M. U. Hussan, and M. I. Sarwar. 2019. A review: impact of salinity on plant growth. Nature and Science. 17: 34-40. Sandhu, D., M. V. Pudussery, R. Kaundal, D. L. Suarez, A. Kaundal, and R. S. Sekhon. 2018. Molecular characterization and expression analysis of the Na+/H+ exchanger gene family in Medicago truncatula. Functional & Integrative Genomics. 18: 141-153. Sandhya, V., S. Z. Ali, B. Venkateswarlu, G. Reddy, and M. Grover. 2010. Effect of osmotic stress on plant growth promoting Pseudomonas spp. Archives of Microbiology. 192: 867-76. Santi, C., D. Bogusz, and C. Franche. 2013. Biological nitrogen fixation in non-legume plants. Annals of Botany. 111: 743-67. Sara, S., M. Morad, and C. M. Reza. 2013. Effects of seed inoculation by Rhizobium strains on chlorophyll content and protein percentage in common bean cultivars (Phaseolus vulgaris L.). International Journal of Biosciences. 3: 1-8. Sato, S., S. Sakaguchi, H. Furukawa, and H. Ikeda. 2006. Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (Lycopersicon esculentum Mill.). Scientia Horticulture. 109: 248-253. Seifikalhor, M., S. Aliniaeifard, A. Shomali, N. Azad, B. Hassani, and O. Lastochkina, and T. Lif. 2019. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signaling and Behavior. 14: 1665455. Serio, F., L. D. Gara, S. Caretto, L. Leo, and Z. Santamaria. 2004. Influence of an increased NaCl concentration on yield and quality of cherry tomato grown in posidonia (Posidonia oceanica (L) Delile). Journal of the Science of Food and Agriculture. 84: 1885-1890. Seubert, W. 1960. Degradation of isoprenoid compounds by micro-organisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. Journal of Bacteriology. 79: 426-434. Shen, B., R. G. Jensen, and H. J. Bohnert. 1997. Mannitol protects against oxidation by hydroxyl radicals. Plant Physiology. 115: 527-532. Shi, H., M. Ishitani, C. Kim, and J. K. Zhu. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America. 97: 6896-6901. Singh, J., E. V. D. Sastry, and V. Singh. 2012. Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Journal of Plant Physiology and Molecular Biology. 18: 45-50. Sivakumar, P., P. Sharmila, and P. P. Saradhi. 2000. Proline alleviates salt-stress induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. Biochemical and Biophysical Research Communications. 279: 512-515. Slama, I., C. Abdelly, A. Bouchereau, T. Flowers, and A. Savouré. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany. 115: 433-447. Smirnoff, N., and Q. J. Cumbes. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 28: 1057-1060. Soumare, A., A. G Diédhiou, N. K. Arora, L. K. T. Al-Ani, M. Ngom, S Fall, M. Hafidi, Y. Ouhdouch, L. Kouisni, and M. O. Sy. 2021. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Frontiers in Microbiology. 12: 649878. Sukweenadhi, J., S. R. Balusamy, Y. J. Kim, C. H. Lee, Y. J. Kim, S. C. Koh, and D. C. Yang. 2018. A growth-promoting bacterium, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in Panax ginseng. Frontiers in Plant Science. 9: 813. Sunita, K., I. Mishra, J. Mishra, J. Prakash, and N. K. Arora. 2020. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Frontiers in Microbiology. 11: 567768. Suprasanna, P., G. C. Nikalje, and A. N. Rai. 2016. Osmolyte accumulation and implications in plant abiotic stress tolerance. N. Iqbal, R. Nazar, and N. A. Khan (Eds.). Osmolytes and plants acclimation to changing environment: emerging omics technologies. Biomedical and Life Sciences. 1-12. Szepesi, Á., J. Csiszár, S. Bajkán, K. Gémes, F. Horváth, L. Erdei, A. K. Deér, M. L. Simon, and I. Tari. 2005. Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biologica Szegediensis. 49: 123-125. Szymańska, S., T. Płociniczak, Z. Piotrowska-Seget, M. Złoch, S. Ruppel, and K. Hrynkiewicz. 2015. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiological Research. 182: 68-79. Szymańska, K. P., L. Polkowska-Kowalczyk, M. Lichocka, J. Maszkowska, and G. Dobrowolska. 2019. SNF1-related protein kinases SnRK2.4 and SnRK2.10 modulate ROS homeostasis in plant response to salt stress. International Journal of Molecular Sciences. 20: 143. Taj, Z., and D. Challabathula. 2021. Protection of photosynthesis by halotolerant Staphylococcus sciuri ET101 in tomato (Lycoperiscon esculentum) and rice (Oryza sativa) plants during salinity stress: possible interplay between carboxylation and oxygenation in tress mitigation. Frontiers in Microbiology. 11: 547750. Tayeb, L. A., E. Ageron, F. Grimont, and P. A. D. Grimont. 2005. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Research in Microbiology. 156: 763-73. Tewari, S., and S. Sharma. 2020. Rhizobial exopolysaccharides as supplement for enhancing nodulation and growth attributes of Cajanus cajan under multi-stress conditions: A study from lab to field. Soil and Tillage Research. 198: 104545. Thakur, S., A. Sinha, V. Singh, and Avnee. 2022. Impact of saline irrigation water on yield and quality of tomato (Solanum lycopersicum L.). Chemical Science Review and Letters. 11: 83-86. Thordal-Christensen, H., Z. Zhang, Y. Wei, and D. B. Collinge. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. The Plant Journal. 11: 1187-1194. Tian, J., F. Ge, D. Zhang, S. Deng, and X. Liu. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology (Basel). 10: 158. Timmusk, S., V. Paalme, T. Pavlicek, J. Bergquist, A. Vangala, T. Danilas, and E. Nevo. 2011. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One. 6: e17968. Upadhyay, S. K., and D. P. Singh. 2015. Effect of salttolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology. 17: 288-293. Varnava, C. K., P. Persianis, I. Ieropoulos, and A. Tsipa. 2024. Electricity generation and real oily wastewater treatment by Pseudomonas citronellolis 620C in a microbial fuel cell: pyocyanin production as electron shuttle. Bioprocess and Biosystems Engineering. 47: 903-917. Vasanthi, N., L. M. Saleena, and S. A. Raj. 2018. Silica solubilization potential of certain bacterial species in the presence of different silicate minerals. Silicon. 10: 267-275. Venkataraman, G., S. Shabala, A. A. Véry, G. N. Hariharan, S. Somasundaram, S. Pulipati, G. Sellamuthu, M. Harikrishnan, K. Kumari, L. Shabala, M. Zhou, and Z. H. Chen. 2021. To exclude or to accumulate? Revealing the role of the sodium HKT1;5 transporter in plant adaptive responses to varying soil salinity. Plant Physiology and Biochemistry. 169: 333-342. Verma, J., J. Yadav, K. Tiwari, S. Lavakush, and V. Singh. 2010. Impact of plant growth promoting rhizobacteria on crop production. International Journal of Agricultural Research. 5: 954-983. Verma, V., P. Ravindran, and P. P. Kumar. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology. 16: 86. Wang, Y., C. Liu, K. Li, F. Sun, H. Hu, X. Li, Y. Zhao, C. Han, W. Zhang, Y. Duan, M. Liu, and X. Li. 2007. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Molecular Biology. 64: 633-644. Williams, G. 2019. First report of infection with Pseudomonas citronellolis: a case of urosepsis. New Microbes and New Infections. 30: 100531. Wintermans, J. F., and A. Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophysica Acta. 109: 448-53. Xu, J. X., Z. Y. Li, X. Lv, H. Yan, G. Y. Zhou, L. X. Cao, Q. Yang, and Y. H. He. 2020. Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophyticbacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization. PLoS One. 15: e0232096. Yan, N., P. Marschner, W. Cao, C. Zuo, and W. Qin. 2015. Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research. 3: 316-323. Yang, C. W., D. C. Shi, and D. L. Wang. 2008. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation. 56: 179-190. Yang, A., S. S. Akhtar, S. Iqbal, M. Amjad, M. Naveed, and Z. A. Zahir. 2016. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Functional Plant Biology. 43: 632-642. Yang, J., C. Zhan, Y. Li, D. Zhou, Y. Yu, and J. Yu. 2018. Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China. Science of The Total Environment. 648: 946-953. Yang, G., Z. Yu, L. Gao, and C. Zheng. 2019. SnRK2s at the crossroads of growth and stress responses. Trends in Plant Science. 24: 672-676. Yang, Y., Y. Wu, L. Ma, Z. Yang, Q. Dong, P. Li, X. Ni, J. Kudla, C. Song, and Y. Guo. 2019. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis. The Plant Cell. 31: 1367-1384. Yang, C., X. Wang, F. Miao, Z. Li, W. Tang, and J. Sun. 2020. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Applied Soil Ecology. 155: 103671. Yu, Z., X. Duan, L. Luo, S. Dai, Z. Ding, and G. Xia. 2020. How plant hormones mediate salt stress responses. Trends in Plant Scienceence. 25: 1117-1130. Yuan, B. C., Z. Z. Li, H. Liu, M. Gao, and Y. Y. Zhang. 2007. Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology. 35: 319-328. Yue, Y., M. Zhang, J. Zhang, L. Duan, and Z. Li. 2012. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. Journal of Plant Physiology. 169: 255-261. Zhai, Y., Q. Yang, and M. Hou. 2015. The effects of saline water drip irrigation on tomato yield, quality and blossom-end rot incidence - A 3a case study in the south of China. PLoS One. 10: e0142204. Zhang, L., Z. Li, R. Quan, G. Li, R. Wang, and R. Huang. 2011. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiology. 157: 854-865. Zhang, L., W. Liu, S. Liu, P. Zhang, C. Ye, and H. Liang. 2020. Revegetation of a barren rare earth mine using native plant species in reciprocal plantation: effect of phytoremediation on soil microbiological communities. Environmental Science and Pollution Research. 27: 2107-2119. Zhao, S., Q. Zhang, M. Liu, H. Zhou, C. Ma, and P. Wang. 2021. Responses to salt stress. International Journal of Molecular Sciences. 22: 4609. Zhou, N., S. Zhao, and C. Y. Tian. 2017. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiology Letters. 364. Zhu, J. K., J. Liu, and L. Xiong. 1998. Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. The Plant Cell. 10: 1181-1191. Zhu, J. K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology. 53: 247-273. Zhu, J. K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology. 6: 441-445. Zhu, J. K. 2016. Abiotic stress signaling and responses in plants. Cell. 167: 313-324. Zörb, C., C. M. Geilfus, and K. J. Dietz. 2019. Salinity and crop yield. Plant Biology. 21: 31-38. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95926 | - |
dc.description.abstract | 隨著全球氣候變遷以及耕作面積增加,農用地鹽鹼化問題日益嚴峻。鹽害是作物栽培中僅次於乾旱的非生物性逆境,會對作物造成多方傷害,如滲透壓影響植株水分吸收、Na+ 在組織內累積對細胞造成離子毒性並同時影響細胞胞器活性,以及阻礙植物光合作用與生長發育,進而嚴重影響農作物品質和產量,對農業經濟造成巨大損失。耐鹽性促進植物生長根棲細菌 (Halotolerant Plant Growth-Promoting Rhizobacterium, HT-PGPRs) 可透過多種途徑提升植物耐鹽性,如調節植物激素生合成、增加植株內部調滲物質 (Osmoprotectants) 含量,以及誘導逆境相關基因表現。本研究利用誘釣法從臺灣濱海地區土壤與植物根圈土中分離出 261 株菌株,並通過菌株耐鹽性分級、優勢程度以及接種後植株於 500 mM 鹽處理下的生長狀況等指標,最終篩選出 T1C2 分離株。經過 16S rRNA、gyrB、rpoB 以及 rpoD 等基因序列與 GenBank 資料庫比對,T1C2 應為 Pseudomonas citronellolis,其可在 500 mM 鹽濃度下生長,並且具由螯鐵能力。然而,經過根組織切片與菌數計算後發現,T1C2 可能不具植物內生性,但能有效促進番茄 (農友 301) 於 200 mM 鹽濃度下的幼苗乾鮮重,並提升植株乾鮮重、葉綠素、脯胺酸含量、SOD、POD 與 CAT 抗氧化酵素活性,同時顯著降低 MDA 含量和細胞膜離子滲漏率。在植體元素分析中,T1C2 有效降低番茄於鹽害下的 Na+ 含量,並且提升 K+ 含量與K+/Na+ 比率;此外,T1C2 在番茄滲透壓逆境中也顯示出提升植株乾鮮重以及延緩滲透壓損傷發生的潛力。總言之,本研究篩選出 1 株可以有效提升番茄鹽耐受性及滲透壓耐受性潛力的 HT-PGPR。本研究盼望未來能通過施用此類 HT-PGPR 的方式,提升鹽鹼化田地的利用率,減輕鹽害對作物造成的影響,並作為後續相關研究的參考。 | zh_TW |
dc.description.abstract | With global climate change and agricultural expansion, the issue of agricultural soil salinization is becoming severe. Salt stress is the second most significant abiotic stress after drought in crop cultivation, causing multiple harms to crops such as osmotic stress affecting plant water absorption, Na+ accumulation in tissues leading to ion toxicity and impaired organelle activity, and disruption of photosynthesis and plant growth. All these severely impact crop quality and yield, causing substantial economic losses in agriculture. It has been shown that halotolerant plant growth-promoting rhizobacteria (HT-PGPR) can enhance plant salt tolerance through various mechanisms, including regulating plant hormone biosynthesis, increasing the content of osmoprotectants within the plant, and inducing the expression of stress-related genes. In this study, 261 bacterial strains were isolated from the roots and rhizosphere soil of coastal plants using the baiting method. Through assessing salt tolerance, predominance in soil, and performance on growth indices after inoculating plants under 500 mM salt treatment, T1C2 was finally selected. Multilocus sequence typing analysis using 16S rRNA, gyrB, rpoB, and rpoD genes agains the GenBank database indicates that T1C2 should be Pseudomonas citronellolis. T1C2 can grow under 500 mM NaCl and has siderophore production capability. However, root tissue sectioning and bacterial count revealed that T1C2 might not be an endophyte but can effectively promote dry and fresh weight of tomato cv. 'Knowyou 301' under 200 mM NaCl. T1C2 treatment enhanced plant dry and fresh weight, chlorophyll and proline contents, and the activities of antioxidant enzymes SOD, POD, and CAT, while significantly reduced MDA content and electrolyte leakage rate. Plant element analysis showed that T1C2 effectively reduced the Na+ content in tomato under salt stress, while increased the K+ content and the K+/Na+ ratio. Additionally, T1C2 was found to increase plant dry and fresh weight and delay osmotic stress damage in tomato under osmotic stress. In conclusion, this study identified an HT-PGPR strain that can effectively enhance tomato tolerance to salt and osmotic stresses. In the future, halotolerant bacteria were recommended to increase the utilization of saline-alkaline fields, mitigate the impact of salinity on agriculture, and serve as a reference for future related studies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-25T16:10:10Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-25T16:10:10Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV 常用縮寫與全名對照表 V 目次 VIII 表次 XIII 圖次 XIV 附表次 XVI 附圖次 XVII 壹、前人研究 1 一、番茄介紹 1 1. 番茄簡史 1 2. 栽培條件 2 二、鹽害逆境 3 1. 鹽害簡介與臺灣現況 3 2. 鹽害的影響 4 3. 鹽害對番茄生產的影響 5 三、植物抗鹽機制 6 1. 調滲物質 (Osmoprotectants) 6 2. 離子通道 7 3. 抗氧化劑 9 4. 植物激素 10 四、促進植物生長根棲細菌 (Plant Growth-Promoting Rhizobacteria, PGPRs) 11 1. PGPRs 的定義 11 2. PGPRs 的功能 12 (a) 生物肥料 (Biofertilizers) 12 (b) 生物刺激素 (Biostimulants) 13 (c) 生物防治劑 (Biocontrol agents) 14 3. 鹽害對 PGPRs 的影響 15 五、耐鹽性促進植物生長根棲細菌 (Halotolerant Plant Growth-Promoting Rhizobacterium, HT-PGPRs) 16 1. 耐鹽性的定義 16 2. HT-PGPRs 的耐鹽機制 16 3. HT-PGPRs 的應用 17 貳、 研究動機與目的 19 參、 材料與方法 20 一、耐鹽性菌株之採樣、分離及初步篩選 20 1. 樣本採集 20 2. 具促進植物鹽害耐受性潛力細菌菌株之分離 20 3. 細菌分離株之耐鹽性試驗 21 二、候選菌株之培養與保存 21 三、候選菌株接種與測試植株栽培條件 21 1. 植物材料 21 2. 幼苗接種 21 3. 介質與栽種環境 22 四、菌種鑑定 22 1. Genome DNA 萃取 22 2. 萃取聚合酶連鎖反應 (Polymerase chain reaction, PCR) 23 五、蛋白質含量測定 23 六、候選菌株特性分析 25 1. in vitro 促進植物生長能力測試 25 (a) 溶磷能力測試 25 (b) 螯鐵能力測試 25 (c) 纖維素酶活性測試 25 (d) 蛋白酶活性測試 25 (e) 1-aminocyclopropane-1-carboxylate (ACC) 脫氨酶活性分析 26 2. 化學農藥感受性測試 27 3. 抗抗生素能力測試 28 4. 滲透壓及鹽度耐受性能力測試 28 七、候選菌株於鹽害與滲透壓逆境下對植株生長之影響 29 1. 鹽害逆境 29 (a) 穴盤試驗 29 (b) 盆栽試驗 29 (c) 幼苗試驗 29 2. 滲透壓逆境 (盆栽試驗) 29 八、土壤性質分析 30 1. 土壤飽和抽出液收集 30 2. 土壤酸鹼值測定 30 3. 土壤電導度測定 (Electrical conductivity, EC) 30 九、植株生長勢與生理活性分析 30 1. 植株生長勢量測 30 (a) 非破壞性生長參數 30 (b) 破壞性生長參數 30 2. 葉綠素含量與光合作用效率測定 31 (a) 葉綠素含量 (SPAD) 31 (b) 光合作用效率 (Fv/Fm) 31 3. 細胞膜離子滲漏檢測 31 4. 葉綠素含量測定 31 5. 丙二醛 (Malondialdehyde, MDA) 含量測定 32 6. 脯胺酸 (Proline) 含量測定 32 十、抗氧化酵素活性分析 33 1. 蛋白質粗萃取液備製 33 2. 超氧化物歧化酶 (Superoxide dismutase, SOD) 33 3. 過氧化酶 (Peroxidase, POD) 34 4. 過氧化氫酶 (Catalase, CAT) 35 十一、植物組織染色 36 1. 台盼藍 (Trypan blue) 染色 36 2. 二氨基聯苯胺四鹽酸鹽 (3,3’-diaminobenzidine, DAB) 染色 37 十二、植體元素分析 37 十三、Pseudomonas sp. T1C2植物內生特性測試 37 1. 建構表現綠色螢光蛋白 (Green fluorescent protein, GFP) 之 Pseudomonas sp. T1C2 37 (a) 製備勝任細胞 (Competent cell) 38 (b) 轉型反應 (Transformation) 38 2. 內生特性分析—培養法 38 3. 根組織切片觀察 39 4. 定殖根部組織之 Pseudomonas sp. T1C2 菌數計算 39 十四、統計分析 39 肆、結果 40 一、耐鹽菌之分離與初步篩選 40 二、候選菌株鑑定與特性分析 40 1. 菌種鑑定 40 2. 候選菌株特性分析 41 3. 候選菌株對番茄耐鹽性之影響 41 三、Pseudomonas citronellolis T1C2特性分析 42 1. 化學農藥感受性 42 2. 抗生素感受性 42 3. 對滲透壓與鹽度感受性 43 四、番茄鹽害模擬條件測試 43 五、接種具促進番茄抗鹽潛力耐鹽菌 T1C2 對番茄於鹽害下之影響 44 1. 外觀與生長參數 44 2. 逆境相關生理生化指標分析 44 3. 抗氧化酵素活性 45 4. 植體元素分析 45 5. 葉部組織染色 45 六、接種具促進番茄抗鹽潛力耐鹽菌 T1C2 對番茄於滲透壓逆境下之影響 46 1. 外觀與生長參數 46 2. 逆境相關生理生化指標分析 46 3. 抗氧化酵素活性 47 4. 葉部組織染色 47 七、接種具促進番茄抗鹽潛力耐鹽菌 T1C2 對番茄幼苗於鹽害下之影響 47 八、T1C2 內生特性分析 48 1. 培養法 48 2. 根組織切片觀察 48 3. 根組織菌數計算 49 伍、討論 50 陸、結論 58 柒、參考文獻 59 捌、表 77 玖、圖 83 拾、附表 107 拾壹、附圖 116 | - |
dc.language.iso | zh_TW | - |
dc.title | 抗鹽細菌 Pseudomonas sp. T1C2 提升番茄鹽害耐受性之潛力研究 | zh_TW |
dc.title | Study on the Potential of Halotolerant Bacterium Pseudomonas sp. T1C2 to Enhance Tomato Salt Stress Tolerance | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃祥恩;鍾嘉綾;楊淑怡 | zh_TW |
dc.contributor.oralexamcommittee | Hsiang-En Huang;Chia-Lin Chung;Shu-Yi Yang | en |
dc.subject.keyword | 鹽害,土壤鹽化,耐鹽細菌,耐鹽性促進植物生長根棲細菌, | zh_TW |
dc.subject.keyword | Salt stress,Soil salinization,Halotolerant bacterium,Halotolerant plant growth-promoting rhizobacterium (HT-PGPRs), | en |
dc.relation.page | 128 | - |
dc.identifier.doi | 10.6342/NTU202403724 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
dc.date.embargo-lift | 2029-08-06 | - |
顯示於系所單位: | 植物醫學碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 5.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。