請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95916
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊哲人 | zh_TW |
dc.contributor.advisor | Jer-Ren Yang | en |
dc.contributor.author | 呂仕淵 | zh_TW |
dc.contributor.author | Shih-Yuan Lu | en |
dc.date.accessioned | 2024-09-24T16:13:29Z | - |
dc.date.available | 2024-09-25 | - |
dc.date.copyright | 2024-09-24 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-28 | - |
dc.identifier.citation | [1] H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties: Fourth Edition, Steels: Microstructure and Properties: Fourth Edition (2017) 1-461.
[2] H.K.D.H. Bhadeshia, Theory of Transformations in Steels, CRC Press2021. [3] H.K.D.H. Bhadeshia, Bainite in Steels, 2 ed., The Institute of Materials, London, 2001. [4] G. Krauss, S.W. Thompson, Ferritic Microstructures in Continuously Cooled Low-Carbon and Ultralow-Carbon Steels, Isij International 35(8) (1995) 937-945. [5] J. Hamada, M. Enomoto, T. Fujishiro, T. Akatsuka, In-situ observation of the growth of massive ferrite in very low-carbon Fe-Mn and Ni alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 45(9) (2014) 3781-3789. [6] G. Kurdjumow, G. Sachs, Über den Mechanismus der Stahlhärtung, Zeitschrift für Physik 64(5) (1930) 325-343. [7] A.D. King, T. Bell, Crystallography of Grain-Boundary Proeutectoid Ferrite, Metall Trans A 6(7) (1975) 1419-1429. [8] T. Yokomizo, M. Enomoto, O. Umezawa, G. Spanos, R.O. Rosenberg, Three-dimensional distribution, morphology, and nucleation site of intragranular ferrite formed in association with inclusions, Mat Sci Eng a-Struct 344(1-2) (2003) 261-267. [9] M. Hillert, Thermodynamics of the massive transformation, Metallurgical Transactions A 15(3) (1984) 411-419. [10] Y. Ohmori, H. Ohtsubo, Y.C. Jung, S. Okaguchi, H. Ohtani, Morphology of Bainite and Widmanstätten Ferrite, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 25(9) (1994) 1981-1989. [11] J.R. Yang, C.C. Yang, C.Y. Huang, The Coexistence of Acicular Ferrite and Bainite in an Alloy-Steel Weld Metal, J Mater Sci Lett 11(16) (1992) 1145-1146. [12] J.R. Yang, C.Y. Huang, C.F. Huang, J.N. Aoh, Influence of Acicular Ferrite and Bainite Microstructures on Toughness for an Ultra-Low-Carbon Alloy-Steel Weld Metal, J Mater Sci Lett 12(16) (1993) 1290-1293. [13] X.N. Qi, X.N. Wang, H.S. Di, X.J. Shen, P.C. Huan, J.R. He, L. Chen, Acicular ferrite nucleation mechanism in laser-MAG hybrid welds of X100 pipeline steel, Mater Lett 304 (2021). [14] L. Chen, B.J. Wang, X.N. Qi, X.J. Shen, Q. Sun, X.N. Wang, Generation of Acicular Ferrite in the Laser-Welded Weld of X100 Pipeline Steel Induced by CO Shielding Gas, Steel Res Int 93(11) (2022). [15] F.Y. Song, C.C. Yin, F.S. Hu, K.M. Wu, Effects of Mn-Depleted Zone Formation on Acicular Ferrite Transformation in Weld Metals under High Heat Input Welding, Materials 15(23) (2022). [16] R.A. Ricks, P.R. Howell, G.S. Barritte, The nature of acicular ferrite in HSLA steel weld metals, Journal of Materials Science 17(3) (1982) 732-740. [17] K. Shibata, K. Asakura, Transformation Behavior and Microstructures in Ultra-low Carbon Steels, ISIJ International 35(8) (1995) 982-991. [18] T. Furuhara, S. Morito, T. Maki, Morphology, substructure and crystallography of lath martensite in Fe-C alloys, J Phys Iv 112 (2003) 255-258. [19] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia 51(6) (2003) 1789-1799. [20] S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, The morphology and crystallography of lath martensite in alloy steels, Acta Materialia 54(19) (2006) 5323-5331. [21] S. Morito, Y. Adachi, T. Ohba, Morphology and Crystallography of Sub-Blocks in Ultra-Low Carbon Lath Martensite Steel, Mater Trans 50(8) (2009) 1919-1923. [22] G. Miyamoto, A. Shibata, T. Maki, T. Furuhara, Precise measurement of strain accommodation in austenite matrix surrounding martensite in ferrous alloys by electron backscatter diffraction analysis, Acta Materialia 57(4) (2009) 1120-1131. [23] G.L. Bailey, R. Genders, The Alpha Phase Boundary in The Copper-Zinc System, J INST MET 33 (1925) 213-221. [24] A.J. Phillips, The alpha-beta transformation in brass, TRANS METALL SOC AIME 89 (1930) 194-202. [25] A.B. Greninger, The martensite transformation in beta copper-aluminum alloys, AIME TRANS 133 (1939) 204-227. [26] T.B. Massalski, Massive transformations revisited, Metallurgical and Materials Transactions A 2002 33:8 33(8) (2002) 2277-2283. [27] T.B. Massalski, Distinguishing features of massive transformations, Metallurgical Transactions A 15(3) (1984) 421-425. [28] M. Hillert, M. Schalin, Modeling of solute drag in the massive phase transformation, Acta Materialia 48(2) (2000) 461-468. [29] H.I. Aaronson, Mechanisms of the massive transformation, Metallurgical and Materials Transactions A 33(8) (2002) 2285-2297. [30] H.I. Aaronson, S. Mahajan, G.R. Purdy, M.G. Hall, Origins of internal structure in massive transformation products, Metallurgical and Materials Transactions A 33(8) (2002) 2347-2351. [31] T.B. Massalski, The Mode and Morphology of Massive Transformations in Cu-Ga, Cu-Zn, Cu-Zn-Ga and Cu-Ga-Ge Alloys, Acta Metallurgica 6(4) (1958) 243-253. [32] T.B. Massalski, A.J. Perkins, J. Jaklovsky, Extension of solid solubility during massive transformations, Metallurgical Transactions 3(3) (1972) 687-694. [33] J.H. Perepezko, T.B. Massalski, The β to ζ massive transformation in Ag-Al alloys, Acta Metallurgica 23(5) (1975) 621-631. [34] M. Hillert, Critical limit for massive transformation, Metallurgical and Materials Transactions A 33(8) (2002) 2299-2308. [35] W.C. Leslie, The physical metallurgy of steels, Washington : Hempisphere Pub. Corp. ; New York : McGraw-Hill1981. [36] J.-m. Lee, K. Shibata, K. Asakura, Y. Masumoto, Observation of γ→α Transformation in Ultralow-carbon Steel under a High Temperature Optical Microscope, ISIJ International 42(10) (2002) 1135-1143. [37] A.J. Perkins, T.B. Massalski, Observations on the β→ζmmassive transformation in two-phase (β+ζ) alloys of the Cu−Ga−Ge system, Metallurgical Transactions 2(9) (1971) 2701-2709. [38] S.K. Bhattacharyya, J.H. Perepezko, T.B. Massalski, Nucleation during continuous cooling—application to massive transformations, Acta Metallurgica 22(7) (1974) 879-886. [39] S.R. Dey, E. Bouzy, A. Hazotte, EBSD characterisation of massive γ nucleation and growth in a TiAl-based alloy, Intermetallics 14(4) (2006) 444-449. [40] J.C. Caretti, J.E. Kittl, H.R. Bertorello, On the crystallography of the β → ζm massive transformation in cu-23.7 at.% ga alloys, Acta Metallurgica 31(2) (1983) 317-323. [41] M. Hillert, M. Jarl, A thermodynamic analysis of the iron-nitrogen system, Metallurgical Transactions A 6(3) (1975) 553. [42] J.E. Kittl, T.B. Massalski, A cinematographic study of the massive transformation in Cu-Ga alloys, Acta Metallurgica 15(2) (1967) 161-180. [43] G. Bäro, H. Gleiter, J.H. Perepezko, T.B. Massalski, Electron microscope observations of the β to ξ phase transformation in the Ag-Al system, Materials Science and Engineering 22 (1976) 171-176. [44] T. Araki, M. Enomoto, K. Shibata, Microstructural Aspects of Bainitic and Bainite-like Ferritic Structures of Continuously Cooled Low Carbon (<0.1%) HSLA Steels, Materials Transactions, JIM 32(8) (1991) 729-736. [45] M. Sudo, S. Wakikawa, M. Okuno, I. Tsukatani, Effect of addition of a very small amount of carbon on the transformation texture of 1%Mn-0.034%Ti extra-low carbon steel sheets, Tetsu To Hagane-Journal of the Iron and Steel Institute of Japan 87(9) (2001) 600-606. [46] J.H. Park, Y.K. Lee, Non-isothermal austenite formation behavior in an interstitial free steel with different ferrite microstructures, Scripta Materialia 58(7) (2008) 602-605. [47] R. Shukla, S.K. Ghosh, D. Chakrabarti, S. Chatterjee, Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon microalloyed steel for pipeline application, Mat Sci Eng a-Struct 587 (2013) 201-208. [48] B.P.H. Liu, J.R. Yang, Y. Wu, P. Shen, J. Fu, C.Y. Chen, S.H. Wang, M.C. Tsai, C.Y. Huang, Investigation of massive ferrite in an interstitial-free steel, Materials Characterization 157 (2019) 109920-109920. [49] S. Yadav, A. Kamal, M. Sinha, S. Ghosh, Recrystallization in commercial grade interstitial-free steel, discussing criticality of martensite and massive ferrite nucleation along with mechanical property, Journal of Materials Research and Technology 15 (2021) 4750-4757. [50] B.P.H. Liu, T.F. Chung, J.R. Yang, J. Fu, C.Y. Chen, S.H. Wang, M.C. Tsai, C.Y. Huang, Microstructure Characterization of Massive Ferrite in Laser-Weldments of Interstitial-Free Steels, Metals 2020, Vol. 10, Page 898 10(7) (2020) 898-898. [51] E.A. Wilson, The γ to α Transformation in Low Carbon lrons, ISIJ International 34(8) (1994) 61-66. [52] M. Bibby, J.G. Parr, The martensitic transformation in pure iron, J. Iron Steel Inst. Iron Steel Inst 202 (1964). [53] Y.n. Imai, Phases in Quenched and Tempered Steels, Transactions of the Japan Institute of Metals 16(12) (1975) 721-734. [54] E. Kozeschnik, E. Gamsjäger, High-speed quenching dilatometer investigation of the austenite-to-ferrite transformation in a low to ultralow carbon steel, Metallurgical and Materials Transactions A 37(6) (2006) 1791-1797. [55] Y.C. Liu, F. Sommer, E.J. Mittemeijer, The austenite–ferrite transformation of ultralow-carbon Fe–C alloy; transition from diffusion- to interface-controlled growth, Acta Materialia 54(12) (2006) 3383-3393. [56] T. Lankford W, New criteria for predicting the performance of deep drawing sheets, Trans. ASM 42 (1950) 1197. [57] S. Hoile, Processing and properties of mild interstitial free steels, Materials Science and Technology 16(10) (2000) 1079-1093. [58] R. Pradhan, T.F.M. Committee, Metallurgy of vacuum-degassed steel products: proceedings of an international symposium sponsored by the TMS Ferrous Metallurgy Committee and held at the 1989 fall meeting in Indianapolis, Indiana, October 3-5, (No Title) (1990). [59] International forum for Physical Metallurgy of IF steels : IF. IFS-94 May 10-11, 1994 Tokyo, Tokyo : Iron and Steel Institute of Japan1994. [60] P. Ghosh, R.K. Ray, 5 - Deep drawable steels**Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. The publisher apologizes for any errors or omissions in the acknowledgements printed in this book and would be grateful if notified of any corrections that should be incorporated in future reprints or editions, in: R. Rana, S.B. Singh (Eds.), Automotive Steels, Woodhead Publishing2017, pp. 113-143. [61] W.B. Hutchinson, Practical Aspects of Texture Control in Low Carbon Steels, Materials Science Forum 157-162 (1994) 1917-1928. [62] J.-S. Lecomte, H.-J. Bunge, Texture Analysis in Materials Science H.-J. Bunge, 2015. [63] R. Ray, J. Jonas, Transformation textures in steels, International Materials Reviews 35(1) (1990) 1-36. [64] V. Jain, P. Modak, S. Patra, A. Ghosh, Origin of Goss texture in grain oriented electrical steel: Role of shear bands, Materialia 22 (2022) 101398. [65] M. Hölscher, D. Raabe, K. Lücke, Rolling and recrystallization textures of bcc steels, Steel Research 62(12) (1991) 567-575. [66] D. Raabe, K. Lücke, Annealing textures of BCC metals, Scripta Metallurgica et Materialia 27(11) (1992) 1533-1538. [67] H. Inagaki, Fundamental Aspect of Texture Formation in Low Carbon Steel, ISIJ International 34(4) (1994) 313-321. [68] M.-Y. Huh, D. Raabe, O. Engler, Influence of solution treatment on the microstructure and crystallographic texture of cold rolled and recrystallised low carbon steel, Steel Research 66(8) (1995) 353-359. [69] C.L. Xie, E. Nakamachi, Design of texture for improved formability of high-strength steel, Materials Science and Engineering: A 340(1) (2003) 130-138. [70] P. Paufler, W. F. Hosford. The mechanics of crystals and textured polycrystals, Crystal Research and Technology - CRYST RES TECH 29 (1994) 532-532. [71] R.E. Hook, A.J. Heckler, J.A. Elias, Texture in deep drawing columbium (Nb)-treated interstitial-free steels, Metallurgical Transactions A 6(9) (1975) 1683-1692. [72] R.E. Hook, H. Nyo, Recrystallization of deep drawing columbium (Nb)-treated interstitial-free sheet steels, Metallurgical Transactions A 6(7) (1975) 1443-1451. [73] R.E. Hook, Physical Asymmetry of the Crystallographic Texture of an Interstitial-Free Sheet Steel, Metallurgical Transactions A 24(9) (1993) 2009-2019. [74] F.-r. Xiao, Y.-b. Cao, G.-y. Qiao, X.-b. Zhang, B. Liao, Effect of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in Nb Steels, Journal of Iron and Steel Research, International 19(11) (2012) 52-56. [75] B. Rakshe, J. Patel, E.J. Palmiere, Effect of Niobium Supersaturation in Austenite on the Static Recrystallization Behavior of Carbon Structural Steels, Metallurgical and Materials Transactions A 53(8) (2022) 3143-3157. [76] R.K. Ray, J.J. Jonas, R.E. Hook, Cold rolling and annealing textures in low carbon and extra low carbon steels, International Materials Reviews 39(4) (1994) 129-172. [77] W.B. Hutchinson, Development and control of annealing textures in low-carbon steels, International Metals Reviews 29(1) (1984) 25-42. [78] Y.B. Park, D.N. Lee, G. Gottstein, Evolution of recrystallisation textures from cold rolling textures in interstitial free steel, Materials Science and Technology 13(4) (1997) 289-298. [79] L. Jinxia, L. Zhanying, G. Cairu, W. Zhaodong, L. Xianghua, W. Guodong, Evolution of textures in interstitial free steel during multiple cold rolling and annealing, Journal of Materials Processing Technology 167(1) (2005) 132-137. [80] Y. Hayakawa, J.A. Szpunar, Modeling of texture development during recrystallization of interstitial free steel, Acta Materialia 45(6) (1997) 2425-2434. [81] R.K. Ray, J.J. Jonas, Butr, oacute, G. n, eacute, M.P. n, J. Savoie, Transformation Textures in Steels, ISIJ International 34(12) (1994) 927-942. [82] S. Gialanella, A. Malandruccolo, Titanium and Titanium Alloys, in: S. Gialanella, A. Malandruccolo (Eds.), Aerospace Alloys, Springer International Publishing, Cham, 2020, pp. 129-189. [83] M.J. Donachie, Jr., Titanium: A Technical Guide, ASM International2000. [84] Y. Chong, T. Bhattacharjee, J. Yi, A. Shibata, N. Tsuji, Mechanical properties of fully martensite microstructure in Ti-6Al-4V alloy transformed from refined beta grains obtained by rapid heat treatment (RHT), Scripta Materialia 138 (2017) 66-70. [85] S.L. Semiatin, S.L. Knisley, P.N. Fagin, D.R. Barker, F. Zhang, Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V, Metallurgical and Materials Transactions A 34(10) (2003) 2377-2386. [86] T. Ahmed, H.J. Rack, Phase transformations during cooling in α+β titanium alloys, Materials Science and Engineering: A 243(1) (1998) 206-211. [87] N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti–6Al–4V, Journal of Alloys and Compounds 486(1) (2009) 162-167. [88] Alpha + Beta Alloys, in: G. Lütjering, J.C. Williams (Eds.), Titanium, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 203-258. [89] M.R. Plichta, J.C. Williams, H.I. Aaronson, On the existence of the β→αm transformation in the alloy systems Ti-Ag, Ti-Au, and Ti-Si, Metallurgical Transactions A 8(12) (1977) 1885-1892. [90] M.R. Plichta, J.H. Perepezko, H.I. Aaronson, W.F. Lange, Part I Nucleation kinetics of the β → αm transformation in Ti-ag and Ti-au alloys, Acta Metallurgica 28(8) (1980) 1031-1040. [91] M.R. Plichta, H.I. Aaronson, J.H. Perepezko, The thermodynamics and kinetics of the β → αm transformation in three Ti-X systems, Acta Metallurgica 26(8) (1978) 1293-1305. [92] E.R. Baek, G. Suprobo, Massive Phase Transformation as a New Prospective on Microstructural Design in a Titanium Alloy - A Review, Materials Science Forum 1000 (2020) 428-435. [93] Z. Liu, S.L. Lu, H.P. Tang, M. Qian, L. Zhan, Characterization and decompositional crystallography of the massive phase grains in an additively-manufactured Ti-6Al-4V alloy, Materials Characterization 127 (2017) 146-152. [94] S.L. Lu, M. Qian, H.P. Tang, M. Yan, J. Wang, D.H. StJohn, Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting, Acta Materialia 104 (2016) 303-311. [95] S.L. Lu, D. Han, D.Y. Qin, T. Song, D. Qiu, M. Brandt, H.P. Tang, M. Qian, Massive transformations in titanium alloys: Role of relative orientation of adjacent parent grains, Scripta Materialia 239 (2024) 115776. [96] G. Suprobo, A.A. Ammar, N. Park, E.R. Baek, S. Kim, Thermal Decomposition of Massive Phase to Fine Lamellar α/β in Ti–6Al–4V Additively Manufactured Alloy by Directed Energy Deposition, Metals and Materials International 25(6) (2019) 1428-1435. [97] W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition, Acta Materialia 85 (2015) 74-84. [98] J. Yang, H. Bhadeshia, The dislocation density of acicular ferrite in steel welds, Weld. Res. Suppl 69 (1990) 305-307. [99] C.B. Carter, D.B. Williams, Transmission electron microscopy: Diffraction, imaging, and spectrometry, Springer2016. [100] N. Ohashi, T. Irie, S. Satoh, O. Hashimoto, I. Takahashi, Development of cold rolled high strength steel sheet with excellent deep drawability, SAE Technical Papers, 1981. [101] B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, N. Hansen, Microstructural evolution of IF-steel during cold rolling, Acta Materialia 52(4) (2004) 1069-1081. [102] N. Allain-Bonasso, F. Wagner, S. Berbenni, D.P. Field, A study of the heterogeneity of plastic deformation in IF steel by EBSD, Materials Science and Engineering A 548 (2012). [103] S. Itoh, K. Nakazawa, T. Matsunaga, Y. Matsukawa, Y. Satoh, H. Abe, Transition of deformation mechanism with grain refinement in interstitial-free steel, ISIJ International 54(7) (2014) 1729-1734. [104] S. Soren, Effect of Deformation on the Structure and Properties of Interstitial Free Steels, Materials Today: Proceedings 4(8) (2017) 9029-9038. [105] W. Li, M. Vittorietti, G. Jongbloed, J. Sietsma, The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel, Journal of Materials Science & Technology 45 (2020) 35-43. [106] T.B. Gonoring, L.P. Moreira, M.T.D.A. Orlando, An equivalent work-hardening description of an interstitial-free steel sheet based on uniaxial tensile and hydraulic bulge tests, Journal of Materials Research and Technology 13 (2021) 2138-2143. [107] M.B. Jabłońska, K. Kowalczyk, M. Tkocz, R. Chulist, K. Rodak, I. Bednarczyk, A. Cichański, The effect of severe plastic deformation on the IF steel properties, evolution of structure and crystallographic texture after dual rolls equal channel extrusion deformation, Archives of Civil and Mechanical Engineering 21(4) (2021) 1-10. [108] H. Li, S. Gao, Y. Tomota, S. Ii, N. Tsuji, T. Ohmura, Mechanical response of dislocation interaction with grain boundary in ultrafine-grained interstitial-free steel, Acta Materialia 206 (2021) 116621-116621. [109] P. Cizek, B.P. Wynne, C.H.J. Davies, B.C. Muddle, P.D. Hodgson, Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels, Metallurgical and Materials Transactions A 2002 33:5 33(5) (2002) 1331-1349. [110] A. Gilbert, W.S. Owen, Diffusionless transformation in iron-nickel, iron-chromium and iron-silicon alloys, Acta Metallurgica 10(1) (1962) 45-54. [111] T.B. Massalski, J.H. Perepezko, J. Jaklovsky, A microstructural study of massive transformations in the Fe-Ni system, Materials Science and Engineering 18(2) (1975) 193-198. [112] M.J. Roberts, Effect of transformation substructure on the strength and toughness of Fe−Mn alloys, Metallurgical Transactions 1970 1:12 1(12) (1970) 3287-3294. [113] J.V. Bee, R.W.K. Honeycombe, The isothermal decomposition of austenite in a high purity Iron-Chromium binary alloy, Metallurgical Transactions A 1978 9:4 9(4) (1978) 587-593. [114] Y. Kimura, S. Takaki, Phase Transformation Mechanism of Fe-Cu Alloys, ISIJ International 37(3) (1997) 290-295. [115] J. Wu, P.J. Wray, C.I. Garcia, M. Hua, A.J. DeArdo, On achieving a better understanding of the polygonal ferrite microstructure in if steel using image quality analysis, Materials and Manufacturing Processes 22(2) (2007) 281-285. [116] L.N. Brewer, D.P. Field, C.C. Merriman, Mapping and Assessing Plastic Deformation Using EBSD, in: A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field (Eds.), Electron Backscatter Diffraction in Materials Science, Springer US, Boston, MA, 2009, pp. 251-262. [117] S.I. Wright, M.M. Nowell, EBSD Image Quality Mapping, Microscopy and Microanalysis 12(1) (2006) 72-84. [118] S.I. Wright, M.M. Nowell, D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microscopy and Microanalysis 17(3) (2011) 316-329. [119] D. Kuhlmann-Wilsdorf, Theory of plastic deformation: - properties of low energy dislocation structures, Materials Science and Engineering: A 113(C) (1989) 1-41. [120] S. Thuillier, E.F. Rauch, Development of microbands in mild steel during cross loading, Acta Metallurgica et Materialia 42(6) (1994) 1973-1983. [121] P.J. Jackson, The formation of microbands by cross-slips, Scripta Metallurgica 17(2) (1983) 199-202. [122] J.C. Huang, G.T. Gray, Microband formation in shock-loaded and quasi-statically deformed metals, Acta Metallurgica 37(12) (1989) 3335-3347. [123] Q.Z. Chen, B.J. Duggan, On cells and microbands formed in an interstitial-free steel during cold rolling at low to medium reductions, Metallurgical and Materials Transactions A 35(11) (2004) 3423-3430. [124] Q.Z. Chen, A.H.W. Ngan, B.J. Duggan, Microstructure evolution in an interstitial-free steel during cold rolling at low strain levels, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459(2035) (2003) 1661-1685. [125] Q.Z. Chen, M.Z. Quadir, B.J. Duggan, Shear band formation in IF steel during cold rolling at medium reduction levels, Philosophical Magazine 86(23) (2006) 3633-3646. [126] B.J. Duggan, M.Z. Quadir, Y.Y. Tse, K. Shen, G.L. Liu, Q.Z. Chen, The Development of Homo and Heterogeneous Rolling Microstructures in Rolled Low Carbon and Interstitial-Free Steel, Materials Science Forum 558-559 (2007) 61-70. [127] K. Shen, B.J. Duggan, Microbands and crystal orientation metastability in cold rolled interstitial-free steel, Acta Materialia 55(4) (2007) 1137-1144. [128] L. Li, H. Wu, C. Guo, Y. Feng, Deformation behavior and softening mechanism in ferrite steel during warm deformation, Journal of Materials Research and Technology 18 (2022) 3977-3990. [129] G. Winther, D.J. Jensen, N. Hansen, Dense dislocation walls and microbands aligned with slip planes—theoretical considerations, Acta Materialia 45(12) (1997) 5059-5068. [130] D. Dorner, Y. Adachi, K. Tsuzaki, Periodic crystal lattice rotation in microband groups in a bcc metal, Scripta Materialia 57(8) (2007) 775-778. [131] M.Z. Quadir, N. Mateescu, L. Bassman, W. Xu, M. Ferry, Three-dimensional morphology of microbands in a cold-rolled steel, Scripta Materialia 57(11) (2007) 977-980. [132] P.J. Jackson, Dislocation modelling of shear in f.c.c. crystals, Progress in Materials Science 29(1) (1985) 139-175. [133] G.I. Taylor, C.F. Elam, The distortion of iron crystals, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 112(761) (1926) 337-361. [134] I. Gutierrez-Urrutia, A. Shibata, K. Tsuzaki, Microstructural study of microbands in a Fe-30Mn-6.5Al-0.3C low-density steel deformed at cryogenic temperature by combined electron channeling contrast imaging and electron backscatter diffraction, Acta Materialia 233 (2022) 117980. [135] A. Itami, K. Ushioda, N. Kimura, H. Asano, Y. Kimura, K. Koyama, Development of new formable cold-rolled sheet steels for automobile body panels, Nippon Steel Technical Report, 1995, pp. 26-32. [136] I. Samajdar, B. Verlinden, P. Van Houtte, D. Vanderschueren, γ-Fibre recrystallization texture in IF-steel: an investigation on the recrystallization mechanisms, Materials Science and Engineering: A 238(2) (1997) 343-350. [137] I. Samajdar, B. Verlinden, P. Van Houtte, Development of recrystallization texture in IF-steel: an effort to explain developments in global texture from microtextural studies, Acta Materialia 46(8) (1998) 2751-2763. [138] S.-H. Hong, D.N. Lee, Recrystallization Textures in Cold-Rolled Ti Bearing IF Steel Sheets, ISIJ International 42(11) (2002) 1278-1287. [139] P.S. Bate, J. Quinta da Fonseca, Texture development in the cold rolling of IF steel, Materials Science and Engineering: A 380(1) (2004) 365-377. [140] A.P.d.R. Santos, T.C.d. Mota, H.V.G. Segundo, L.H. de Almeida, L.S. Araújo, A.d.C. Rocha, Texture, microstructure and anisotropic properties of IF-steels with different additions of titanium, niobium and phosphorus, Journal of Materials Research and Technology 7(3) (2018) 331-336. [141] N. Deeparekha, A. Gupta, M. Demiral, R.K. Khatirkar, Cold rolling of an interstitial free (IF) steel—Experiments and simulations, Mechanics of Materials 148 (2020) 103420. [142] N. Yoshinaga, D. Vanderschueren, L. Kestens, K. Ushioda, J. Dilewijns, Cold-rolling and Recrystallization Texture Formation in Electro-deposited Pure Iron with a Sharp and Homogeneous γ-fiber, ISIJ International 38(6) (1998) 610-616. [143] H. Magnusson, D. Juul Jensen, B. Hutchinsson, Growth rates for different texture components during recrystallization of IF steel, Scripta Materialia 44(3) (2001) 435-441. [144] Y.Y. Tse, B.J. Duggan, Orientation imaging microscopy studies of recrystallization in interstitial-free steel, Metallurgical and Materials Transactions A 37(3) (2006) 1055-1064. [145] D. Vanderschueren, N. Yoshinaga, K. Koyama, Recrystallisation of Ti IF Steel Investigated with Electron Backscattering Pattern (EBSP), ISIJ International 36(8) (1996) 1046-1054. [146] A. Samet-Meziou, A.L. Etter, T. Baudin, R. Penelle, Relation between the deformation sub-structure after rolling or tension and the recrystallization mechanisms of an IF steel, Materials Science and Engineering: A 473(1) (2008) 342-354. [147] F. Emren, U. von Schlippenbach, K. Lücke, Investigation of the development of the recrystallization textures in deep drawing steels by ODF analysis, Acta Metallurgica 34(11) (1986) 2105-2117. [148] I. Samajdar, B. Verlinden, L. Kestens, P. Van Houtte, Physical parameters related to the developments of recrystallization textures in an ultra low carbon steel, Acta Materialia 47(1) (1998) 55-65. [149] D. Hawezy, S. Birosca, Disparity in recrystallization of α- & γ-fibers and its impact on Cube texture formation in non-oriented electrical steel, Acta Materialia 216 (2021) 117141. [150] G.D. Sathiaraj, A. Pukenas, W. Skrotzki, Texture formation in face-centered cubic high-entropy alloys, Journal of Alloys and Compounds 826 (2020) 154183. [151] W.B. Hutchinson, Recrystallisation textures in iron resulting from nucleation at grain boundaries, Acta Metallurgica 37(4) (1989) 1047-1056. [152] M. Abe, Y. Kokabu, Y. Hayashi, S. Hayami, Effect of Grain Boundaries on the Cold Rolling and Annealing Textures of Pure Iron, Transactions of the Japan Institute of Metals 23(11) (1982) 718-725. [153] H. Inagaki, Formation of {111} Recrystallization Texture in Polycrystalline Iron, Transactions of the Iron and Steel Institute of Japan 24(4) (1984) 266-274. [154] N. Rajmohan, Y. Hayakawa, J.A. Szpunar, J.H. Root, Neutron diffraction method for stored energy measurement in interstitial free steel, Acta Materialia 45(6) (1997) 2485-2494. [155] I.L. Dillamore, C.J.E. Smith, T.W. Watson, Oriented Nucleation in the Formation of Annealing Textures in Iron, Metal Science Journal 1(1) (1967) 49-54. [156] A. Wauthier-Monnin, T. Chauveau, O. Castelnau, H. Réglé, B. Bacroix, The evolution with strain of the stored energy in different texture components of cold-rolled IF steel revealed by high resolution X-ray diffraction, Materials Characterization 104 (2015) 31-41. [157] T. Haratani, W.B. Hutchinson, I.L. Dillamore, P. Bate, Contribution of shear banding to origin of Goss texture in silicon iron, Metal Science 18A(2) (1984) 57-66. [158] M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland, A.D. Rollett, Cube texture in hot-rolled aluminum alloy 1050 (AA1050)—nucleation and growth behavior, Acta Materialia 56(13) (2008) 3098-3108. [159] A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron backscatter diffraction in materials science, Springer2009. [160] R.S. Yassar, J.C. Baird, M.F. Horstemeyer, Evolution of in-grain orientation gradient in plastically strained particulate materials, Materials Science and Engineering: A 517(1) (2009) 286-292. [161] M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Materials Science and Engineering: A 527(10) (2010) 2738-2746. [162] D.P. Field, L.T. Bradford, M.M. Nowell, T.M. Lillo, The role of annealing twins during recrystallization of Cu, Acta Materialia 55(12) (2007) 4233-4241. [163] A. Ayad, M. Ramoul, A.D. Rollett, F. Wagner, Quantifying primary recrystallization from EBSD maps of partially recrystallized states of an IF steel, Materials Characterization 171 (2021) 110773. [164] M. Holscher, D. Raabe, K. Lucke, Rolling and recrystallization textures of bcc steels, Steel Research-Dusseldorf- 62(12) (1991). [165] J.-T. Park, J.A. Szpunar, Evolution of recrystallization texture in nonoriented electrical steels, Acta Materialia 51(11) (2003) 3037-3051. [166] c.S. Lee, R.E. Smallman, B.J. Duggan, Effect of rolling geometry and surface friction on cube texture formation, Materials Science and Technology 10(2) (1994) 149-154. [167] C.-H. Choi, D.N. Lee, Evolution of recrystallization texture from aluminum sheet cold rolled under unlubricated condition, Metallurgical and Materials Transactions A 28(11) (1997) 2217-2222. [168] M. Oyarzábal, A. Martínez-de-Guerenu, I. Gutiérrez, Effect of stored energy and recovery on the overall recrystallization kinetics of a cold rolled low carbon steel, Materials Science and Engineering: A 485(1) (2008) 200-209. [169] J. Zhang, H. Guo, M. Hu, H. Xu, H. Ju, D. Xu, C. Teng, R. Yang, Effect of common alloying elements on α’ martensite start temperature in titanium alloys, Journal of Materials Research and Technology 27 (2023) 4562-4572. [170] J. Hu, Y. Jiang, Y. Yang, H. Xing, F. Han, G. Zhou, K. Zhang, S. Xin, S. Zhang, J. Huang, H. Wang, G. Li, L.-C. Zhang, A. Huang, Formation mechanism of ultrafine α+β structure in Ti-6Al-4V alloy during β→αm→α+β continuous phase transformation, Scripta Materialia 246 (2024) 116066. [171] J. Karimi, C. Zhao, K.G. Prashanth, Massive transformation in dual-laser powder bed fusion of Ti6Al4V alloys, Journal of Manufacturing Processes 119 (2024) 282-292. [172] S. Kumar, S.R. Vijayan, P. Nandwana, J.D. Poplawsky, C. Yan, S.S. Babu, Role of thermo-mechanical gyrations on the α/β interface stability in a Ti6Al4V AM alloy, Scripta Materialia 204 (2021) 114134. [173] S. Liu, Y. Chew, F. Weng, S. Sui, Z. Du, Y. Man, F.L. Ng, G. Bi, Effects of laser pulse modulation on intermetallic compounds formation for welding of Ti-6Al-4V and AA7075 using AA4047 filler, Materials & Design 213 (2022) 110325. [174] M.S. Oh, J.-Y. Lee, J.K. Park, Continuous cooling β-to-α transformation behaviors of extra-pure and commercially pure Ti, Metallurgical and Materials Transactions A 35(10) (2004) 3071-3077. [175] A. Denquin, S. Naka, Phase transformation mechanisms involved in two-phase TiAl-based alloys—II. Discontinuous coarsening and massive-type transformation, Acta Materialia 44(1) (1996) 353-365. [176] Y. Huang, J. Wang, Z. Wang, J. Li, C. Guo, Migration mechanisms of interphase boundaries with irrational orientation relationships in massive transformations: A phase-field crystal study, Computational Materials Science 159 (2019) 420-427. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95916 | - |
dc.description.abstract | 低碳鋼及鈦合金因其優秀的強度,至今已被廣泛運用在各個產業,如建築、汽車、航太等等。在西元1970年,日本冶金學家發現去除間隙型原子能大幅提升低碳鋼的成型性能,此鋼種即為現今廣泛運用於汽車外殼的無間隙型原子鋼。早期的研究中已發現極低碳鋼及鈦合金在快速冷卻下會引入巨大相變化,然而,關於此相變化的研究仍然有限。本研究的目的旨在釐清巨大相變化在無間隙原子鋼及鈦合金中的影響。透過光學顯微鏡、掃描式電子顯微鏡及穿透式電子顯微鏡來觀察顯微結構並搭配機械性能的測試來了解巨大肥粒鐵對無間隙型原子鋼的成型性能與機械性能所造成的改變,並透過背向散射電子繞射技術搭配母相重構演算法來檢查巨大相變化在Ti-6Al-4V中的晶體學特徵及其生長機制。
第四章深入探討巨大肥粒鐵及等軸肥粒鐵的機械性能及其變形組織演化過程,並發現此二肥粒鐵變形組織的序列皆是由差排胞、密集差排牆 (DDWs) 和變形微帶 (MBs) 所組成。透過固定應變量的間斷拉伸測試,我們發現DDWs和MBs可在較低應變量下於巨大肥粒鐵晶粒內大量發展,此差異是由於巨大肥粒鐵初始的差排密度較高。較高的差排密度促進了差排的增生和堆積,因而在巨大肥粒鐵中產生了更明顯的應變硬化效應。此外,巨大相變化所產生的不規則晶界及晶粒內部的次晶界使得強度提升的同時,延展性得以維持。 第五章則是檢視冷軋和退火處理對巨大肥粒鐵及等軸肥粒鐵的微觀結構及織構演變的影響。我們發現巨大肥粒鐵組織在經過相同的冷軋和退火製程後能產生更細小的晶粒及更強的γ-纖維,而γ-纖維已被證實是影響成型性能的關鍵因子。我們亦發現在冷軋時,巨大肥粒鐵的主要織構會由{111}〈112〉轉向{111}〈110〉,這個現象是由巨大肥粒鐵中的差排及次晶界所形成的預應變效應造成的。相反地,在退火階段,我們在二肥粒鐵中均無觀察到在高應變量下常見的{111}〈112〉再結晶織構,這是因為巨大肥粒鐵內的預應變效應仍不夠顯著,使得主要的織構仍為{111}〈110〉。此外,巨大肥粒鐵所儲存的應變能明顯高於等軸肥粒鐵,前者在600°C退火15分鐘後再結晶分率即來到88.4%,而後者在相同條件下只有48.2%,此結果顯示巨大肥粒鐵能有效減少再結晶完成所需的時間並節省成本。 第六章旨在鑑定Ti-6Al-4V合金中的巨大相變化。我們在Ti-6Al-4V中觀察到兩種類型的巨大相變化晶粒形貌:晶界αm和塊狀αm。此二組織的化學成分與麻田散體相同,並具有不規則且無法分辨的晶界。本研究發現,塊狀αm是由晶界αm跨越先前β晶界生長而形成的。前β相的重構分析表明,Ti-6Al-4V中的αm在先前的β晶界處以Burgers方位關係成核。然而,αm的生長並不一定需要維持Burgers方位關係。此外,結合β重構和KAM分析的結果顯示,在塊狀αm的生長過程中,先前的β晶界會在塊狀 αm 跨過時轉變為小角度晶界。最後,本研究發現跨晶界生長之 αm兩側的前β晶粒有共用{110}晶面的現象。 | zh_TW |
dc.description.abstract | Low carbon steels and titanium alloys, known for their excellent strength, have been widely utilized in various industries, such as construction, automotive, aerospace, and more. In 1970, Japanese metallurgists discovered that removing interstitial atoms significantly enhances the formability of low carbon steel, leading to the development of Interstitial-Free (IF) steels, now extensively used in automotive bodies. Early research found that ultra-low carbon steels and titanium alloys undergo massive transformation during rapid cooling, yet studies on this transformation remains limited. This research aims to clarify the impact of massive transformation in IF steels and titanium alloys, employing optical microscopy, scanning electron microscopy, and transmission electron microscopy to observe microstructures and coordinate with mechanical performance tests to understand the changes in formability and mechanical properties caused by massive phase. Moreover, the parent grain reconstruction algorithm was utilized in the present study to explore the crystallographic nature of the massive phase in Ti-6Al-4V alloy.
Chapter 4 delves into the deformation structures of massive and allotriomorphic ferrite, revealing that both consist of dislocation cells, Dense Dislocation Walls (DDWs), and microbands (MBs). Through interrupted tensile tests at fixed strain levels, it was found that, under the same strain, DDWs and MBs developed earlier in the massive ferrite compared to allotriomorphic ferrite, due to higher dislocation density of the original massive ferrite grain-matrix. This higher dislocation density enhances dislocation multiplication and accumulation, leading to a more pronounced strain hardening effect in massive ferrite. Furthermore, the sub-boundaries and irregular grain boundaries produced by the massive transformation contribute to increased strength while maintaining ductility. Chapter 5 examines the impact of cold-rolling and annealing treatments on the microstructures and textures of massive and allotriomorphic ferrite grains. It was found that massive ferrite structures developed finer grains and stronger γ-fiber textures after the same cold-rolling and annealing processes. γ-fiber has been proven to be a key factor affecting formability. It was also observed that during cold rolling, the primary texture component of massive ferrite shifted from {111}〈112〉 to {111}〈110〉, believed to be caused by the pre-strain effect induced by dislocations and sub-boundaries in massive ferrite. In contrast, during the annealing phase, the common {111}〈112〉 recrystallization texture observed in cold-rolled steels subjected to high strains was not seen in either type of ferrite, as the pre-strain effect in massive ferrite was not significant enough, keeping the primary texture as {111}〈110〉. Additionally, the strain energy stored in massive ferrite was notably higher than in allotriomorphic ferrite, with the former reaching a recrystallization fraction of 88.4% after annealing at 600°C for 15 minutes, while the latter only reached 48.2% under the same conditions. This result indicates that massive ferrite can effectively reduce the time required for complete recrystallization, thus saving costs. Chapter 6 identifies the massive transformation in Ti-6Al-4V alloys. Two types of massive phase: GB-αm and blocky αm were observed in the Ti-6Al-4V. These phases are characterized by their identical chemical composition to martensite and their patchy morphologies. The blocky αm was found to result from the growth of GB- αm across the prior β grain boundaries. Prior β reconstruction demonstrated that αm in Ti-6Al-4V nucleates at prior β grain boundaries with Burgers orientation relationship. However, the growth of αm does not necessarily requires the Burgers OR. Additionally, the incorporation of prior β reconstruction and KAM analyses revealed that the prior β grain boundaries transformed into low-angle boundaries during the growth of blocky αm. Finally, it was found that the neighboring prior β grains of the transgranular blocky-αm shares the same {110} poles. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-24T16:13:29Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-24T16:13:29Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
口試委員審定書 i 誌謝 ii Acknowledgement iv 摘要 vii Abstract ix Contents xii Figure Content xvii Table Content xxvii Chapter 1 – Introduction 1 Chapter 2 – General Literature Review 4 2.1 Phase transformation in ultra-low carbon steels 4 2.1.1 Reconstructive transformation 6 2.1.2 Displacive transformation 9 2.2 Massive transformation 14 2.2.1 The composition invariance 15 2.2.2 Rapid growth 18 2.2.3 Interface-controlled 18 2.2.4 Orientation-free 20 2.2.5 Morphology of massive grains 21 2.3 Massive ferrite in IF steels 23 2.3.1 Morphology 24 2.3.2 Characterization of transformation temperature 27 2.4 Mechanical Properties of IF steels 30 2.4.1 Measurement of formability 30 2.4.2 Effects of alloying elements 31 2.4.3 Textures and orientation distribution functions (ODFs) 34 2.4.4 The concept of the Euler angles and the construction of an ODF 37 2.4.5 Textures and formability 39 2.5 Titanium alloys 44 2.5.1 Introduction and classification of titanium alloys 44 2.5.2 Ti-6Al-4V titanium alloy 47 2.5.3 Massive transformation in Ti-6Al-4V 50 Chapter 3 – General Experimental Procedures 55 3.1 Experimental alloy 55 3.2 Specimen Preparation 55 3.2.1 Specimen preparations for Optical Microscopy 55 3.2.2 Specimen preparations for TEM 55 3.2.3 Specimen preparations for EBSD 56 3.3 Instruments for Mechanical Tests 57 3.3.1 Vickers Hardness Testing machine 57 3.3.2 Tensile Testing machine 57 3.4 Instruments for Heat treatment 58 3.4.1 Dilatometer 58 3.4.2 Heating Furnace 59 3.5 Instruments for Microstructure Characterization 59 3.5.1 Optical Microscope (OM) 59 3.5.2 Transmission Electron Microscope (TEM) 59 3.5.3 Scanning Electron Microscope (SEM) and Electron Backscattered Diffraction (EBSD) 60 3.6 Calculations of the dislocation density 61 Chapter 4 – Relationship between Mechanical Behavior and Deformed Structures of Massive and Allotriomorphic Ferrite in IF steels 64 4.1 Introduction 64 4.2 Experimental Procedure 67 4.3 Results 69 4.3.1 Optical Metallographs and Mechanical Properties 69 4.3.2 TEM observations of initial microstructures of massive ferrite and allotriomorphic ferrite. 72 4.3.3 TEM observations of deformed structures in massive ferrite 75 4.3.4 TEM observations of deformed structures in allotriomorphic ferrite 86 4.3.5 FEG-SEM EBSD observations of massive and allotriomorphic ferrite 91 4.3.6 Evolution of dislocation density in massive ferrite under deformation 95 4.4 Discussion 97 4.4.1 The correlation between cooling rate and microstructures 97 4.4.2 Comparison in deformed structures between massive and allotriomorphic ferrite under low plastic strains (0.05 and 0.1) 100 4.4.3 Comparison in deformed structures between massive and allotriomorphic ferrite under medium to high plastic strains (0.2 – 0.4) 105 4.5 Conclusion 108 Chapter 5 – Investigations on Microstructures and Texture Evolution of Massive and Allotriomorphic Ferrite Subjected to Cold-rolling and Annealing 110 5.1 Introduction 110 5.2 Experimental Procedure 113 5.3 Results and Discussion 115 5.3.1 Microstructures before cold rolling 115 5.3.2 Comparison of cold rolling textures and microstructures between allotriomorphic and massive ferrite 118 5.3.3 Comparison of textures and microstructures between allotriomorphic and massive ferrite during recrystallization 124 5.3.4 Evolution of texture components in cold-rolled allotriomorphic and massive ferrite during annealing 133 5.3.4 Characterization of the deformed grains 140 5.4 Conclusion 143 Chapter 6 – Identifications of Massive Transformation in Ti-6Al-4V Titanium Alloys by EBSD 144 6.1 Introduction 144 6.2 Experimental procedure 145 6.3 Results and Discussion 147 6.3.1 Optical metallographs of the AC and WQ samples 147 6.3.2 SEM and EBSD characterizations of the massive phase in AC and WQ samples 152 6.3.3 KAM analyses of the massive phase 159 6.3.4 Identifications of the orientation relationship between αm and prior β 163 6.4 Conclusion 167 Chapter 7 – General Conclusions 168 7.1 For the mechanical behavior of massive ferrite in IF steels 168 7.2 For the identification of the massive transformation in Ti-6Al-4V 170 Chapter 8 – Future Work 171 8.1 Chapter 4 – Mechanical behavior and microstructural evolution of massive ferrite in high-P IF steels. 171 8.2 Chapter 5 – The feasibility of the designed treatments in mass production of the IF steels. 171 8.3 Chapter 6 – The relationship between the growth mechanism of αm and its neighboring prior β grains. 172 References 173 Appendix A – Parent Grain Reconstruction for β-Ti in the MTEX toolbox 186 A.1 Introduction 186 A.2 Methodology 187 A.2.1 Grain reconstruction 188 A.2.2 Defining the OR and constructing variant graph 191 A.2.3 Reconstruction of the parent grains 194 A.3 References 197 Appendix B – The MTEX syntax/variables used in the present dissertation 198 B.1 The import script 198 B.2 Table of syntax for defining variables 199 B.3 Table of syntax for plotting figures 200 | - |
dc.language.iso | en | - |
dc.title | 無間隙型原子鋼中巨大肥粒鐵和Ti-6Al-4V中巨大相變化之研究 | zh_TW |
dc.title | Investigations on Massive Ferrite in IF Steels and Massive Transformation in Ti-6Al-4V | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 黃慶淵;王星豪;王樂民;鍾采甫;蘇德徵;陳志遠;王涵聖 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Yuan Huang;Shing-Hoa Wang;Le-Min Wang;Tsai-Fu Chung;Te-Cheng Su;Chih-Yuan Chen;Han-Shen Wang | en |
dc.subject.keyword | 無間隙型原子鋼,巨大肥粒鐵,巨大相變化,鈦合金,掃描式電子顯微鏡,穿透式電子顯微鏡, | zh_TW |
dc.subject.keyword | Interstitial-free (IF) steels,massive ferrite,massive transformation,titanium alloys,scanning electron microscope,transmission electron microscope, | en |
dc.relation.page | 200 | - |
dc.identifier.doi | 10.6342/NTU202402493 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-30 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 材料科學與工程學系 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 41.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。