Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95910
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭zh_TW
dc.contributor.advisorAnthony J.T. Leeen
dc.contributor.author林于詩zh_TW
dc.contributor.authorYu-Shi Linen
dc.date.accessioned2024-09-24T16:11:16Z-
dc.date.available2024-09-25-
dc.date.copyright2024-09-24-
dc.date.issued2024-
dc.date.submitted2024-07-09-
dc.identifier.citationAlijani S, Tanha J, Mohammadkhanli L (2022) An ensemble of deep learning algorithms for popularity prediction of flickr images. Multimedia Tools and Applications 81(3):3253–3274.
Arik SÖ, Pfister T (2021) TabNet: Attentive interpretable tabular learning. Proceedings of the AAAI Conference on Artificial Intelligence 35(8):6679–6687.
Bao P, Shen HW, Jin X, Cheng XQ (2015) Modeling and predicting popularity dynamics of microblogs using self-excited hawkes processes. Proceedings of the 24th International Conference on World Wide Web. 9–10.
Bengio Y, Louradour J, Collobert R, Weston J (2009) Curriculum learning. Proceedings of the 26th Annual International Conference on Machine Learning. 41–48.
Chen G, Kong Q, Xu N, Mao W (2019) NPP: A neural popularity prediction model for social media content. Neurocomputing 333:221–230.
Chen J, Liang D, Zhu Z, Zhou X, Ye Z, Mo X (2019) Social media popularity prediction based on visual-textual features with XGBoost. Proceedings of the 27th ACM International Conference on Multimedia. 2692–2696.
Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794.
Chen W, Hong F, Huang C, Zhang S, Wang R, Xie R, Xia F, Lin L, Zhang Y, Wang Y (2020) Curriculum learning for wide multimedia-based transformer with graph target detection. Proceedings of the 28th ACM International Conference on Multimedia. 4575–4579.
Chen W, Huang C, Yuan W, Chen X, Hu W, Zhang X, Zhang Y (2022) Title-and-tag contrastive vision-and-language transformer for social media popularity prediction. Proceedings of the 30th ACM International Conference on Multimedia. 7008–7012.
Chen X, Chen W, Huang C, Zhang Z, Duan L, Zhang Y (2023) Double-fine-tuning multi-objective vision-and-language transformer for social media popularity prediction. Proceedings of the 31st ACM International Conference on Multimedia. 9462–9466.
Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.
Ding K, Wang R, Wang S (2019) Social media popularity prediction: A multiple feature fusion approach with deep neural networks. Proceedings of the 27th ACM International Conference on Multimedia. 2682–2686.
Friedman JH (2002) Stochastic gradient boosting. Computational Statistics & Data Analysis 38(4):367–378.
Hawkes AG (1971) Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1):83–90.
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.
He Ziliang, He Zijian, Wu J, Yang Z (2019) Feature construction for posts and users combined with LightGBM for social media popularity prediction. Proceedings of the 27th ACM International Conference on Multimedia. 2672–2676.
Ho TK (1995) Random decision forests. Proceedings of 3rd International Conference on Document Analysis and Recognition. 278–282.
Hsu CC, Kang LW, Lee CY, Lee JY, Zhang ZX, Wu SM (2019) Popularity prediction of social media based on multi-modal feature mining. Proceedings of the 27th ACM International Conference on Multimedia. 2687–2691.
Hsu CC, Lee CM, Hou XY, Tsai CH (2023) Gradient boost tree network based on extensive feature analysis for popularity prediction of social posts. Proceedings of the 31st ACM International Conference on Multimedia. 9451–9455.
Hsu CC, Tsai PJ, Yeh TC, Hou XY (2022) A comprehensive study of spatiotemporal feature learning for social medial popularity prediction. Proceedings of the 30th ACM International Conference on Multimedia. 7130–7134.
Hsu CC, Tseng WH, Yang HT, Lin CH, Kao CH (2020) Rethinking relation between model stacking and recurrent neural networks for social media prediction. Proceedings of the 28th ACM International Conference on Multimedia. 4585–4589.
Hu MK (1962) Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2):179–187.
Kang P, Lin Z, Teng S, Zhang G, Guo L, Zhang W (2019) CatBoost-based framework with additional user information for social media popularity prediction. Proceedings of the 27th ACM International Conference on Multimedia. 2677–2681.
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems. 3146–3154.
Lai X, Zhang Y, Zhang W (2020) HyFea: Winning solution to social media popularity prediction for multimedia grand challenge 2020. Proceedings of the 28th ACM International Conference on Multimedia. 4565–4569.
Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278–2324.
Li L, Situ R, Gao J, Yang Z, Liu W (2017) A hybrid model combining convolutional neural network with XGBoost for predicting social media popularity. Proceedings of the 25th ACM International Conference on Multimedia. 1912–1917.
Liu Z, Hu H, Lin Y, Yao Z, Xie Z, Wei Y, Ning J, et al. (2022) Swin transformer v2: Scaling up capacity and resolution. arXiv:2111.09883.
Lu J, Batra D, Parikh D, Lee S (2019) ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. Advances in Neural Information Processing Systems. 13–23.
Lv J, Liu W, Zhang M, Gong H, Wu B, Ma H (2017) Multi-feature fusion for predicting social media popularity. Proceedings of the 25th ACM International Conference on Multimedia. 1883–1888.
Mao S, Xi W, Yu L, Lü G, Xing X, Zhou X, Wan W (2023) Enhanced CatBoost with stacking features for social media prediction. Proceedings of the 31st ACM International Conference on Multimedia. 9430–9435.
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv:1301.3781.
Mishra S, Rizoiu MA, Xie L (2016) Feature driven and point process approaches for popularity prediction. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 1069–1078.
Oord A van den, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv:1807.03748.
Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) CatBoost: Unbiased boosting with categorical features. Advances in Neural Information Processing Systems. 6637–6647.
Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, et al. (2021) Learning transferable visual models from natural language supervision. Proceedings of the 38th International Conference on Machine Learning. 8748–8763.
Ren S, Zhou D, He S, Feng J, Wang X (2022) Shunted self-attention via multi-scale token aggregation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10853–10862.
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.
Snyder DL, Miller MI (2012) Random Point Processes in Time and Space (Springer Science & Business Media, New York, USA).
Song G, Chai W (2018) Collaborative learning for deep neural networks. Advances in Neural Information Processing Systems. 1832–1841.
Talebi H, Milanfar P (2018) NIMA: Neural image assessment. IEEE Transactions on Image Processing 27(8):3998–4011.
Tan Y, Liu F, Li B, Zhang Z, Zhang B (2022) An efficient multi-view multimodal data processing framework for social media popularity prediction. Proceedings of the 30th ACM International Conference on Multimedia. 7200–7204.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł ukasz, Polosukhin I (2017) Attention is all you need. Advances in Neural Information Processing Systems. 6000–6010.
Wang K, Wang P, Chen X, Huang Q, Mao Z, Zhang Y (2020) A feature generalization framework for social media popularity prediction. Proceedings of the 28th ACM International Conference on Multimedia. 4570–4574.
Wang W, Zhang W (2017) Combining multiple features for image popularity prediction in social media. Proceedings of the 25th ACM International Conference on Multimedia. 1901–1905.
Wu B, Cheng WH, Zhang Y, Huang Q, Li J, Mei T (2017) Sequential prediction of social media popularity with deep temporal context networks. arXiv:1712.04443.
Wu B, Cheng WH, Zhang Y, Mei T (2016) Time matters: Multi-scale temporalization of social media popularity. Proceedings of the 24th ACM International Conference on Multimedia. 1336–1344.
Wu J, Zhao L, Li D, Xie CW, Sun S, Zheng Y (2022) Deeply exploit visual and language information for social media popularity prediction. Proceedings of the 30th ACM International Conference on Multimedia. 7045–7049.
Xu K, Lin Z, Zhao J, Shi P, Deng W, Wang H (2020) Multimodal deep learning for social media popularity prediction with attention mechanism. Proceedings of the 28th ACM International Conference on Multimedia. 4580–4584.
Zhang H, Wu C, Zhang Zhongyue, Zhu Y, Lin H, Zhang Zhi, Sun Y, et al. (2022) ResNeSt: Split-attention networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2736–2746.
Zhao Q, Erdogdu MA, He HY, Rajaraman A, Leskovec J (2015) SEISMIC: A self-exciting point process model for predicting tweet popularity. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1513–1522.
Zhu D, Chen J, Shen X, Li X, Elhoseiny M (2023) MiniGPT-4: Enhancing vision-language understanding with advanced large language models. arXiv:2304.10592.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95910-
dc.description.abstract許多企業和網紅利用社交媒體來推廣其品牌形象、產品、想法和概念,社交網站上有大量的貼文,但並非每個貼文都會引起關注。因此,企業和網紅有迫切的需求想知道何種內容更有可能受到關注。然而,既有的社交媒體流行度預測模型,常常忽略用戶的影響,意即由同一用戶發布的貼文常具有類似的流行度。因此,在本研究中,我們提出一個基於用戶影響的社交媒體流行度預測框架,稱為UIA (User-Influence-Aware),以克服過往模型的缺點。我們提出的框架包含四個模組,分別為特徵萃取、變壓器、對比學習和預測。首先,我們開發特徵萃取模組來提取視覺、標題、標籤、常用標籤分佈、貼文和用戶特徵,為了更好地整合所提取的特徵,我們應用共注意力變換器來學習視覺和標題特徵之間、標籤和常用標籤分佈特徵之間以及貼文和用戶特徵之間的交互關係,我們也利用MiniGPT-4模型生成圖像標題,以豐富貼文的文本特徵。接著,我們使用變壓器進一步強化特徵間的交互關係。然後,我們採用對比學習模組,將流行度相似的貼文表示式拉近,並將流行度差異大的貼文表示式推遠。最後,我們運用預測模組預測每個貼文的流行度。另外,我們採用協作學習框架來增加模型的泛化能力和對噪音數據的穩健性,同時,我們引入偽損失來考慮用戶的影響,以幫助模型學習每個用戶的貼文流行度分佈。實驗結果顯示,我們所提出的模型在斯皮爾曼等級相關係數和平均絕對誤差方面均優於最先進的模型。我們的模型可以幫助企業和網紅預測貼文的流行度,有效識別更有可能受關注的社交媒體內容,從而提高其貼文的能見度和觀眾的關注度。zh_TW
dc.description.abstractMany businesses and influencers utilize social media platforms to promote their brand image, products, ideas, and concepts. Despite a massive number of posts being uploaded, not every post gets attention. Therefore, it is essential and desirable for businesses and influencers to identify social media contents that are more likely to become popular. Many models have been proposed for social media popularity prediction (SMP). However, they overlook the user influence that the posts made by the same user have similar popularity. Therefore, in this study, we propose a novel User-Influence-Aware framework for social media popularity prediction, called UIA, to overcome the weaknesses of previously proposed models. The proposed framework contains four modules, namely feature extraction, transformer, contrastive learning, and prediction. First, we develop the feature extraction module to extract the visual, caption, tag, frequent tag distribution, post, and user features. To better integrate the extracted features, we apply the Co-Attention Transformer to learn the interaction relationships between visual and caption features, between tag and tag distribution features, and between post and user features. Also, we exploit the MiniGPT-4 model to generate image captions to enrich the textual features of posts. Second, we use the Transformer to learn the inter-relationships among the features learned by the Co-Attention Transformer. Third, we employ the contrastive learning module to pull closer the representations of the posts with similar labels and push farther apart those with dissimilar labels. Finally, we utilize the prediction module to predict the label of each post by using the representations learned by the contrastive learning module. In addition, we adopt the collaborative learning framework to increase model generalization and robustness to noisy data. Also, we introduce the pseudo losses to consider the user influence and help our model learn the popularity distribution of each user. The experimental results demonstrate that the proposed framework outperforms the state-of-the-art models in terms of Spearman's rank correlation and mean absolute error. Our model can assist businesses and influencers in predicting the popularity of posts and effectively identifying the social media contents that are more likely to become popular, which in turn increases their post visibility and audience attention.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-24T16:11:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-24T16:11:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsList of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Related Work 5
2.1 Feature-Based Methods 5
2.2 Time-Series-Based Methods 6
2.3 Deep-Learning-Based Methods 7
Chapter 3 Methodology 9
3.1 Feature Extraction Module 11
3.1.1 Visual and Caption Features 11
3.1.2 Tag and Distribution Features 12
3.1.3 Post and User Features 14
3.2 Transformer Module 14
3.3 Contrastive Learning Module 15
3.4 Prediction Module 16
3.5 Collaborative Learning 16
3.6 Pseudo Mean and MAD Estimation 17
Chapter 4 Experimental Results 19
4.1 Experimental Settings and Evaluation Metrics 19
4.2 Performance Evaluation 20
4.3 Ablation Study 20
Chapter 5 Conclusions and Future Work 24
References 26
Appendix A 30
-
dc.language.isoen-
dc.title基於用戶影響之社交媒體流行度預測模型zh_TW
dc.titleAn Effective User-Influence-Aware Framework for Social Media Popularity Predictionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳怡瑾;戴敏育zh_TW
dc.contributor.oralexamcommitteeI-CHIN Nancy Wu;Min-Yuh Dayen
dc.subject.keyword社交媒體流行度預測,共注意力變換器,變換器,對比學習,協作學習,zh_TW
dc.subject.keywordSocial Media Popularity Prediction,Co-Attention Transformer,Transformer,Contrastive Learning,Collaborative Learning,en
dc.relation.page30-
dc.identifier.doi10.6342/NTU202401213-
dc.rights.note未授權-
dc.date.accepted2024-07-09-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
974.67 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved