Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅昭銘zh_TW
dc.contributor.advisorChao-Ming Fuen
dc.contributor.author陳家偉zh_TW
dc.contributor.authorJia-Wei Chenen
dc.date.accessioned2024-09-24T16:09:55Z-
dc.date.available2024-09-25-
dc.date.copyright2024-09-24-
dc.date.issued2024-
dc.date.submitted2024-08-11-
dc.identifier.citation參考資料
[1] R. P. Feynman, Feynman lectures on computation. CRC Press, 2018.
[2] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information. Cambridge university press, 2010.
[3] L. K. Grover, "A fast quantum mechanical algorithm for database search," in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996, pp. 212-219.
[4] P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," SIAM review, vol. 41, no. 2, pp. 303-332, 1999.
[5] A. Abbas et al., "Quantum optimization: Potential, challenges, and the path forward," arXiv preprint arXiv:2312.02279, 2023.
[6] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, "q-means: A quantum algorithm for unsupervised machine learning," Advances in neural information processing systems, vol. 32, 2019.
[7] I. Kerenidis and A. Luongo, "Quantum classification of the MNIST dataset with Slow Feature Analysis," arXiv preprint arXiv:1805.08837, 2018.
[8] S. Lloyd, M. Mohseni, and P. Rebentrost, "Quantum algorithms for supervised and unsupervised machine learning," arXiv preprint arXiv:1307.0411, 2013.
[9] D. S. Abrams and S. Lloyd, "Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors," Physical Review Letters, vol. 83, no. 24, p. 5162, 1999.
[10] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, "Simulated quantum computation of molecular energies," Science, vol. 309, no. 5741, pp. 1704-1707, 2005.
[11] R. Orús, S. Mugel, and E. Lizaso, "Quantum computing for finance: Overview and prospects," Reviews in Physics, vol. 4, p. 100028, 2019.
[12] D. Herman et al., "A survey of quantum computing for finance," arXiv preprint arXiv:2201.02773, 2022.
[13] D. J. Egger et al., "Quantum computing for finance: State-of-the-art and future prospects," IEEE Transactions on Quantum Engineering, vol. 1, pp. 1-24, 2020.
[14] I. Kerenidis, A. Prakash, and D. Szilágyi, "Quantum algorithms for portfolio optimization," in Proceedings of the 1st ACM Conference on Advances in Financial Technologies, 2019, pp. 147-155.
[15] C. Renumadhavi, A. Srivastava, A. K. Singh, and A. Mittal, "Quantum Finance an Overview," 2021.
[16] S. Woerner and D. J. Egger, "Quantum risk analysis," npj Quantum Information, vol. 5, no. 1, p. 15, 2019.
[17] D. J. Egger, R. G. Gutiérrez, J. C. Mestre, and S. Woerner, "Credit risk analysis using quantum computers," IEEE Transactions on Computers, vol. 70, no. 12, pp. 2136-2145, 2020.
[18] S. Wilkens and J. Moorhouse, "Quantum computing for financial risk measurement," Quantum Information Processing, vol. 22, no. 1, p. 51, 2023.
[19] F. J. Fabozzi, F. Gupta, and H. M. Markowitz, "The legacy of modern portfolio theory," The journal of investing, vol. 11, no. 3, pp. 7-22, 2002.
[20] P. Wilmott, Paul Wilmott introduces quantitative finance. John Wiley & Sons, 2013.
[21] P. M. Pardalos and S. Jha, "Complexity of uniqueness and local search in quadratic 0–1 programming," Operations research letters, vol. 11, no. 2, pp. 119-123, 1992.
[22] J. Hromkovič, Algorithmics for hard problems: introduction to combinatorial optimization, randomization, approximation, and heuristics. Springer Science & Business Media, 2013.
[23] E. Farhi, J. Goldstone, and S. Gutmann, "A quantum approximate optimization algorithm," arXiv preprint arXiv:1411.4028, 2014.
[24] J. Preskill, "Quantum computing in the NISQ era and beyond," Quantum, vol. 2, p. 79, 2018.
[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, "The theory of variational hybrid quantum-classical algorithms," New Journal of Physics, vol. 18, no. 2, p. 023023, 2016.
[26] K. Bharti et al., "Noisy intermediate-scale quantum algorithms," Reviews of Modern Physics, vol. 94, no. 1, p. 015004, 2022.
[27] P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and S. Woerner, "Improving variational quantum optimization using CVaR," Quantum, vol. 4, p. 256, 2020.
[28] N. Moll et al., "Quantum optimization using variational algorithms on near-term quantum devices," Quantum Science and Technology, vol. 3, no. 3, p. 030503, 2018.
[29] A. Peruzzo et al., "A variational eigenvalue solver on a photonic quantum processor," Nature communications, vol. 5, no. 1, p. 4213, 2014.
[30] G. Nannicini, "Performance of hybrid quantum-classical variational heuristics for combinatorial optimization," Physical Review E, vol. 99, no. 1, p. 013304, 2019.
[31] J. Wurtz and P. J. Love, "Classically optimal variational quantum algorithms," IEEE Transactions on Quantum Engineering, vol. 2, pp. 1-7, 2021.
[32] V. P. Soloviev, P. Larrañaga, and C. Bielza, "Quantum parametric circuit optimization with estimation of distribution algorithms," in Proceedings of the genetic and evolutionary computation conference companion, 2022, pp. 2247-2250.
[33] M. Cerezo et al., "Variational quantum algorithms," Nature Reviews Physics, vol. 3, no. 9, pp. 625-644, 2021.
[34] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, "Barren plateaus in quantum neural network training landscapes," Nature communications, vol. 9, no. 1, p. 4812, 2018.
[35] L. A. Wolsey and G. L. Nemhauser, Integer and combinatorial optimization. John Wiley & Sons, 2014.
[36] R. Wille, R. Van Meter, and Y. Naveh, "IBM’s Qiskit tool chain: Working with and developing for real quantum computers," in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019: IEEE, pp. 1234-1240.
[37] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, "Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices," Physical Review X, vol. 10, no. 2, p. 021067, 2020.
[38] M. Hodson, B. Ruck, H. Ong, D. Garvin, and S. Dulman, "Portfolio rebalancing experiments using the quantum alternating operator ansatz," arXiv preprint arXiv:1911.05296, 2019.
[39] E. Farhi and A. W. Harrow, "Quantum supremacy through the quantum approximate optimization algorithm," arXiv preprint arXiv:1602.07674, 2016.
[40] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, "Quantum computation by adiabatic evolution," arXiv preprint quant-ph/0001106, 2000.
[41] Z. He et al., "Alignment between initial state and mixer improves QAOA performance for constrained optimization," npj Quantum Information, vol. 9, no. 1, p. 121, 2023.
[42] T. Albash and D. A. Lidar, "Adiabatic quantum computation," Reviews of Modern Physics, vol. 90, no. 1, p. 015002, 2018.
[43] E. Crosson, E. Farhi, C. Y.-Y. Lin, H.-H. Lin, and P. Shor, "Different strategies for optimization using the quantum adiabatic algorithm," arXiv preprint arXiv:1401.7320, 2014.
[44] J. Han et al., "Experimental simulation of open quantum system dynamics via trotterization," Physical Review Letters, vol. 127, no. 2, p. 020504, 2021.
[45] G. C. Knee and W. J. Munro, "Optimal Trotterization in universal quantum simulators under faulty control," Physical Review A, vol. 91, no. 5, p. 052327, 2015.
[46] S. A. Vavasis, "Quadratic programming is in NP," Information Processing Letters, vol. 36, no. 2, pp. 73-77, 1990.
[47] G. Carrascal, P. Hernamperez, G. Botella, and A. del Barrio, "Backtesting quantum computing algorithms for portfolio optimization," IEEE Transactions on Quantum Engineering, 2023.
[48] F. Glover, G. Kochenberger, and Y. Du, "A tutorial on formulating and using QUBO models," arXiv preprint arXiv:1811.11538, 2018.
[49] H. M. Markowitz and G. P. Todd, Mean-variance analysis in portfolio choice and capital markets. John Wiley & Sons, 2000.
[50] E. J. Elton and M. J. Gruber, "Modern portfolio theory, 1950 to date," Journal of banking & finance, vol. 21, no. 11-12, pp. 1743-1759, 1997.
[51] M. J. Best, Portfolio optimization. CRC Press, 2010.
[52] W. Sharpe, "The sharpe ratio. Streetwise-Best J," Portf. Manag. Princet. Univ. Press Princet. New Jersy, pp. 169-185, 1998.
[53] G. Buonaiuto, F. Gargiulo, G. De Pietro, M. Esposito, and M. Pota, "Best practices for portfolio optimization by quantum computing, experimented on real quantum devices," Scientific Reports, vol. 13, no. 1, p. 19434, 2023.
[54] R. Shaydulin, I. Safro, and J. Larson, "Multistart methods for quantum approximate optimization," in 2019 IEEE high performance extreme computing conference (HPEC), 2019: IEEE, pp. 1-8.
[55] R. Shaydulin and Y. Alexeev, "Evaluating quantum approximate optimization algorithm: A case study," in 2019 tenth international green and sustainable computing conference (IGSC), 2019: IEEE, pp. 1-6.
[56] S. Brandhofer et al., "Benchmarking the performance of portfolio optimization with QAOA," Quantum Information Processing, vol. 22, no. 1, p. 25, 2022.
[57] J. S. Baker and S. K. Radha, "Wasserstein solution quality and the quantum approximate optimization algorithm: a portfolio optimization case study," arXiv preprint arXiv:2202.06782, 2022.
[58] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
[59] M. J. Powell, A direct search optimization method that models the objective and constraint functions by linear interpolation. Springer, 1994.
[60] M. A. Luersen and R. Le Riche, "Globalized Nelder–Mead method for engineering optimization," Computers & structures, vol. 82, no. 23-26, pp. 2251-2260, 2004.
[61] A. Lucas, "Ising formulations of many NP problems," Frontiers in physics, vol. 2, p. 5, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95907-
dc.description.abstract投資組合最佳化是金融領域中一個關鍵的問題,投資者需要依靠獨特的策略來管理投資組合,在達到最大化投資報酬的同時最小化風險,屬於一種最佳化問題,但隨著資產種類的增加該最佳化問題會越來越複雜,計算該最佳化問題的時間成本也快速上升,在合理時效內找出最佳解,變的困難許多,與此同時,量子演算法在解決此類最佳化問題上具備節省時間成本的潛力,所以本研究中,我們利用量子近似優化演算法解決投資組合最佳化問題,並想更進一步優化整個過程,我們利用不同古典優化器的收斂特性,比較不同古典優化器對於量子近似優化演算法解決投資組合最佳化問題上的表現。
實驗中我們運用量子近似優化演算法解決投資組合最佳化問題,並設置了相應的限制式,與此同時,我們使用了不同的古典優化器,試圖比較不同古典優化器的收斂結果,我們使用IBM開發的Qiskit(量子電腦開源框架)做模擬分析,該實驗區分成兩大部分。在第一部分,我們將投資組合最佳化問題轉換成二次不受限二進位最佳化問題並利用量子近似優化演算法解決該最佳化問題,第二部分,我們依照不同的量子近似優化演算法層數去設定古典優化器的評估次數上限,並分別探討4種古典優化器(2種無梯度相關古典優化器、2種梯度相關古典優化器)的收斂速度、收斂最終目標值及其對應之測試狀態找到最佳解的機率。
這兩部分的實驗皆用高階量子電腦模擬器Qiskit模擬。而實驗的第二部分,則是在不同層數的量子近似優化演算法下模擬無噪音環境及噪音環境。
實驗結果表明,在無噪音環境下,無梯度相關古典優化器具備計算效率的優勢,在平均收斂結果差異不大的情況下,能夠藉由更少的評估次數達成收斂。其中NELDER MEAD古典優化器收斂到的最終目標值全距數也相對較小,代表其收斂最終目標值更為一致,從而確保了最終目標值的品質。我們認為在上述的四種的古典優化器之中,無噪音環境下,NELDER MEAD 古典優化器在量子近似優化演算法中解決投資組合最佳化問題是最為合適的選擇之一。而在有噪音環境下,四種古典優化器的性能都受到影響。因為噪音環境影響,收斂最終目標值變大,且收斂最終目標值的全距數也有增加的趨勢,找到最佳解的機率相對於無噪音環境也顯著降低。然而,相對而言,ADAM古典優化器則是在噪音環境下提供了相對較好的結果。另外實驗中也發現隨著量子近似優化演算法的層數增加,參數空間也變得更加複雜。因此,除了選擇適合的古典優化器外,初始參數,也有機會影響量子近似優化演算法的計算效率和結果品質。
zh_TW
dc.description.abstractPortfolio optimization is a critical issue in the financial field, where investors need to rely on unique strategies to manage their portfolios, aiming to maximize returns while minimizing risk. This is an optimization problem, but as the number of asset increases, the complexity of this optimization problem also grows, and the computational cost rises rapidly. Finding the optimal solution within a reasonable time frame becomes much more challenging. Meanwhile, quantum algorithms have the potential to save time costs in solving such optimization problems. Therefore, in this study, we use the Quantum Approximate Optimization Algorithm (QAOA) to address the portfolio optimization problem and aim to further enhance the entire process. We leverage the convergence characteristics of different classical optimizers to compare their performance in solving the portfolio optimization problem using the QAOA.
In the experiment, we applied the QAOA to solve the portfolio optimization problem and set up the corresponding constraints. Simultaneously, we used different classical optimizers to compare their convergence results. We conducted simulation analysis using Qiskit, an open-source quantum computing framework developed by IBM. The experiment was divided into two main parts. In the first part, we transformed the portfolio optimization problem into a Quadratic Unconstrained Binary Optimization (QUBO) problem and solved it using the QAOA. In the second part, we set the evaluation constraint of classical optimizers based on different layers of the QAOA. We explored the convergence speed, final convergence objective value, and the probability of finding the optimal solution under the test conditions of four classical optimizers (two gradient-free and two gradient-based classical optimizers).
Both parts of the experiment were simulated using the advanced quantum computer simulator Qiskit. In the second part of the experiment, we simulated both noiseless and noisy environments under different layers of the QAOA.
The experimental results show that in a noiseless environment, gradient-free classical optimizers have an advantage in computational efficiency, achieving convergence with fewer evaluations while having similar average convergence results. And the NELDER MEAD classical optimizer had a relatively smaller range of final objective values, indicating more consistent final objective values, thereby ensuring the quality of the final results. We believe that among the four classical optimizers, using the NELDER MEAD classical optimizer in the QAOA to solve the portfolio optimization problem is most suitable in a noiseless environment. In a noisy environment, the performance of all four classical optimizers is affected. Due to the influence of noise, the final objective values become larger, and the range of these values also tends to increase, with the probability of finding the optimal solution significantly lower than in a noiseless environment. However , the ADAM classical optimizer provided comparatively better results in a noisy environment. The experiment also found that as the layers of the QAOA increase, the parameter space becomes more complex. Therefore, in addition to choosing a suitable classical optimizer, the initial parameters can also impact the computational efficiency and quality of the results of the QAOA.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-24T16:09:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-24T16:09:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書 i
摘要 ii
Abstract iv
目次 vii
圖次 x
表次 xi
第一章 緒論與文獻回顧 1
1.1 變分量子演算法和NISQ 2
1.2變分量子演算法(Variational Quantum Algorithm , VQA) 3
1.2.1 成本函數(Cost Function) 3
1.2.2 含參數的量子電路(ansatz) 4
1.2.3古典優化器(optimizer) 4
1.2.4貧瘠高原現象(Barren Plateaus) 5
1.2.5完整變分量子演算法的原理圖 6
1.3 研究目的 7
第二章 量子近似優化演算法 9
2.1 量子近似優化演算法(Quantum Approximate Optimization Algorithm , QAOA) 9
2.1.1 成本層(cost layer) 10
2.1.2 混合層(mixer layer) 10
2.2 量子近似優化演算法的結構圖及流程圖 11
2.3 絕熱量子演算法(Adiabatic Quantum algorithm) 12
第三章 二次不受限二進位最佳化問題 14
3.1 二次規劃(Quadratic Programming) 14
3.2 二次不受限二進位最佳化問題(Quadratic Unconstrained Binary Optimization) 15
第四章 投資組合最佳化問題 17
4.1 現代投資理論(Modern Portfolio Theory , MPT) 17
4.2 平均數—變異數最佳化模型 18
4.3 平均數—變異數最佳化模型(二進制版本) 19
第五章 實驗與結果 21
5.1 Qiskit 21
5.2 古典優化器 21
5.3 量子近似演算法的量子電路實踐 24
5.4 量子近似優化演算法實例 27
5.4.1 資料集 28
5.4.2 投資組合模型 30
5.4.3 古典優化器之超參數設定及收斂解的選定 31
5.5 模擬結果 32
5.5.1 收斂速度 33
5.5.2 收斂最終目標值 37
5.5.3 找到最佳解的機率 43
第六章 結論以及未來的工作 46
6.1 結論 46
6.2 未來的工作 48
參考資料 51
附錄A 56
-
dc.language.isozh_TW-
dc.title比較不同古典優化器在量子近似優化演算法解決投資組合最佳化問題zh_TW
dc.titleComparison of various classical optimizers for applying quantum approximate optimization algorithm in portfolio optimization problemsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee管希聖;廖世偉zh_TW
dc.contributor.oralexamcommitteeHsi-Sheng Goan;Shih-wei Liaoen
dc.subject.keyword量子演算法,量子計算,最佳化投資組合,量子近似優化演算法,量子霸權,zh_TW
dc.subject.keywordQuantum algorithms,Quantum computing,optimization portfolio,quantum approximate optimization algorithm,quantum supremacy,en
dc.relation.page62-
dc.identifier.doi10.6342/NTU202403855-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved