請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95903
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝 | zh_TW |
dc.contributor.advisor | Ming-Ju Chen | en |
dc.contributor.author | 黃楡茵 | zh_TW |
dc.contributor.author | Yu-Yin Huang | en |
dc.date.accessioned | 2024-09-19T16:17:24Z | - |
dc.date.available | 2024-09-20 | - |
dc.date.copyright | 2024-09-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | Abouelela, M. E., and Y. A. Helmy. 2024. Next-generation probiotics as novel therapeutics for improving human health: current trends and future perspectives. Microorganisms 12:430. doi: 10.3390/microorganisms12030430
Adelekan, A. O., T. O. Olurin, and A. O. Ezeani. 2020. Antioxidant activities of exopolysaccharides produced by lactic acid bacteria isolated from commercial yoghurt samples. Adv. Microbiol. 10:359-374. doi: 10.4236/aim.2020.108026 Alam, M. N., N. J. Bristi, and M. Rafiquzzaman. 2013. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 21:143–152. doi: 10.1016/j.jsps.2012.05.002 Araya, M., L. Morelli, G. Reid, M. Sanders, C. Stanton, M. Pineiro, and P. Ben Embarek. 2002. Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food, London, Canada: World Health Organization, Food and Agriculture Organization of the United Nations. Awong-Taylor, J., K. S. Craven, L. Griffiths, C. Bass, and M. Muscarella. 2008. Comparison of biochemical and molecular methods for the identification of bacterial isolates associated with failed loggerhead sea turtle eggs. J. Appl. Microbiol. 104:1244–1251. doi: 10.1111/j.1365-2672.2007.03650.x Ayyanna, R., D. Ankaiah, and V. Arul. 2018. Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar albino rats. Front. Microbiol. 9:3063. doi: 10.3389/fmicb.2018.03063 Börner, R. A. 2016. Isolation and cultivation of anaerobes. Barton, M., R. Melbourne, P. Morais, and C. Christie. 2002. Kawasaki syndrome associated with group A streptococcal and Epstein-Barr virus co-infections. Ann. Trop. Paediatr. 22:257–260. doi: 10.1179/027249302125001543 Begley, M., C. Hill, and C. G. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72:1729–1738. doi: 10.1128/AEM.72.3.1729-1738.2006 Bibi Sadeer, N., D. Montesano, S. Albrizio, G. Zengin, and M. F. Mahomoodally. 2020. The versatility of antioxidant assays in food science and safety-chemistry, applications, strengths, and limitations. Antioxidants 9:709. doi: 10.3390/antiox9080709 Bäckhed, F., H. Ding, T. Wang, L. V. Hooper, G. Y. Koh, A. Nagy, C. F. Semenkovich, and J. I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101:15718–15723. doi: 10.1073/pnas.0407076101 Browne, H. P., S. C. Forster, B. O. Anonye, N. Kumar, B. A. Neville, M. D. Stares, D. Goulding, and T. D. Lawley. 2016. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–546. doi: 10.1038/nature17645 Cabeen, M. T., and C. Jacobs-Wagner. 2005. Bacterial cell shape. Nat. Rev. Microbiol. 3:601–610. doi: 10.1038/nrmicro1205 Cai, H., Z. Wen, X. Li, K. Meng, and P. Yang. 2020. Lactobacillus plantarum FRT10 alleviated high-fat diet-induced obesity in mice through regulating the PPARalpha signal pathway and gut microbiota. Appl. Microbiol. Biotechnol. 104:5959–5972. doi: 10.1007/s00253-020-10620-0 Chakravorty, S., D. Helb, M. Burday, N. Connell, and D. Alland. 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69:330–339. doi: 10.1016/j.mimet.2007.02.005 Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones. 2004. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Methods 56:27–35. doi: 10.1016/j.mimet.2003.09.002 Chang, C. J., T. L. Lin, Y. L. Tsai, T. R. Wu, W. F. Lai, C. C. Lu, and H. C. Lai. 2019. Next generation probiotics in disease amelioration. J. Food Drug Anal. 27:615–622. doi: 10.1016/j.jfda.2018.12.011 Chen, J., Y. Yue, L. Wang, Z. Deng, Y. Yuan, M. Zhao, Z. Yuan, C. Tan, and Y. Cao. 2020. Altered gut microbiota correlated with systemic inflammation in children with Kawasaki disease. Sci. Rep. 10:14525. doi: 10.1038/s41598-020-71371-6 Chen, Y. P., P. J. Hsiao, W. S. Hong, T. Y. Dai, and M. J. Chen. 2012. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 95:63–74. doi: 10.3168/jds.2011-4696 Cody, W. L., J. W. Wilson, D. R. Hendrixson, K. S. McIver, K. E. Hagman, C. M. Ott, C. A. Nickerson, and M. J. Schurr. 2008. Skim milk enhances the preservation of thawed -80 degrees C bacterial stocks. J. Microbiol. Methods 75:135–138. doi: 10.1016/j.mimet.2008.05.006 Cook, M. T., G. Tzortzis, D. Charalampopoulos, and V. V. Khutoryanskiy. 2012. Microencapsulation of probiotics for gastrointestinal delivery. J. Control Release 162:56–67. doi: 10.1016/j.jconrel.2012.06.003 Damaceno, Q. S., B. Gallotti, I. M. M. Reis, Y. C. P. Totte, G. B. Assis, H. C. Figueiredo, T. F. Silva, V. Azevedo, J. R. Nicoli, and F. S. Martins. 2023. Isolation and identification of potential probiotic bacteria from human milk. Probiotics Antimicrob. Proteins 15:491–501. doi: 10.1007/s12602-021-09866-5 Dang, D., B. Li, M. Ding, R. P. Ross, C. Stanton, J. Zhao, B. Yang, and W. Chen. 2024. Limosilactobacillus mucosae FZJTZ26M3 prevents NAFLD in mice through modulation of lipid metabolism and gut microbiota dysbiosis. Food Sci. Hum. Wellness 13:1589–1601. doi: 10.26599/fshw.2022.9250134 Danielsen, M., and A. Wind. 2003. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 82:1–11. doi: 10.1016/s0168-1605(02)00254-4 Daud Khaled, A. K., B. A. Neilan, A. Henriksson, and P. L. Conway. 2006. Identification and phylogenetic analysis of Lactobacillus using multiplex RAPD-PCR. FEMS Microbiol. Lett. 153:191–197. doi: 10.1111/j.1574-6968.1997.tb10481.x de Moraes, G. M. D., L. R. de Abreu, A. S. do Egito, H. O. Salles, L. M. F. da Silva, L. A. Nero, S. D. Todorov, and K. M. O. Dos Santos. 2017. Functional properties of Lactobacillus mucosae strains isolated from Brazilian goat milk. Probiotics Antimicrob. Proteins 9:235–245. doi: 10.1007/s12602-016-9244-8 de Morais, J. L., E. F. Garcia, V. B. Viera, E. D. Silva Pontes, M. G. G. de Araujo, R. M. F. de Figueiredo, I. Dos Santos Moreira, A. S. do Egito, K. M. O. Dos Santos, J. K. Barbosa Soares, R. C. R. do Egypto Queiroga, and M. E. G. de Oliveira. 2022. Autochthonous adjunct culture of Limosilactobacillus mucosae CNPC007 improved the techno-functional, physicochemical, and sensory properties of goat milk Greek-style yogurt. J. Dairy Sci. 105:1889–1899. doi: 10.3168/jds.2021-21110 De Smet, I., P. De Boever, and W. Verstraete. 1998. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79:185–194. doi: 10.1079/bjn19980030 Degirolamo, C., S. Rainaldi, F. Bovenga, S. Murzilli, and A. Moschetta. 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell reports 7:12–18. doi: 10.1016/j.celrep.2014.02.032 Depommier, C., A. Everard, C. Druart, D. Maiter, J. P. Thissen, A. Loumaye, M. P. Hermans, N. M. Delzenne, W. M. de Vos, and P. D. Cani. 2021. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes 13:1994270. doi: 10.1080/19490976.2021.1994270 Depommier, C., A. Everard, C. Druart, H. Plovier, M. Van Hul, S. Vieira-Silva, G. Falony, J. Raes, D. Maiter, N. M. Delzenne, M. de Barsy, A. Loumaye, M. P. Hermans, J. P. Thissen, W. M. de Vos, and P. D. Cani. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25:1096–1103. doi: 10.1038/s41591-019-0495-2 Dholakiya, R. N., R. Kumar, A. Mishra, K. H. Mody, and B. Jha. 2017. Antibacterial and antioxidant activities of novel actinobacteria strain isolated from gulf of khambhat, gujarat. Front. Microbiol. 8:2420. doi: 10.3389/fmicb.2017.02420 Du, Y., H. Li, J. Shao, T. Wu, W. Xu, X. Hu, and J. Chen. 2022. Adhesion and colonization of the probiotic Lactobacillus plantarum HC-2 in the intestine of Litopenaeus vannamei are associated with bacterial surface proteins. Front. Microbiol. 13:878874. doi: 10.3389/fmicb.2022.878874 Everard, A., S. Matamoros, L. Geurts, N. M. Delzenne, and P. D. Cani. 2014. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio. 5:e01011–01014. doi: 10.1128/mBio.01011-14 Fazilah, N. F., N. H. Hamidon, A. B. Ariff, M. E. Khayat, H. Wasoh, and M. Halim. 2019. Microencapsulation of Lactococcus lactis Gh1 with gum arabic and synsepalum dulcificum via spray drying for potential inclusion in functional yogurt. Molecules 24:1422. doi: 10.3390/molecules24071422 Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1–15. Fontana, L., M. Bermudez-Brito, J. Plaza-Diaz, S. Munoz-Quezada, and A. Gil. 2013. Sources, isolation, characterisation and evaluation of probiotics. Br. J. Nutr. 109 Suppl 2:S35–S50. doi: 10.1017/S0007114512004011 Frank, D. N., A. L. St. Amand, R. A. Feldman, E. C. Boedeker, N. Harpaz, and N. R. Pace. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104:13780–13785. doi: 10.1073/pnas.0706625104 Fujiwara, H., and Y. Hamashima. 1978. Pathology of the heart in Kawasaki disease. Pediatrics 61:100–107. Gao, J., Q. Li, Y. Liu, B. Yang, F. A. Sadiqb, X. Li, S. Mi, and Y. Sang. 2022. Immunoregulatory effect of Lactobacillus paracasei VL8 exopolysaccharide on RAW264. 7 cells by NF-κB and MAPK pathways. J. Funct. Foods 95:105166. doi: 10.1016/j.jff.2022.105166 Ghavami, S. B., H. Asadzadeh Aghdaei, D. Sorrentino, S. Shahrokh, M. Farmani, F. Ashrafian, M. P. Dore, S. Keshavarz Azizi Raftar, S. Mobin Khoramjoo, and M. R. Zali. 2021. Probiotic-induced tolerogenic dendritic cells: a novel therapy for inflammatory bowel disease? Int. J. Mol. Sci. 22:8274. doi: 10.3390/ijms22158274 Ghavami, S. B., A. Yadegar, H. A. Aghdaei, D. Sorrentino, M. Farmani, A. S. Mir, M. Azimirad, H. Balaii, S. Shahrokh, and M. R. Zali. 2020. Immunomodulation and generation of tolerogenic dendritic cells by probiotic bacteria in patients with inflammatory bowel disease. Int. J. Mol. Sci. 21:6266. doi: 10.3390/ijms21176266 Gogineni, V. K., L. E. Morrow, P. J. Gregory, and M. A. Malesker. 2013. Probiotics: history and evolution. J. Anc. Dis. Prev. Rem. 1:107. doi: 10.4172/2329-8731.1000107 Goodrich, J. K., J. L. Waters, A. C. Poole, J. L. Sutter, O. Koren, R. Blekhman, M. Beaumont, W. Van Treuren, R. Knight, J. T. Bell, T. D. Spector, A. G. Clark, and R. E. Ley. 2014. Human genetics shape the gut microbiome. Cell 159:789–799. doi: 10.1016/j.cell.2014.09.053 Halliwell, B., J. M. Gutteridge, and O. I. Aruoma. 1987. The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165:215–219. doi: 10.1016/0003-2697(87)90222-3 Hamon, E., P. Horvatovich, E. Izquierdo, F. Bringel, E. Marchioni, D. Aoudé-Werner, and S. Ennahar. 2011. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 11:1–11. doi: 10.1186/1471-2180-11-63 Han, K. J., N. K. Lee, H. S. Yu, H. Park, and H. D. Paik. 2022. Anti-adipogenic effects of the probiotic Lactiplantibacillus plantarum KU15117 on 3T3-L1 adipocytes. Probiotics Antimicrob. Proteins 14:501–509. doi: 10.1007/s12602-021-09818-z Hassid, W. 1937. Determination of sugars in plants. Ind. Eng. Chem., Anal. Ed. 9:228–229. doi: 10.1021/ac50109a015 Hotel, A. C. P., and A. Cordoba. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5:1–10. Hou, K., Z. X. Wu, X. Y. Chen, J. Q. Wang, D. Zhang, C. Xiao, D. Zhu, J. B. Koya, L. Wei, J. Li, and Z. S. Chen. 2022. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7:135. doi: 10.1038/s41392-022-00974-4 Huang, C. H., C. Y. Ho, C. T. Chen, H. F. Hsu, and Y. H. Lin. 2019. Probiotic BSH activity and anti-obesity potential of Lactobacillus plantarum strain TCI378 isolated from Korean kimchi. Prev. Nutr. Food Sci. 24:434–441. doi: 10.3746/pnf.2019.24.4.434 Hubatsch, I., E. G. Ragnarsson, and P. Artursson. 2007. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2:2111–2119. doi: 10.1038/nprot.2007.303 Janda, J. M., and S. L. Abbott. 1993. Expression of hemolytic activity by Plesiomonas shigelloides. J. Clin. Microbiol. 31:1206–1208. doi: 10.1128/jcm.31.5.1206-1208.1993 Jang, H. J., M. W. Song, N. K. Lee, and H. D. Paik. 2018. Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi. J. Food Sci. Technol. 55:3174–3180. doi: 10.1007/s13197-018-3245-4 Jiang, T., H. Wu, X. Yang, Y. Li, Z. Zhang, F. Chen, L. Zhao, and C. Zhang. 2020. Lactobacillus mucosae strain promoted by a high-fiber diet in genetic obese child alleviates lipid metabolism and modifies gut microbiota in apoE-/-mice on a Western diet. Microorganisms 8:1225. doi: 10.3390/microorganisms8081225 Jin, Y. B., X. Cao, C. W. Shi, B. Feng, H. B. Huang, Y. L. Jiang, J. Z. Wang, G. L. Yang, W. T. Yang, and C. F. Wang. 2021. Lactobacillus rhamnosus GG promotes early B lineage development and IgA production in the lamina propria in piglets. J. Immunol. 207:2179–2191. doi: 10.4049/jimmunol.2100102 Jomehzadeh, N., H. Javaherizadeh, M. Amin, M. Saki, M. T. S. Al-Ouqaili, H. Hamidi, M. Seyedmahmoudi, and Z. Gorjian. 2020. Isolation and identification of potential probiotic Lactobacillus species from feces of infants in southwest Iran. Int. J. Infect. Dis. 96:524–530. doi: 10.1016/j.ijid.2020.05.034 Kang, C.-H., S. H. Han, J.-S. Kim, Y. Kim, Y. Jeong, H. M. Park, and N.-S. Paek. 2019. Inhibition of nitric oxide production, oxidative stress prevention, and probiotic activity of lactic acid bacteria isolated from the human vagina and fermented food. Microorganisms 7:109. doi: 10.3390/microorganisms7040109 Karlsson, C. L., J. Önnerfält, J. Xu, G. Molin, S. Ahrné, and K. Thorngren‐Jerneck. 2012. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 20:2257–2261. doi: 10.1038/oby.2012.110 Kawasaki, T. 2002. Pediatric acute febrile mucocutaneous lymph node syndrome with characteristic desquamation of fingers and toes: my clinical observation of fifty cases. Pediatr. Infect. Dis. J. 21:1–38. doi: 10.1097/01.inf.0000036240.32164.51 Kim, E., S. M. Yang, B. Lim, S. H. Park, B. Rackerby, and H. Y. Kim. 2020. Design of PCR assays to specifically detect and identify 37 Lactobacillus species in a single 96 well plate. BMC Microbiol. 20:96. doi: 10.1186/s12866-020-01781-z Kim, H., M.-S. Yoo, H. Jeon, J.-J. Shim, W.-J. Park, J.-Y. Kim, and J.-L. Lee. 2023. Probiotic properties and safety evaluation of Lactobacillus plantarum hy7718 with superior storage stability isolated from fermented squid. Microorganisms 11:2254. doi: 10.3390/microorganisms11092254 Kim, J. Y., M. S. Park, and G. E. Ji. 2012. Probiotic modulation of dendritic cells co-cultured with intestinal epithelial cells. World J. Gastroenterol. 18:1308–1318. doi: 10.3748/wjg.v18.i12.1308 Kim, K. T., J. W. Kim, S. I. Kim, S. Kim, T. H. Nguyen, and C. H. Kang. 2021. Antioxidant and anti-inflammatory effect and probiotic properties of lactic acid bacteria isolated from canine and feline feces. Microorganisms 9doi: 10.3390/microorganisms9091971 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120. doi: 10.1007/BF01731581 Kizerwetter-Swida, M., and M. Binek. 2016. Assessment of potentially probiotic properties of Lactobacillus strains isolated from chickens. Pol. J. Vet. Sci. 19:15–20. doi: 10.1515/pjvs-2016-0003 Kou, R., J. Wang, A. Li, Y. Wang, B. Zhang, J. Liu, Y. Sun, and S. Wang. 2023. Ameliorating effects of Bifidobacterium longum subsp. infantis FB3-14 against high-fat-diet-induced obesity and gut microbiota disorder. Nutrients 15:4104. doi: 10.3390/nu15194104 Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874. doi: 10.1093/molbev/msw054 Lee, J., J. Jo, H. Seo, S.-W. Han, and D.-H. Kim. 2024. The probiotic properties and safety of Limosilactobacillus mucosae NK41 and Bifidobacterium longum NK46. Microorganisms 12:776. doi: 10.3390/microorganisms12040776 Lersch, R., G. Mandilaras, M. Schrader, F. Anselmino, N. A. Haas, and A. Jakob. 2023. Have we got the optimal treatment for refractory Kawasaki disease in very young infants? A case report and literature review. Front. Pediatr. 11:1210940. doi: 10.3389/fped.2023.1210940 Ley, R. E., D. A. Peterson, and J. I. Gordon. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848. doi: 10.1016/j.cell.2006.02.017 Li, J., S. Feng, Z. Wang, J. He, Z. Zhang, H. Zou, Z. Wu, X. Liu, H. Wei, and S. Tao. 2023. Limosilactobacillus mucosae-derived extracellular vesicles modulates macrophage phenotype and orchestrates gut homeostasis in a diarrheal piglet model. NPJ Biofilms Microbiomes 9:33. doi: 10.1038/s41522-023-00403-6 Li, K., Q. Gu, W. Yang, and X. Yu. 2023. In vitro screening and probiotic evaluation of anti-obesity and antioxidant lactic acid bacteria. Food Biosci. 54:102844. doi: 10.1016/j.fbio.2023.102844 Li, M., J. Ding, C. Stanton, R. P. Ross, J. Zhao, B. Yang, and W. Chen. 2023. Bifidobacterium longum subsp. infantis FJSYZ1M3 ameliorates DSS-induced colitis by maintaining the intestinal barrier, regulating inflammatory cytokines, and modifying gut microbiota. Food Funct. 14:354–368. doi: 10.1039/D2FO03263E Li, Y., L. Jin, and T. Chen. 2020. The effects of secretory IgA in the mucosal immune system. Biomed. Res. Int. 2020:2032057. doi: 10.1155/2020/2032057 Lin, M. T., and M. H. Wu. 2017. The global epidemiology of Kawasaki disease: review and future perspectives. Glob. Cardiol. Sci. Pract. 2017:e201720. doi: 10.21542/gcsp.2017.20 Lin, M. Y., and F. J. Chang. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 45:1617–1622. doi: 10.1023/a:1005577330695 Lin, T. L., C. C. Shu, W. F. Lai, C. M. Tzeng, H. C. Lai, and C. C. Lu. 2019. Investiture of next generation probiotics on amelioration of diseases – strains do matter. Med. Microecol. 1-2:100002. doi: 10.1016/j.medmic.2019.100002 Liong, M. T., and N. P. Shah. 2005. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. Int. J. Dairy Sci. 88:55–66. doi: 10.3168/jds.S0022-0302(05)72662-X. Liu, C., M. X. Du, L. S. Xie, W. Z. Wang, B. S. Chen, C. Y. Yun, X. W. Sun, X. Luo, Y. Jiang, and K. Wang. 2024. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat. Rev. Microbiol. 9:434-450. doi: 10.1038/s41564-023-01570-0 London, L. E. E., V. Chaurin, M. A. E. Auty, M. A. Fenelon, G. F. Fitzgerald, R. P. Ross, and C. Stanton. 2015. Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt. Int. Dairy J. 40:33–38. doi: 10.1016/j.idairyj.2014.08.011 Lu, Y., Y. Wu, L. Pan, J. Wang, R. Tang, F. Deng, W. Kang, and L. Zhao. 2024. In vitro screening of lactic acid bacteria with RAW264.7 macrophages and the immunoregulatory mechanism. Processes 12:903. doi: 10.3390/pr12050903 Maldonado Galdeano, C., S. I. Cazorla, J. M. Lemme Dumit, E. Velez, and G. Perdigon. 2019. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 74:115–124. doi: 10.1159/000496426 Marteau, P. 2016. Safety aspects of probiotic products. Näringsforskning 45:22–24. doi: 10.3402/fnr.v45i0.1785 Martín, R., and P. Langella. 2019. Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in microbiology 10:1047. doi: 10.3389/fmicb.2019.01047 Matsubara, K., T. Fukaya, K. Miwa, N. Shibayama, H. Nigami, H. Harigaya, H. Nozaki, T. Hirata, K. Baba, T. Suzuki, and A. Ishiguro. 2006. Development of serum IgM antibodies against superantigens of Staphylococcus aureus and Streptococcus pyogenes in Kawasaki disease. Clin. Exp. Immunol. 143:427–434. doi: 10.1111/j.1365-2249.2006.03015.x Mazier, W., K. Le Corf, C. Martinez, H. Tudela, D. Kissi, C. Kropp, C. Coubard, M. Soto, F. Elustondo, G. Rawadi, and S. P. Claus. 2021. A new strain of Christensenella minuta as a potential biotherapy for obesity and associated metabolic diseases. Cells 10:823. doi: 10.3390/cells10040823 Mazziotta, C., M. Tognon, F. Martini, E. Torreggiani, and J. C. Rotondo. 2023. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 12:184. doi: 10.3390/cells12010184 Monteagudo-Mera, A., R. A. Rastall, G. R. Gibson, D. Charalampopoulos, and A. Chatzifragkou. 2019. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 103:6463–6472. doi: 10.1007/s00253-019-09978-7 Mukhopadhya, I., J. C. Martin, S. Shaw, A. J. McKinley, S. W. Gratz, and K. P. Scott. 2022. Comparison of microbial signatures between paired faecal and rectal biopsy samples from healthy volunteers using next-generation sequencing and culturomics. Microbiome 10:171. doi: 10.1186/s40168-022-01354-4 Naser, S. M., P. Dawyndt, B. Hoste, D. Gevers, K. Vandemeulebroecke, I. Cleenwerck, M. Vancanneyt, and J. Swings. 2007. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int. J. Syst. Evol. Microbiol. 57:2777–2789. doi: 10.1099/ijs.0.64711-0 Newburger, J. W., M. Takahashi, and J. C. Burns. 2016. Kawasaki disease. J. Am. Coll. Cardiol. 67:1738–1749. doi: 10.1016/j.jacc.2015.12.073 Newburger, J. W., M. Takahashi, M. A. Gerber, M. H. Gewitz, L. Y. Tani, J. C. Burns, S. T. Shulman, A. F. Bolger, P. Ferrieri, and R. S. Baltimore. 2004. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 110:2747-2771. doi: 10.1161/01.CIR.0000145143.19711.78 Noriega, L., I. Cuevas, A. Margolles, and C. G. De los Reyes-Gavilan. 2006. Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Int. Dairy J. 16:850–855. doi: 10.1016/j.idairyj.2005.09.008 O'Shea, E. F., P. D. Cotter, C. Stanton, R. P. Ross, and C. Hill. 2012. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 152:189–205. doi: 10.1016/j.ijfoodmicro.2011.05.025 Padmavathi, T., R. Bhargavi, P. R. Priyanka, N. R. Niranjan, and P. V. Pavitra. 2018. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. J. Genet. Eng. Biotechnol. 16:357–362. doi: 10.1016/j.jgeb.2018.03.005 Pan, W. H., P. L. Li, and Z. Liu. 2006. The correlation between surface hydrophobicity and adherence of Bifidobacterium strains from centenarians' faeces. Anaerobe 12:148–152. doi: 10.1016/j.anaerobe.2006.03.001 Parke, D. V., and D. F. Lewis. 1992. Safety aspects of food preservatives. Food Addit. Contam. 9:561–577. doi: 10.1080/02652039209374110 Pereira, D. I., and G. R. Gibson. 2002. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 68:4689–4693. doi: 10.1128/AEM.68.9.4689-4693.2002 Perez, R., A. E. Ancuelo, and T. Zendo. 2022. Genotypic and phenotypic characterization of bacteriocinogenic lactic acid bacterial strains for possible beneficial, virulence, and antibiotic resistance traits. J. Microbiol. Biotechnol. Food. Sci. 11:e4990. doi: 10.55251/jmbfs.4990 Picot, A., and C. Lacroix. 2004. Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International dairy journal 14:505–515. doi: 10.1016/j.idairyj.2003.10.008 Pilania, R. K., and S. Singh. 2020. Kawasaki disease. Periodic and non-periodic fevers:45–63. doi: 10.1007/978-3-030-19055-2_4 Plovier, H., A. Everard, C. Druart, C. Depommier, M. Van Hul, L. Geurts, J. Chilloux, N. Ottman, T. Duparc, and L. Lichtenstein. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23:107–113. doi: 10.1038/nm.4236 Pop, O. L., F. V. Dulf, L. Cuibus, M. Castro-Giráldez, P. J. Fito, D. C. Vodnar, C. Coman, C. Socaciu, and R. Suharoschi. 2017. Characterization of a sea buckthorn extract and its effect on free and encapsulated Lactobacillus casei. Int. J. Mol. Sci. 18:2513. doi: 10.3390/ijms18122513 Qu, S., L. Fan, Y. Qi, C. Xu, Y. Hu, S. Chen, W. Liu, W. Liu, and J. Si. 2021. Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation. Microbiol. Spectr. 9:e0073021. doi: 10.1128/Spectrum.00730-21 Rao, J. K., and K. P. Rao. 1997. Controlled release of FITC-BSA from polymer coated gelatin microspheres. J. Bioact. Compat. Polym. 12:127–139. doi: 10.1177/088391159701200 Rastogi, S., V. Mittal, and A. Singh. 2020. In vitro evaluation of probiotic potential and safety assessment of Lactobacillus mucosae strains isolated from donkey's lactation. Probiotics Antimicro. 12:1045–1056. doi: 10.1007/s12602-019-09610-0 Rinninella, E., P. Raoul, M. Cintoni, F. Franceschi, G. A. D. Miggiano, A. Gasbarrini, and M. C. Mele. 2019. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7:14. doi: 10.3390/microorganisms7010014 Roos, S., F. Karner, L. Axelsson, and H. Jonsson. 2000. Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int. J. Syst. Evol. Microbiol. 50:251–258. doi: 10.1099/00207713-50-1-251 Rudel, L. L., and M. Morris. 1973. Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 14:364–366. doi: 10.1016/S0022-2275(20)36896-6 Ryan, P. M., E. H. Stolte, L. E. E. London, J. M. Wells, S. L. Long, S. A. Joyce, C. G. M. Gahan, G. F. Fitzgerald, R. P. Ross, N. M. Caplice, and C. Stanton. 2019. Lactobacillus mucosae DPC 6426 as a bile-modifying and immunomodulatory microbe. BMC Microbiol. 19:33. doi: 10.1186/s12866-019-1403-0 Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454 Seminario-Amez, M., J. Lopez-Lopez, A. Estrugo-Devesa, R. Ayuso-Montero, and E. Jane-Salas. 2017. Probiotics and oral health: a systematic review. Med. Oral Patol. Oral Cir. Bucal. 22:e282–e288. doi: 10.4317/medoral.21494 Sharma, A. K., N. Dhasmana, N. Dubey, N. Kumar, A. Gangwal, M. Gupta, and Y. Singh. 2017. Bacterial virulence factors: secreted for survival. Indian. J. Microbiol. 57:1–10. doi: 10.1007/s12088-016-0625-1 Sivan, A., L. Corrales, N. Hubert, J. B. Williams, K. Aquino-Michaels, Z. M. Earley, F. W. Benyamin, Y. M. Lei, B. Jabri, M. L. Alegre, E. B. Chang, and T. F. Gajewski. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089. doi: 10.1126/science.aac4255 Sokol, H., B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermúdez-Humarán, J.-J. Gratadoux, S. Blugeon, C. Bridonneau, J.-P. Furet, and G. Corthier. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A. 105:16731–16736. doi: 10.1073/pnas.0804812105 Suez, J., N. Zmora, E. Segal, and E. Elinav. 2019. The pros, cons, and many unknowns of probiotics. Nat. Med. 25:716–729. doi: 10.1038/s41591-019-0439-x Sun, Z., S. Huang, X. Yan, X. Zhang, Y. Hao, L. Jiang, and Z. Dai. 2024. Living, heat-killed Limosilactobacillus mucosae and its cell-free supernatant differentially regulate colonic serotonin receptors and immune response in experimental colitis. Nutrients 16:468. doi: 10.3390/nu16040468 Suzuki, S., N. Shimojo, Y. Tajiri, M. Kumemura, and Y. Kohno. 2007. Differences in the composition of intestinal Bifidobacterium species and the development of allergic diseases in infants in rural Japan. Clin. Exp. Allergy 37:506–511. doi: 10.1111/j.1365-2222.2007.02676.x Szychowiak, P., K. Villageois-Tran, J. Patrier, J. F. Timsit, and E. Ruppe. 2022. The role of the microbiota in the management of intensive care patients. Ann. Intensive Care 12:3. doi: 10.1186/s13613-021-00976-5 Tarifa, M. C., C. M. Piqueras, D. B. Genovese, and L. I. Brugnoni. 2021. Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in pectin and pectin-inulin microgel particles: Effect on bacterial survival under storage conditions. Int. J. Biol. Macromol. 179:457–465. doi: 10.1016/j.ijbiomac.2021.03.038 Toscano, M., R. De Grandi, L. Stronati, E. De Vecchi, and L. Drago. 2017. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: A preliminary study. World J. Gastroenterol. 23:2696–2704. doi: 10.3748/wjg.v23.i15.2696 Tsai, H. Y., Y. C. Wang, C. A. Liao, C. Y. Su, C. H. Huang, M. H. Chiu, and Y. T. Yeh. 2022. Safety and the probiotic potential of Bifidobacterium animalis CP‐9. J. Food Sci. 87:2211-2228. doi: 10.1111/1750-3841.16129 Turnbaugh, P. J., R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, and J. I. Gordon. 2007. The human microbiome project. Nature 449:804–810. doi: 10.1038/nature06244 Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. doi: 10.1038/nature05414 Valeriano, V. D., M. M. Parungao-Balolong, and D. K. Kang. 2014. In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J. Appl. Microbiol. 117:485–497. doi: 10.1111/jam.12539 Ventura, M., V. Meylan, and R. Zink. 2003. Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microbiol. 69:4296–4301. doi: 10.1128/AEM.69.7.4296-4301.2003 Wang, F., F. Qian, Q. Zhang, J. Zhao, J. Cen, J. Zhang, J. Zhou, M. Luo, C. Jia, X. Rong, and M. Chu. 2023. The reduced SCFA-producing gut microbes are involved in the inflammatory activation in Kawasaki disease. Front. Immunol. 14:1124118. doi: 10.3389/fimmu.2023.1124118 Wang, Z., X. Zeng, Y. Mo, K. Smith, Y. Guo, and J. Lin. 2012. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl. Environ. Microbiol. 78:8795–8802. doi: 10.1128/AEM.02519-12 Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 24:1313–1325. doi: 10.1007/s11274-007-9604-3 Wensel, C. R., J. L. Pluznick, S. L. Salzberg, and C. L. Sears. 2022. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J. Clin. Invest. 132:e154944. doi: 10.1172/JCI154944 Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535. doi: 10.1093/nar/18.22.6531 Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271. doi: 10.1128/mr.51.2.221-271.1987 Yan, Q., Y. Gu, X. Li, W. Yang, L. Jia, C. Chen, X. Han, Y. Huang, L. Zhao, P. Li, Z. Fang, J. Zhou, X. Guan, Y. Ding, S. Wang, M. Khan, Y. Xin, S. Li, and Y. Ma. 2017. Alterations of the gut microbiome in hypertension. Front. Cell. Infect. Microbiol. 7:381. doi: 10.3389/fcimb.2017.00381 Yew, S. E., T. J. Lim, L. C. Lew, R. Bhat, A. Mat‐Easa, and M. T. Liong. 2011. Development of a probiotic delivery system from agrowastes, soy protein isolate, and microbial transglutaminase. J. Food Sci. 76:H108–H115. doi: 10.1111/j.1750-3841.2011.02107.x Zareie, Z., A. Moayedi, F. Garavand, K. Tabar-Heydar, M. Khomeiri, and Y. Maghsoudlou. 2023. Probiotic properties, safety assessment, and aroma-generating attributes of some lactic acid bacteria isolated from iranian traditional cheese. Fermentation 9:338. doi: 10.3390/fermentation9040338 Zeng, Q., R. Zeng, and J. Ye. 2023. Alteration of the oral and gut microbiota in patients with Kawasaki disease. PeerJ 11:e15662. doi: 10.7717/peerj.15662 Zhan, Z., H. Tang, Y. Zhang, X. Huang, and M. Xu. 2022. Potential of gut-derived short-chain fatty acids to control enteric pathogens. Front. Microbiol. 13:976406. doi: 10.3389/fmicb.2022.976406 Zhang, Q., R. Vasquez, J. M. Yoo, S. H. Kim, D. K. Kang, and I. H. Kim. 2022. Dietary supplementation of Limosilactobacillus mucosae LM1 enhances immune functions and modulates gut microbiota without affecting the growth performance of growing pigs. Front. Vet. Sci. 9:918114. doi: 10.3389/fvets.2022.918114 Zhao, L., S. Wang, J. Dong, J. Shi, J. Guan, D. Liu, F. Liu, B. Li, and G. Huo. 2021. Identification, characterization, and antioxidant potential of Bifidobacterium longum subsp. longum strains isolated from feces of healthy infants. Front. Microbiol. 12:756519. doi: 10.3389/fmicb.2021.756519 Zhao, M., Y. Wang, X. Huang, M. Gaenzle, Z. Wu, K. Nishinari, N. Yang, and Y. Fang. 2018. Ambient storage of microencapsulated Lactobacillus plantarum ST-III by complex coacervation of type-A gelatin and gum arabic. Food Funct. 9:1000–1008. doi: 10.1039/c7fo01802a | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95903 | - |
dc.description.abstract | 傳統益生菌已被廣泛研究和應用,為了開發出新型益生菌,次世代益生菌 (next-generation probiotics) 的概念開始受到重視,次世代益生菌是指「根據微生物群比較分析而鎖定的活體微生物,當其被攝取足量時,可為宿主帶來健康益處」。川崎氏症 (Kawasaki disease) 是一種病因未知、好發於5歲以下兒童的全身性血管炎,伴隨發燒、淋巴結腫大和皮膚黏膜表現等的綜合症。在先前的研究中發現川崎氏症兒童腸道菌相中的Limosilactobacillus mucosae顯著低於健康兒童,顯示L. mucosae可能在川崎氏症中扮演重要角色。因此,本研究旨在從兒童糞便中分離出L. mucosae並研究其特性及功能性,以評估其作為次世代益生菌的潛力。
在本研究共招募到118位健康兒童的糞便樣本,並透過即時聚合酶連鎖反應(real-time polymerase chain reaction, qPCR) 篩選出37個L. mucosae豐度較高的樣本,將其進行細菌分離,共得出16,000個單一獨立菌落,在使用L. mucosae專一性引子對聚合酶連鎖反應 (L. mucosae-specific primer set PCR) 及逢機增幅多型性DNA聚合酶連鎖反應 (randomly amplified polymorphic DNA-PCR) 進行初步鑑定及分型後,透過16S rRNA基因定序、持家基因 (housekeeping gene) pheS及rpoA定序進行進一步的鑑定,最終篩選出兩個相異的L. mucosae菌株,分別命名為H87及H602。 隨後將其和人源的L. mucosae JCM 7735 (R1)、豬源的L. mucosae BCRC 17827T (R2) 及從牛隻糞便所分離之L. mucosae C121、C212、C1988、C251及C10進行菌株特性及功能性之測定。研究結果顯示,低濃度活菌之R1、R2、C1988、C251及H87可以提升促發炎細胞激素腫瘤壞死因子α (tumor necrosis factor-α, TNF-α),高濃度之熱滅活 (heat-killed) R1、R2、C251及C10能同時提升促發炎細胞激素TNF-α及抗發炎細胞激素白介素-10 (interleukin-10, IL-10),顯示出這些菌株的免疫調節能力。此外R1、R2及C10在抗氧化試驗中表現最好,具有自由基清除能力、還原力及脂質氧化抑制能力。而抗肥胖能力面,所有菌株皆具有膽鹽水解酶 (bile salt hydrolase) 活性,並且C212、C1988、C10和H87具有膽固醇同化 (cholesterol assimilation) 能力。 綜上所述,本研究從嬰兒糞便中有效的分離出L. mucosae菌株,並和其他來源的L. mucosae菌株相比後,發現H87在免疫調節及降膽固醇方面表現出色,在未來進一步研究其在人體內的功能後,期望能開發出一種新型的潛力益生菌株。 | zh_TW |
dc.description.abstract | Traditional probiotics have been extensively studied and applied. To develop new probiotics, the concept of next-generation probiotics has begun to gain attention. Next-generation probiotics refer to "live microorganisms identified based on comparative microbiota analyses that, when administered in adequate amounts, confer a health benefit on the host." Kawasaki disease is a systemic vasculitis of unknown etiology that primarily affects children under five years old and is characterized by fever, lymphadenopathy, and mucocutaneous symptoms. Previous studies have found that the gut microbiota of children with Kawasaki disease has significantly lower levels of Limosilactobacillus mucosae compared to healthy children, suggesting that L. mucosae may play an important role in Kawasaki disease. Therefore, this study aimed to isolate L. mucosae from children's feces and investigate its characteristics and functionality to evaluate its potential as a next-generation probiotic.
In this study, fecal samples were collected from 118 healthy children and screened by real-time polymerase chain reaction (PCR) to select samples with high L. mucosae abundance. These samples were then conducted bacteria isolation, and 16,000 single colonies were isolated. After preliminary identification and typing using L. mucosae-specific primers set-PCR and random amplified polymorphic DNA-PCR, further identification was performed using 16S rRNA gene sequencing, housekeeping gene pheS and rpoA sequencing. Finally, two different L. mucosae strains were identified and named H87 and H602. These strains were then compared with L. mucosae JCM 7735 (R1) and L. mucosae BCRC 17827T (R2) isolated from human and pig, and L. mucosae C121, C212, C1988, C251, and C10 isolated from calf feces to determine their characteristics and functionality. The results showed that low doses of live R1, R2, C1988, C251, and H87 could enhance the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). High doses of heat-inactivated R1, R2, C251, and C10 could enhance both the pro-inflammatory cytokine TNF-α and the anti-inflammatory cytokine interleukin-10 (IL-10), demonstrating the immune regulatory capabilities of these strains. Additionally, R1, R2, and C10 showed the best performance in antioxidant tests, with the ability to scavenge free radicals, reduce power, and inhibit lipid oxidation. In terms of anti-obesity capabilities, all strains exhibited bile salt hydrolase activity, and C212, C1988, C10, and H87 demonstrated cholesterol assimilation ability. In conclusion, this study effectively isolated L. mucosae strains from infant feces. Compared with L. mucosae strains from other sources, H87 showed good performance in immune regulation and cholesterol reduction. After further investigation into its functionality in the human body, the goal of this study is to develop a novel potential probiotic strain. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-19T16:17:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-19T16:17:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iv 目次 vii 圖次 x 表次 xii 壹、文獻探討 1 一、 益生菌與次世代益生菌 1 (一) 益生菌 1 (二) 次世代益生菌 6 二、 川崎氏症 (Kawasaki disease) 與Limosilactobacillus mucosae 15 (一) 川崎氏症 15 (二) 川崎氏症與腸道菌相 16 (三) Limosilactobacillus mucosae 16 貳、研究動機與目的 23 參、材料與方法 24 第一節: Limosilactobacillus mucosae之分離與鑑定 24 一、 試驗設計 24 二、 研究材料 25 (一) 受試者招募 25 (二) 糞便樣本收集與前處理 25 三、 研究方法 26 (一) 糞便樣本篩選 26 (二) 菌株分離 (isolation) 與純化 (purification) 27 (三) 菌株鑑定 (identification) 28 第二節: Limosilactobacillus mucosae之特性與功能性測定 43 一、 試驗設計 43 二、 研究材料 44 (一) 試驗菌株 44 (二) 試驗細胞 44 三、 研究方法 46 (一) 菌株特性 46 (二) 菌株功能性 47 肆、結果 57 第一節: Limosilactobacillus mucosae之分離與鑑定 57 一、 受試者招募、糞便樣本篩選及菌落分離 57 二、 菌株鑑定 62 第二節: Limosilactobacillus mucosae之特性與功能性測定 69 一、 菌株特性 69 (一) 菌落外觀 69 (二) 革蘭氏染色 69 (三) 低pH值與膽鹽耐受性 69 二、 菌株功能性 74 (一) Limosilactobacillus mucosae免疫調節能力之評估 74 (二) Limosilactobacillus mucosae對血管發炎之影響 83 (三) Limosilactobacillus mucosae抗氧化能力之評估 85 (四) Limosilactobacillus mucosae抗肥胖能力之評估 88 伍、討論 93 第一節:Limosilactobacillus mucosae之分離與鑑定 93 一、 潛在生物指標之分離與鑑定 93 第二節:Limosilactobacillus mucosae之特性與功能性測定 95 一、 Limosilactobacillus mucosae之菌株特性 95 二、 Limosilactobacillus mucosae之菌株功能性 95 (一) Limosilactobacillus mucosae免疫調節能力之評估 96 (二) Limosilactobacillus mucosae抗氧化能力之評估 97 (三) Limosilactobacillus mucosae抗肥胖能力之評估 98 (四) Limosilactobacillus mucosae之安全性評估 100 陸、結論 101 柒、參考文獻 102 | - |
dc.language.iso | zh_TW | - |
dc.title | 潛力益生菌Limosilactobacillus mucosae之分離、鑑定與功能性測定 | zh_TW |
dc.title | Isolation, identification and functionality test of potential probiotic Limosilactobacillus mucosae | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳勁初;謝睿純;張鑾英;黃麗娜 | zh_TW |
dc.contributor.oralexamcommittee | Chin-Chu Chen;Jui-Chun Hsieh;Luan-Yin Chang;Lina Huang | en |
dc.subject.keyword | 次世代益生菌,黏膜乳桿菌,篩菌,免疫調節,降膽固醇, | zh_TW |
dc.subject.keyword | next-generation probiotics,Limosilactobacillus mucosae,bacteria isolation,immunoregulatory,cholesterol-lowering activity, | en |
dc.relation.page | 127 | - |
dc.identifier.doi | 10.6342/NTU202403719 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。