請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95901完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人 | zh_TW |
| dc.contributor.advisor | Jer-Ren Yang | en |
| dc.contributor.author | 戴正凌 | zh_TW |
| dc.contributor.author | Cheng-Ling Tai | en |
| dc.date.accessioned | 2024-09-19T16:16:48Z | - |
| dc.date.available | 2024-09-20 | - |
| dc.date.copyright | 2024-09-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | [1] J.-F. Nie, Physical metallurgy of light alloys, Physical metallurgy, Elsevier2014, pp. 2009-2156.
[2] J.T. STALEY, Physical Metallurgy and the Effect of Alloying Additions in Aluminum Alloys, Handbook of Aluminum (2003) 81. [3] R.J. Hussey, J. Wilson, Light alloys: directory and databook, Springer Science & Business Media2013. [4] J.R. Davis, Aluminum and aluminum alloys, ASM international1993. [5] S. Ringer, K. Hono, Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies, Materials characterization 44(1-2) (2000) 101-131. [6] S. Zhou, Y. Su, H. Wang, J. Enz, T. Ebel, M. Yan, Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2, Additive Manufacturing 36 (2020) 101458. [7] X.-m. ZHANG, C.-j. YU, S.-d. LIU, X.-x. LIU, P. ZHANG, Y.-y. WANG, Influence of Fe and Si impurities on the quench sensitivity of Al-Zn-Mg-Cu alloy, Journal of Materials Engineering 3(10) (2013) 41-47. [8] G. Hahn, A. Rosenfield, Metallurgical factors affecting fracture toughness of aluminum alloys, Metallurgical Transactions A 6(4) (1975) 653-668. [9] J.A. Wagner, R. Shenoy, The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys, Metallurgical transactions A 22(11) (1991) 2809-2818. [10] N. Ryum, Precipitation and recrystallization in an A1-0.5 WT.% Zr-alloy, Acta Metallurgica 17(3) (1969) 269-278. [11] R. Sanders Jr, E. Starke Jr, The effect of grain refinement on the low cycle fatigue behavior of an Aluminum Zinc Magnesium(Zirconium) alloy, Materials Science and Engineering 28(1) (1977) 53-68. [12] W. Pearson, A Handbook of Lattice Spacings of Metals and Alloys, Pergamon, New York, 1958. [13] J.K. Sunde, D.N. Johnstone, S. Wenner, A.T.J. van Helvoort, P.A. Midgley, R. Holmestad, Crystallographic relationships of T-/S-phase aggregates in an Al-Cu-Mg-Ag alloy, Acta Materialia 166 (2019) 587-596. [14] E. Anselmino, A. Miroux, S. Van der Zwaag, Dispersoid quantification and size distribution in hot and cold processed AA3103, Materials characterization 52(4-5) (2004) 289-300. [15] D.H. Lee, K.C. Kim, D.S. Park, S.W. Nam, Enhancement of the fatigue properties in a weldable high-strength Al-Zn-Mg-Mn alloy by means of Mn-dispersoids, International journal of fatigue 21(4) (1999) 383-391. [16] D.S. Park, S.W. Nam, Effects of manganese dispersoid on the mechanical properties in Al-Zn-Mg alloys, Journal of materials science 30(5) (1995) 1313-1320. [17] G.E. Totten, D.S. MacKenzie, Handbook of aluminum: vol. 1: physical metallurgy and processes, CRC press2003. [18] C.-L. Tai, Y.-M. Pua, T.-F. Chung, Y.-L. Yang, H.-R. Chen, C.-Y. Chen, S.-H. Wang, C.-Y. Yu, J.-R. Yang, The effect of minor addition of Mn in AA7075 Al–Zn–Mg–Cu aluminum alloys on microstructural evolution and mechanical properties in warm forming and paint baking processes, International Journal of Lightweight Materials and Manufacture 6(4) (2023) 521-533. [19] J. Howe, J. Lee, A. Vasudevan, Structure and deformation behavior of T 1 precipitate plates in an Al-2Li-1 Cu alloy, Metallurgical Transactions A 19 (1988) 2911-2920. [20] T. Dorin, F. De Geuser, W. Lefebvre, C. Sigli, A. Deschamps, Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy, Materials Science and Engineering: A 605 (2014) 119-126. [21] S. Bai, X. Zhou, Z. Liu, P. Xia, M. Liu, S. Zeng, Effects of Ag variations on the microstructures and mechanical properties of Al–Cu–Mg alloys at elevated temperatures, Materials Science and Engineering: A 611 (2014) 69-76. [22] B.C. Muddle, I. Polmear, The precipitate Ω phase in Al-Cu-Mg-Ag alloys, Acta Metallurgica 37(3) (1989) 777-789. [23] D. Xiao, J. Wang, D. Ding, H. Yang, Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy, Journal of Alloys and Compounds 352(1-2) (2003) 84-88. [24] D. Xiao, M. Song, B. Huang, J. Yi, Y. He, Y. Li, Effect of Sc addition on microstructure and mechanical properties of Al–Cu–Mg–Ag–Zr alloy, Materials Science and Technology 25(6) (2009) 747-752. [25] T.-F. Chung, Y.-L. Yang, C.-N. Hsiao, W.-C. Li, B.-M. Huang, C.-S. Tsao, Z. Shi, J. Lin, P.E. Fischione, T. Ohmura, Morphological evolution of GP zones and nanometer-sized precipitates in the AA2050 aluminium alloy, International Journal of Lightweight Materials and Manufacture 1(3) (2018) 142-156. [26] S. Bai, X. Yi, Z. Liu, J. Wang, J. Zhao, P. Ying, The influence of preaging on the strength and precipitation behavior of a deformed Al-Cu-Mg-Ag alloy, Journal of Alloys and Compounds 764 (2018) 62-72. [27] X.-M. Wang, W.-Z. Shao, J.-T. Jiang, G.-A. Li, X.-Y. Wang, L. Zhen, Quantitative analysis of the influences of pre-treatments on the microstructure evolution and mechanical properties during artificial ageing of an Al–Cu–Li–Mg–Ag alloy, Materials Science and Engineering: A 782 (2020) 139253. [28] S. Bai, Z. Liu, P. Ying, J. Wang, A. Wang, Quantitative study of the solute clustering and precipitation in a pre-stretched Al-Cu-Mg-Ag alloy, Journal of Alloys and Compounds 725 (2017) 1288-1296. [29] X. Guo, Y. Deng, X. Zhang, Quantitative study of the effect of stress on the precipitation in an Al-Cu-Mg-Ag alloy single crystal, Materials Science and Engineering: A 730 (2018) 187-196. [30] Y. Li, Z. Shi, J. Lin, Y.-L. Yang, Q. Rong, B.-M. Huang, T.-F. Chung, C.-S. Tsao, J.-R. Yang, D.S. Balint, A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy, International Journal of Plasticity 89 (2017) 130-149. [31] J. Zhang, Y. Wang, Y. Deng, X. Zhang, Effect of deformation degree on the creep age forming of 7475 aluminum alloy: The feasibility of the extended deformation range, Materials Science and Engineering: A 664 (2016) 126-134. [32] L. Zhan, J. Lin, T. Dean, A review of the development of creep age forming: Experimentation, modelling and applications, International Journal of Machine Tools and Manufacture 51(1) (2011) 1-17. [33] S. Bai, H. Di, Z. Liu, Dislocation interaction with Ω phase in crept Al–Cu–Mg–Ag alloys, Materials Science and Engineering: A 651 (2016) 399-405. [34] J.T. Staley, S. Byrne, E. Colvin, K. Kinnear, Corrosion and stress-corrosion of 7XXX-W products, Materials Science Forum, Trans Tech Publ, 1996, pp. 1587-1592. [35] S. Chen, K. Chen, P. Dong, S. Ye, L. Huang, Effect of recrystallization and heat treatment on strength and SCC of an Al–Zn–Mg–Cu alloy, Journal of alloys and compounds 581 (2013) 705-709. [36] T. Marlaud, B. Baroux, A. Deschamps, J. Chemin, C. Hénon, Understanding the compromise between strength and exfoliation corrosion in high strength 7000 alloys, Materials science forum, Trans Tech Publ, 2006, pp. 455-460. [37] K. Wen, Y. Fan, G. Wang, L. Jin, X. Li, Z. Li, Y. Zhang, B. Xiong, Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers, Materials & Design 101 (2016) 16-23. [38] D. Liu, B. Xiong, F. Bian, Z. Li, X. Li, Y. Zhang, F. Wang, H. Liu, Quantitative study of precipitates in an Al–Zn–Mg–Cu alloy aged with various typical tempers, Materials Science and Engineering: A 588 (2013) 1-6. [39] K. Nix, H. Flower, The micromechanisms of fatigue crack growth in a commercial Al-Zn-Mg-Cu alloy, Acta Metallurgica 30(8) (1982) 1549-1559. [40] B. Cina, Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking, Google Patents, 1974. [41] J.K. Park, Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6, Materials Science and Engineering: A 103(2) (1988) 223-231. [42] M. Kanno, I. Araki, Q. Cui, Precipitation behaviour of 7000 alloys during retrogression and reaging treatment, Materials Science and Technology 10(7) (1994) 599-603. [43] R. Bucci, C. Warren, E. Starke Jr, Need for new materials in aging aircraft structures, Journal of Aircraft 37(1) (2000) 122-129. [44] Y. Wang, L. Cao, X. Wu, X. Tong, B. Liao, G. Huang, Z. Wang, Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085, Journal of Alloys and Compounds 814 (2020) 152264. [45] J. Li, N. Birbilis, C. Li, Z. Jia, B. Cai, Z. Zheng, Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150, Materials Characterization 60(11) (2009) 1334-1341. [46] J.K. Park, A. Ardell, Effect of retrogression and reaging treatments on the microstructure of Ai-7075-T651, Metallurgical and Materials Transactions A 15(8) (1984) 1531-1543. [47] H. Zhong, S. Li, J. Wu, H. Deng, J. Chen, N. Yan, Z. Chen, L. Duan, Effects of retrogression and re-aging treatment on precipitation behavior, mechanical and corrosion properties of a Zr+ Er modified Al-Zn-Mg-Cu alloy, Materials Characterization 183 (2022) 111617. [48] W. Hui, Y.-b. LUO, P. Friedman, M.-h. CHEN, G. Lin, Warm forming behavior of high strength aluminum alloy AA7075, Transactions of Nonferrous Metals Society of China 22(1) (2012) 1-7. [49] T.A. Ivanoff, J.T. Carter, L.G. Hector, E.M. Taleff, Retrogression and reaging applied to warm forming of high-strength aluminum alloy AA7075-T6 sheet, Metallurgical and Materials Transactions A 50(3) (2019) 1545-1561. [50] J.A. Österreicher, F. Grabner, M.A. Tunes, D.S. Coradini, S. Pogatscher, C.M. Schlögl, Two step–ageing of 7xxx series alloys with an intermediate warm-forming step, Journal of Materials Research and Technology 12 (2021) 1508-1515. [51] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials & Design (1980-2015) 56 (2014) 862-871. [52] X. Zhang, Y. Chen, J. Hu, Recent advances in the development of aerospace materials, Progress in Aerospace Sciences 97 (2018) 22-34. [53] Z. Chen, J. Ren, Z. Yuan, S.P. Ringer, Enhanced strength-plasticity combination in an Al–Cu–Mg alloy——atomic scale microstructure regulation and strengthening mechanisms, Materials Science and Engineering: A 787 (2020) 139447. [54] R. Chester, I. Polmear, TEM investigation of precipitates in AlCuMgAg and AlCuMg alloys, Micron 11(3-4) (1980) 311-312. [55] I. Polmear, M. Couper, Design and development of an experimental wrought aluminum alloy for use at elevated temperatures, Metallurgical transactions A 19(4) (1988) 1027-1035. [56] S. Wang, M. Starink, Two types of S phase precipitates in Al–Cu–Mg alloys, Acta Materialia 55(3) (2007) 933-941. [57] L. Kovarik, S. Court, H. Fraser, M. Mills, GPB zones and composite GPB/GPBII zones in Al–Cu–Mg alloys, Acta materialia 56(17) (2008) 4804-4815. [58] C. Macchi, A. Tolley, R. Giovachini, I. Polmear, A. Somoza, Influence of a microalloying addition of Ag on the precipitation kinetics of an Al–Cu–Mg alloy with high Mg: Cu ratio, Acta Materialia 98 (2015) 275-287. [59] A. Garg, Y. Chang, J. Howe, Precipitation of the Ω phase in an Al-4.0 Cu-0.5 Mg alloy, Scripta Metallurgica et Materialia 24(4) (1990) 677-680. [60] M. Song, K.-H. Chen, L.-p. Huang, Effects of Ag addition on mechanical properties and microstructures of Al-8Cu-0.5 Mg alloy, Transactions of Nonferrous Metals Society of China 16(4) (2006) 766-771. [61] Y. Gu, Z. Liu, D. Yu, B. Liu, M. Lin, S. Zeng, Growth of Ω plates and its effect on mechanical properties in Al-Cu-Mg-Ag alloy with high content of silver, Journal of materials engineering and performance 22(6) (2013) 1708-1715. [62] S. Bai, P. Ying, Z. Liu, J. Wang, J. Li, Quantitative transmission electron microscopy and atom probe tomography study of Ag-dependent precipitation of Ω phase in Al-Cu-Mg alloys, Materials Science and Engineering: A 687 (2017) 8-16. [63] S. Bai, Z. Liu, X. Zhou, P. Xia, S. Zeng, Mg-controlled formation of Mg–Ag co-clusters in initial aged Al–Cu–Mg–Ag alloys, Journal of Alloys and Compounds 602 (2014) 193-198. [64] A. Al-Obaisi, E. El-Danaf, A. Ragab, M. Soliman, Precipitation hardening and statistical modeling of the aging parameters and alloy compositions in Al-Cu-Mg-Ag alloys, Journal of Materials Engineering and Performance 25(6) (2016) 2432-2444. [65] J. Liu, S. Yang, S. Wang, J. Chen, C. Wu, The influence of Cu/Mg atomic ratios on precipitation scenarios and mechanical properties of Al–Cu–Mg alloys, Journal of alloys and compounds 613 (2014) 139-142. [66] L. Liu, J. Chen, S. Wang, C. Liu, S. Yang, C. Wu, The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio, Materials Science and Engineering: A 606 (2014) 187-195. [67] C. Pan, Y. Yang, S. Wang, Y. Liu, S. Hu, Z. Wang, P. Shen, Atomistic building blocks of one-dimensional Guinier–Preston–Bagaryatsky zones in Al-Cu-Mg alloys, Materials & Design 187 (2020) 108393. [68] M. Mohedano, M. Serdechnova, M. Starykevich, S. Karpushenkov, A. Bouali, M. Ferreira, M. Zheludkevich, Active protective PEO coatings on AA2024: Role of voltage on in-situ LDH growth, Materials & Design 120 (2017) 36-46. [69] Y.A. Bagaryatsky, Structural changes on aging Al-Cu-Mg alloys, Dokl Akad SSSR, 1952, pp. 397-559. [70] R. Wilson, P. Partridge, The nucleation and growth of S'precipitates in an aluminium-2.5% copper-1.2% magnesium alloy, Acta Metallurgica 13(12) (1965) 1321-1327. [71] S.P. Ringer, T. Sakurai, I. Polmear, Origins of hardening in aged Al Gu Mg(Ag) alloys, Acta materialia 45(9) (1997) 3731-3744. [72] J.K. Sunde, D.N. Johnstone, S. Wenner, A.T. van Helvoort, P.A. Midgley, R. Holmestad, Crystallographic relationships of T-/S-phase aggregates in an Al–Cu–Mg–Ag alloy, Acta Materialia 166 (2019) 587-596. [73] Y. Chen, S. Pan, B. Zhu, X. Liu, W. Liu, S. Tang, The evolution of orientation relationships during the transformation of a twin-free T-particle to tenfold T-twins in an Al alloy during homogenisation, Materials Characterization 141 (2018) 59-73. [74] S. Ringer, B. Sofyan, K. Prasad, G. Quan, Precipitation reactions in Al–4.0 Cu–0.3 Mg (wt.%) alloy, Acta Materialia 56(9) (2008) 2147-2160. [75] G. Sha, R. Marceau, X. Gao, B. Muddle, S. Ringer, Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes, Acta Materialia 59(4) (2011) 1659-1670. [76] S. Ringer, K. Hono, I. Polmear, T. Sakurai, Nucleation of precipitates in aged AlCuMg (Ag) alloys with high Cu: Mg ratios, Acta Materialia 44(5) (1996) 1883-1898. [77] S. Wang, M. Starink, N. Gao, Precipitation hardening in Al–Cu–Mg alloys revisited, Scripta Materialia 54(2) (2006) 287-291. [78] S. Wang, M. Starink, The assessment of GPB2/S′′ structures in Al–Cu–Mg alloys, Materials Science and Engineering: A 386(1-2) (2004) 156-163. [79] A. Charai, T. Walther, C. Alfonso, A.-M. Zahra, C. Zahra, Coexistence of clusters, GPB zones, S ″-, S′-and S-phases in an Al–0.9% Cu–1.4% Mg alloy, Acta materialia 48(10) (2000) 2751-2764. [80] Z. Liu, J. Chen, S. Wang, D. Yuan, M. Yin, C. Wu, The structure and the properties of S-phase in AlCuMg alloys, Acta materialia 59(19) (2011) 7396-7405. [81] M.J. Styles, C. Hutchinson, Y. Chen, A. Deschamps, T.J. Bastow, The coexistence of two S (Al2CuMg) phases in Al–Cu–Mg alloys, Acta materialia 60(20) (2012) 6940-6951. [82] M.J. Styles, R.K.W. Marceau, T.J. Bastow, H.E. Brand, M.A. Gibson, C.R. Hutchinson, The competition between metastable and equilibrium S (Al2CuMg) phase during the decomposition of AlCuMg alloys, Acta Materialia 98 (2015) 64-80. [83] X. Chen, C.D. Marioara, S.J. Andersen, J. Friis, A. Lervik, R. Holmestad, E. Kobayashi, Precipitation processes and structural evolutions of various GPB zones and two types of S phases in a cold-rolled Al-Mg-Cu alloy, Materials & Design 199 (2021) 109425. [84] J. Vietz, I. Polmear, THE INFLUENCE OF SMALL ADDITIONS OF SILVER ON THE AGEING OF ALUMINIUM ALLOYS.. OBSERVATIONS ON AL-CU-MG ALLOYS, Inst Metals J 94(12) (1966) 410-419. [85] J.F. Nie, B.C. Muddle, Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates, Acta Materialia 56(14) (2008) 3490-3501. [86] J.F. Nie, B.C. Muddle, Microstructural design of high-strength aluminum alloys, Journal of phase equilibria 19(6) (1998) 543-551. [87] S. Ringer, W. Yeung, B. Muddle, I. Polmear, Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures, Acta metallurgica et materialia 42(5) (1994) 1715-1725. [88] J. Auld, Structure of metastable precipitate in some Al–Cu–Mg–Ag alloys, Materials science and technology 2(8) (1986) 784-787. [89] M. Gazizov, R. Kaibyshev, Precipitation structure and strengthening mechanisms in an Al-Cu-Mg-Ag alloy, Materials Science and Engineering: A 702 (2017) 29-40. [90] X. Zhou, Z. Liu, S. Bai, M. Liu, P. Ying, The influence of various Ag additions on the nucleation and thermal stability of Ω phase in Al–Cu–Mg alloys, Materials Science and Engineering: A 564 (2013) 186-191. [91] L. Reich, M. Murayama, K. Hono, Evolution of Ω phase in an Al–Cu–Mg–Ag alloy—a three-dimensional atom probe study, Acta Materialia 46(17) (1998) 6053-6062. [92] K. Hono, T. Sakurai, I. Polmear, Pre-precipitate clustering in an Al-Cu-Mg-Ag alloy, Scripta Metallurgica et Materialia;(United States) 30(6) (1994). [93] I. Suh, J.K. Park, Influence of the elastic strain energy on the nucleation of {Omega} phase in Al-Cu-Mg (-Ag) alloys, Scripta metallurgica et materialia 33(2) (1995). [94] S. Yang, X. Zhao, H. Chen, N. Wilson, J. Nie, Atomic structure and evolution of a precursor phase of Ω precipitate in an Al-Cu-Mg-Ag alloy, Acta Materialia 225 (2022) 117538. [95] K. Knowles, W. Stobbs, The structure of {111} age-hardening precipitates in Al–Cu–Mg–Ag alloys, Acta Crystallographica Section B: Structural Science 44(3) (1988) 207-227. [96] J.M. Howe, Analytical transmission electron microscopy analysis of Ag and Mg segregation to {111} θ precipitate plates in an Al-Cu-Mg-Ag alloy, Philosophical magazine letters 70(3) (1994) 111-120. [97] S.J. Kang, Y.-W. Kim, M. Kim, J.-M. Zuo, Determination of interfacial atomic structure, misfits and energetics of Ω phase in Al–Cu–Mg–Ag alloy, Acta materialia 81 (2014) 501-511. [98] J. Li, Z. An, F.S. Hage, H. Wang, P. Xie, S. Jin, Q.M. Ramasse, G. Sha, Solute clustering and precipitation in an Al–Cu–Mg–Ag–Si model alloy, Materials Science and Engineering: A 760 (2019) 366-376. [99] S.J. Kang, Y.-W. Kim, M. Kim, J.-M. Zuo, Interfacial microscopic mechanism of free energy minimization in Omega precipitate formation, arXiv preprint arXiv:1401.6731 (2014). [100] S. Yang, N. Wilson, J. Nie, Revisit of the structure of Ω precipitate in Al-Cu-Mg-Ag alloys, Scripta Materialia 205 (2021) 114204. [101] Z. Huda, N.I. Taib, T. Zaharinie, Characterization of 2024-T3: An aerospace aluminum alloy, Materials Chemistry and Physics 113(2-3) (2009) 515-517. [102] Y. Chen, J. Feng, H. Liu, Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys, Materials characterization 60(6) (2009) 476-481. [103] Y. Chang, J. Howe, Composition and stability of Ω phase in an Al-Cu-Mg-Ag alloy, Metallurgical Transactions A 24(7) (1993) 1461-1470. [104] J. Taylor, B. Parker, I. Polmear, Precipitation in AI-Cu-Mg-Ag casting alloy, Metal Science 12(10) (1978) 478-482. [105] Y.-T. Chen, G.-Y. Nieh, J.-H. Wang, T.-F. Wu, S.-L. Lee, Effects of Cu/Mg ratio and heat treatment on microstructures and mechanical properties of Al–4.6 Cu–Mg–0.5 Ag alloys, Materials Chemistry and Physics 162 (2015) 764-770. [106] Q. Cui, G. Itoh, M. Kanno, Effect of silver addition on the precipitation of the Ω-phase in an Al-Cu-Mg alloy, Nippon Kinzoku Gakkaishi (1952) 59(5) (1995) 492-501. [107] C.R. Hutchinson, X. Fan, S.J. Pennycook, G.J. Shiflet, On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys, Acta materialia 49(14) (2001) 2827-2841. [108] B. Li, F. Wawner, Dislocation interaction with semicoherent precipitates (Ω phase) in deformed Al–Cu–Mg–Ag alloy, Acta materialia 46(15) (1998) 5483-5490. [109] J. da Costa Teixeira, D.G. Cram, L. Bourgeois, T.J. Bastow, A.J. Hill, C. Hutchinson, On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates, Acta materialia 56(20) (2008) 6109-6122. [110] N. Ünlü, B. Gable, G. Shiflet, E. Starke, The effect of cold work on the precipitation of Ω and θ′ in a ternary Al-Cu-Mg alloy, Metallurgical and Materials Transactions A 34(12) (2003) 2757-2769. [111] M. Gazizov, R. Kaibyshev, Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy, Materials Science and Engineering: A 625 (2015) 119-130. [112] S. Ringer, B. Muddle, I. Polmear, Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys, Metallurgical and Materials Transactions A 26(7) (1995) 1659-1671. [113] S. Bai, Z. Liu, Y. Gu, X. Zhou, S. Zeng, Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio, Materials Science and Engineering: A 530 (2011) 473-480. [114] C.-L. Tai, M.-C. Chen, T.-F. Chung, Y.-L. Yang, S.-L. Lee, T.-C. Tsao, Z. Shi, J. Lin, T.-C. Su, H.-R. Chen, The nano-structural characterization of Ω and S phases in Al-5.1 Cu-1.0 Mg-(0.4 Ag) AA2024 aluminum alloys, Materials Science and Engineering: A (2023) 145361. [115] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials 6(5) (2004) 299-303. [116] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-218. [117] Y. Chen, T. Duval, U. Hung, J. Yeh, H. Shih, Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel, Corrosion science 47(9) (2005) 2257-2279. [118] M. Lucas, L. Mauger, J. Munoz, Y. Xiao, A. Sheets, S. Semiatin, J. Horwath, Z. Turgut, Magnetic and vibrational properties of high-entropy alloys, Journal of Applied Physics 109(7) (2011). [119] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in materials science 61 (2014) 1-93. [120] G. Laplanche, A. Kostka, O. Horst, G. Eggeler, E. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Materialia 118 (2016) 152-163. [121] T.-F. Chung, P.-J. Chen, C.-L. Tai, P.-H. Chiu, Y.-S. Lin, C.-N. Hsiao, C.-Y. Chen, S.-H. Wang, J.-W. Yeh, W.-S. Lee, Investigation of nanotwins in the bimodal-structured Fe22Co22Ni20Cr22Mn14 alloy subjected to high-strain-rate deformation at cryogenic temperatures, Materials Characterization 170 (2020) 110667. [122] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153-1158. [123] J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Materialia 62 (2014) 105-113. [124] B. Yin, F. Maresca, W. Curtin, Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys, Acta Materialia 188 (2020) 486-491. [125] N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Scientific reports 6(1) (2016) 35863. [126] J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, X. Fan, Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy, Materials Chemistry and Physics 210 (2018) 136-145. [127] J. Kumar, A. Linda, M. Sadhasivam, K. Pradeep, N. Gurao, K. Biswas, The effect of Si addition on the structure and mechanical properties of equiatomic CoCrFeMnNi high entropy alloy by experiment and simulation, Materialia 27 (2023) 101707. [128] D. Xu, M. Wang, T. Li, X. Wei, Y. Lu, A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys, Microstructures 2(1) (2022) 2022001. [129] B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nature communications 7(1) (2016) 10602. [130] J. Miao, C. Slone, T. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G. Pharr, M.J. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy, Acta Materialia 132 (2017) 35-48. [131] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Materialia 128 (2017) 292-303. [132] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706. [133] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765. [134] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, Journal of Materials Science 47(9) (2012) 4062-4074. [135] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds 509(20) (2011) 6043-6048. [136] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131-140. [137] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511. [138] B.S. Murty, J.-W. Yeh, S. Ranganathan, P. Bhattacharjee, High-entropy alloys, Elsevier2019. [139] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications, Entropy 16(1) (2014) 494-525. [140] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical Materials Transactions A Volume 35 (8) (2004) 2533-2536. [141] J. Yeh, Recent progress in high-entropy alloys; Progres recents dans les alliages a haute entropie, Annales de Chimie. Science des Materiaux (Paris) (2006). [142] J.-W. Yeh, Physical metallurgy of high-entropy alloys, Jom 67(10) (2015) 2254-2261. [143] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Current science 85(5) (2003) 1404-1406. [144] G. Smith, Personal communica-tion, AC Neilsen (2011). [145] H. Gleiter, The formation of annealing twins, Acta Metallurgica 17 (1969). [146] J. Cahoon, Q. Li, N. Richards, Microstructural and processing factors influencing the formation of annealing twins, Materials science and engineering: a 526(1-2) (2009) 56-61. [147] 朱彥霖, 單晶相石墨烯製備與特性分析, 光電科學與工程學系, 國立中央大學, 2014, pp. 1-77. [148] T. Blewitt, R. Coltman, J. Redman, Low‐temperature deformation of copper single crystals, Journal of Applied Physics 28(6) (1957) 651-660. [149] E. Cerreta, S. Mahajan, Formation of deformation twins in TiAl, Acta materialia 49(18) (2001) 3803-3809. [150] J.W. Christian, S. Mahajan, Deformation twinning, Progress in materials science 39(1-2) (1995) 1-157. [151] S. Mahajan, G. Chin, Comments on deformation twinning in silver-and copper-alloy crystals, Scripta Metallurgica 9(8) (1975) 815-817. [152] Y. Zhu, J. Narayan, J. Hirth, S. Mahajan, X. Wu, X. Liao, Formation of single and multiple deformation twins in nanocrystalline fcc metals, Acta materialia 57(13) (2009) 3763-3770. [153] Y.T. Zhu, X.Z. Liao, X.L. Wu, Deformation twinning in nanocrystalline materials, Progress in Materials Science 57(1) (2012) 1-62. [154] W. Jiang, X. Gao, Y. Cao, Y. Liu, Q. Mao, L. Gu, Y. Zhao, Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures, Materials Science and Engineering: A 837 (2022) 142735. [155] O. Bouaziz, S. Allain, Y. Estrin, Effect of pre-strain at elevated temperature on strain hardening of twinning-induced plasticity steels, Scripta Materialia 62(9) (2010) 713-715. [156] O. Bouaziz, S. Allain, C. Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Materialia 58(6) (2008) 484-487. [157] S. Mahajan, D. Williams, Deformation twinning in metals and alloys, International Metallurgical Reviews 18(2) (1973) 43-61. [158] L. Remy, Kinetics of fcc deformation twinning and its relationship to stress-strain behaviour, Acta Metallurgica 26(3) (1978) 443-451. [159] Z. Li, L. Chen, P. Fu, H. Su, P. Dai, Q. Tang, The effect of Si addition on the heterogeneous grain structure and mechanical properties of CrCoNi medium entropy alloy, Materials Science and Engineering: A 852 (2022) 143655. [160] H. Chang, T. Zhang, S. Ma, D. Zhao, R. Xiong, T. Wang, Z. Li, Z. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off, Materials & Design 197 (2021) 109202. [161] J.B. Seol, J.W. Bae, Z. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Materialia 151 (2018) 366-376. [162] M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, G. Salishchev, N. Stepanov, Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, Journal of alloys and compounds 849 (2020) 156633. [163] D. Wei, L. Wang, Y. Zhang, W. Gong, T. Tsuru, I. Lobzenko, J. Jiang, S. Harjo, T. Kawasaki, J.W. Bae, Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys, Acta Materialia 225 (2022) 117571. [164] H. Yi, M. Bi, K. Yang, B. Zhang, Significant Improvement the mechanical properties of CoCrNi alloy by tailoring a dual FCC-phase structure, Materials 13(21) (2020) 4909. [165] J.-J. Chen, P.-H. Chiu, T.-R. Chen, T.-C. Tsao, Y.-A. Chen, S.-Y. Lu, C.-Y. Tseng, C.-L. Tai, W.-S. Lee, R. Misra, Evolution of deformation structures in CrCoNiSi0. 3 medium entropy alloy subjected to high-strain-rate and quasi-static compressive deformation, Materials Characterization (2024) 114088. [166] S.-W. Kim, J.H. Kim, In-situ observations of deformation twins and crack propagation in a CoCrFeNiMn high-entropy alloy, Materials Science and Engineering: A 718 (2018) 321-325. [167] Z. Zhang, M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nature communications 6(1) (2015) 10143. [168] J. Liu, C. Chen, Y. Xu, S. Wu, G. Wang, H. Wang, Y. Fang, L. Meng, Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in-situ TEM study, Scripta Materialia 137 (2017) 9-12. [169] S. Chen, Z.H. Aitken, S. Pattamatta, Z. Wu, Z.G. Yu, D.J. Srolovitz, P.K. Liaw, Y.-W. Zhang, Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering, Nature communications 12(1) (2021) 4953. [170] B. Yin, S. Yoshida, N. Tsuji, W. Curtin, Yield strength and misfit volumes of NiCoCr and implications for short-range-order, Nature communications 11(1) (2020) 2507. [171] L. Li, Z. Chen, S. Kuroiwa, M. Ito, K. Yuge, K. Kishida, H. Tanimoto, Y. Yu, H. Inui, E.P. George, Evolution of short-range order and its effects on the plastic deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy alloy, Acta Materialia 243 (2023) 118537. [172] R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A.M. Minor, Short-range order and its impact on the CrCoNi medium-entropy alloy, Nature 581(7808) (2020) 283-287. [173] L. Zhou, Q. Wang, J. Wang, X. Chen, P. Jiang, H. Zhou, F. Yuan, X. Wu, Z. Cheng, E. Ma, Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy, Acta Materialia 224 (2022) 117490. [174] W.-R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, I.J. Beyerlein, Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi, Acta Materialia 199 (2020) 352-369. [175] T. Malis, S. Cheng, R. Egerton, EELS log‐ratio technique for specimen‐thickness measurement in the TEM, Journal of electron microscopy technique 8(2) (1988) 193-200. [176] H.-W. Yen, P.-Y. Chen, C.-Y. Huang, J.-R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel, Acta Materialia 59(16) (2011) 6264-6274. [177] N. Radutoiu, L. Lacroix, J. Alexis, M. Abrudeanu, J.-A. Petit, Study of the localized corrosion of over-aged aeronautical 2024 aluminum alloy. Kelvin probe Force Microscopy (KFM) application, ACMA 2012, 2012. [178] C. Li, Q. Pan, Y. Shi, Y. Wang, B. Li, Influence of aging temperature on corrosion behavior of Al–Zn–Mg–Sc–Zr alloy, Materials & Design 55 (2014) 551-559. [179] S.P. Ringer, K. Hono, T. Sakurai, I.J. Polmear, Cluster hardening in an aged Al-Cu-Mg alloy, Scripta materialia 36(5) (1997) 517-521. [180] R.K. Marceau, G. Sha, R. Lumley, S.P. Ringer, Evolution of solute clustering in Al–Cu–Mg alloys during secondary ageing, Acta materialia 58(5) (2010) 1795-1805. [181] P. Ying, Z. Liu, S. Bai, M. Liu, L. Lin, P. Xia, L. Xia, Effects of pre-strain on Cu-Mg co-clustering and mechanical behavior in a naturally aged Al-Cu-Mg alloy, Materials Science and Engineering: A 704 (2017) 18-24. [182] P. Ratchev, B. Verlinden, P. De Smet, P. Van Houtte, Precipitation hardening of anAl–4.2 wt% Mg–0.6 wt% Cu alloy, Acta materialia 46(10) (1998) 3523-3533. [183] L. Kovarik, M. Mills, STEM HAADF Observations of GPB zones in Al-Cu-Mg alloys, Microscopy and Microanalysis 13(S02) (2007) 1064-1065. [184] M. Kumar, N. Ross, Warm forming and paint bake response of AW-7xxx sheet in various tempers, Key Engineering Materials, Trans Tech Publ, 2015, pp. 47-52. [185] V. Radmilovic, R. Kilaas, U. Dahmen, G. Shiflet, Structure and morphology of S-phase precipitates in aluminum, Acta Materialia 47(15-16) (1999) 3987-3997. [186] Y.-C. Hsieh, L. Zhang, T.-F. Chung, Y.-T. Tsai, J.-R. Yang, T. Ohmura, T. Suzuki, In-situ transmission electron microscopy investigation of the deformation behavior of spinodal nanostructured δ-ferrite in a duplex stainless steel, Scripta Materialia 125 (2016) 44-48. [187] M.-Y. Gao, S.-P. Tsai, J.-R. Yang, Y.-L. Chang, T. Ohmura, C.-Y. Chen, S.-H. Wang, Y.-T. Wang, C.-Y. Huang, In-situ transmission electron microscopy investigation of compressive deformation in interphase-precipitated carbide-strengthened α-iron single-crystal nanopillars, Materials Science and Engineering: A 746 (2019) 406-415. [188] D. Hull, D.J. Bacon, Introduction to dislocations, Elsevier2011. [189] L. Huang, Q.-J. Li, Z.-W. Shan, J. Li, J. Sun, E. Ma, A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum, Nature communications 2(1) (2011) 547. [190] D. Kiener, P. Hosemann, S.A. Maloy, A.M. Minor, In situ nanocompression testing of irradiated copper, Nature materials 10(8) (2011) 608-613. [191] S. Bajpai, B.E. MacDonald, T.J. Rupert, H. Hahn, E.J. Lavernia, D. Apelian, Recent progress in the CoCrNi alloy system, Materialia (2022) 101476. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95901 | - |
| dc.description.abstract | 本研究探討材料之微觀結構與機械性質之間關連性,主要以鋁合金與中熵合金作為研究對象。鋁合金採用二系列鋁合金(Al-Cu-Mg),研究添加微量Ag與否對各個時效階段中析出物之形成與材料強度之影響。透過穿透式電子顯微鏡(Transmission Electron Microscope, TEM)觀察時效初期、尖峰時效、過時效與長時間時效之析出物演化過程,如尺寸、形貌與分布情形。並藉由高解析掃描穿透式電子顯微鏡(High Resolution- Scanning Transmission Electron Microscope, HR-STEM)解析奈米析出物之原子級結構,深入了解各個析出物,搭配電子能量損失光譜( EELS )定量分析析出物之體積佔比。接著透過拉伸試驗測試個時效階段之機械性質,結合微結構分析,深入了解析出物對材料機械性質之影響。
研究發現,添加Ag後產生之Ω相能大幅提升材料強度。除了本身具有熱穩定性外,Ω相的形成能在11小時至18小時階段抑制S相粗化,使材料於過時效階段能維持強度。透過研究團簇物發現,其原因為大量生成之Ω相能加速消耗鋁基地中的Cu-Mg團簇物,使S相不易粗化。透過此實驗發現Ω相與S相之競爭關係,故進一步研究了AA2040 Al-5.1Cu-1.0Mg-0.4Ag高強度鋁合金中,其於不同時效時間點進行溫成形模擬對材料顯微結構與機械性質所造成之影響,觀察何種熱處理將表現出最佳性質。時效溫度200 °C下分別於時效前 (5 %-1h)、預時效20分鐘 (20 min-5 %-40 min)、40分鐘 (40 min-5 %-20 min)與時效結束後進行5 %壓縮變形 (1h-5 %),四種條件總時效時間均為一小時,觀察其強度變化與對應微結構。結果顯示與一般時效強化材料相反,時效前之變形會降低此材料強度。透過Ω相體積分率與S相數量分率統計發現,時效前進行變形將抑制Ω相生成,導致強度下降。而40 min-5%-20 min表現出最高強度,表示於時效後期進行溫成形模擬,能導入差排加速後續時效中S相析出,且時效時間短不會導致粗化,結合Ω相貢獻,將達到最高強度。 本論文下半部分為CoCrNi中熵合金之研究。由於其低溫下能以變形雙晶作為變形手段,故有極佳強度與延展性,可應用於極地抑或是太空中。本研究探討了添加矽將此材料輕量化之餘,其對圍觀結構與機械性質之影響,主要利用臨場變形穿透式電子顯微鏡(in-situ TEM)進行研究。研究發現添加矽能有效降低疊差能。相較於CoCrNi中熵合金於110方向單晶變形以差排滑移作為主要機制,CoCrNi-Si中熵合金能於降伏強度後產生變形雙晶阻礙差排移動,提升加工硬化率。此外,由於目前極具爭議之短距有序結構是否對強度提升有幫助,本實驗透過in-situ TEM對此進行研究。發現均勻分布之短距有序結構能使CoCrNi中熵合金整體變形均勻,並且於劇烈變形後產生變形雙晶,有效提升材料強度 | zh_TW |
| dc.description.abstract | In this dissertation, the study explores the correlation between microstructure and mechanical properties of materials, with a primary focus on aluminum alloys and medium entropy alloys. The research specifically delves into the examination of 2xxx aluminum alloys (Al-Cu-Mg) and assesses the impact of introducing minor quantities of Ag on precipitate formation and material strength throughout various stages of the ageing process. The observations of precipitate evolution, size, morphology, and distribution, were conducted using Transmission Electron Microscopy (TEM) at early, peak, over-ageing, and prolonged ageing stages. The atomic structure of nano-precipitates was analyzed through High-Resolution Scanning Transmission Electron Microscopy (HR-STEM), and the volume fraction of precipitates was quantitatively assessed using EELS. Mechanical properties were evaluated at each stage through tensile tests, establishing correlations with microstructural analyses to comprehend the strengthening effects of distinct precipitates on the alloys.
The present study reveals that the introduction of Ag results in the significant enhancement of material strength, primarily attributed to the formation of the Ω phase. The Ω phase, besides demonstrating thermal stability, effectively consumes abundant Cu-Mg clusters, thereby impeding the coarsening of the S phase from 11 hours to 18 hours, consequently maintaining material strength during the over-ageing stage. The competitive relationship between the Ω phase and S phase is identified, leading to an exploration of the effects of simulated warm forming at different ageing timings on the microstructure and mechanical properties of the AA2040 Al-5.1Cu-1.0Mg-0.4Ag high-strength aluminum alloy. Four distinct combinations of warm forming and artificial ageing (5%+1h, 20 min+5%+40 min, 40 min+5%+20 min, and 1h+5%) were examined to observe the strength improvement and corresponding microstructure. In contrast to conventional age-hardening materials, pre-strain resulted in reduced the alloy’s strength. The study concludes that the 40 min+5%+20 min sample exhibited the highest strength, attributed to the combined effects of Ω and S phases. The subsequent section of this dissertation focuses on the equiatomic CoCrNi medium entropy alloy (MEA). This alloy, exhibiting excellent strength and high ductility due to the formation of deformation twins at crogenic temperatures, holds potential applications in polar districts or outer space. The investigation extends beyond the lightweight effect, examining the influence of Si addition on the microstructure and mechanical properties of CoCrNi MEA through in-situ deformation transmission electron microscopy (in-situ deformation TEM). The findings indicate that Si addition effectively reduces stacking fault energy. Deformation in CoCrNi MEA, when subjected to a single crystal under the 110 direction, primarily involves dislocation movement. In contrast, CoCrNi-Si MEA deforms through deformation twins due to its low stacking fault energy, significantly enhancing strength. The study also addresses the ongoing debate regarding the contribution of short-range order structure (SRO) to strength, finding that the formation of SRO promotes more uniform deformation. Additionally, as strain increases, the generation of deformation twins contributes substantially to strength improvement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-19T16:16:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-19T16:16:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iv Abstract vi First-Authored Publications Addressed in This Thesis viii Contents ix List of Figures xiii Chapter 2 – General Literature Review xiii List of Tables xxii Chapter 1 – Introduction 1 Chapter 2 – General Literature Review 3 2.1 Development of Aluminum Alloys 3 2.1.1 Introduction 3 2.1.2 Effects of Minor Solute Elements Addition on Precipitate in Aluminum Alloys 5 2.1.3 Advanced Ageing Treatments with Different Purposes for Aluminum Alloys 10 2.2 Precipitates in 2xxx Al-Cu-Mg-(Ag) Aluminum Alloys 14 2.2.1 Introduction 14 2.2.2 Precipitates in AA2024 Al-Cu-Mg Aluminum Alloys 16 2.2.3 Precipitates in AA2040 Al-Cu-Mg-Ag Aluminum Alloys 22 2.3 Effects of Pre-strain on Precipitates in the 2xxx Aluminum Alloys 32 2.3.1 Introduction 32 2.3.2 Effects of Dislocation Introduction on nano-precipitates in AA2040 Aluminum Alloys 32 2.4 High/Medium Entropy Alloys 39 2.4.1 Introduction 39 2.4.2 Principles of High-Entropy Alloys 41 2.4.3 Twin 44 2.4.2 Effects of Solute Elements Addition in High/Medium Entropy Alloys 50 2.4.3 Effects of Short-Range Order Structure in High/Medium entropy Alloys 53 Chapter 3 – General Experimental Procedures 56 3.1 Materials 56 3.1.1 The AA2024 and AA2040 Aluminum Alloys 56 3.2.1 The CoCrNi-(Si) Medium Entropy Alloys 56 3.2 Instruments for Microstructure Analysis 57 3.2.1 Transmission Electron Microscope (TEM) 57 3.2.2 Double Cs-corrected High Angle Annular Dark Field Scanning Transmission Electron Microscopy (Double Cs-corrected HAADF-STEM). 58 3.2.3 In-situ deformation Transmission Electron Microscope (in-situ deformation TEM) 58 Chapter 4 – Investigations of Evolutions of Ω and S phases and Mechanical Properties in low Cu/Mg weight ratio Al-Cu-Mg-(Ag) aluminum alloys 62 4.1 Introduction 62 4.2 Experimental Procedure 64 4.3 Results 67 4.3.1 Mechanical properties 67 4.3.2 TEM Analysis of Alloy 0A 70 4.3.3 Analysis of 12 variants of S phase 75 4.3.4 TEM Analysis of Alloy 4A 78 4.3.5 TEM Analysis of S phase 82 4.3.6 HR-(S)TEM crystallographic Analysis 85 4.4 Discussion 89 4.4.1 Relationship between nano-precipitates and mechanical properties 89 4.4.2 The effect of Ag addition on the S phase 93 4.5 Summary 100 Chapter 5 – Effects of four different combinations of artificial ageing and warm forming on Ω phase and S phase evolutions in an Al-5.1Cu-1.0Mg-0.4Ag high strength aluminum alloy 102 5.1 Introduction 102 5.2 Experimental Procedure 104 5.3 Results 107 5.3.1 Vickers hardness tests 107 5.3.2 TEM analyses of the Ω phase under four processes 109 5.3.3 TEM analyses of the S phase obtained from four different processes 112 5.4 Discussion 117 5.5 Summary 120 Chapter 6 – In-situ nano-compression testing of strengthening ability of short-range order in a CoCrNi nanopillar 122 6.1 Introduction 122 6.2 Experimental Procedure 123 6.3 Results 126 6.3.1 Initial structures of CoCrNi and CoCrNiSi0.3 nanopillars 126 6.3.2 Unaged CoCrNi nanopillar 128 6.3.3 Aged CoCrNi nanopillar 131 6.4 Discussion 134 6.5 Conclusions 138 Chapter 7 – In-situ transmission electron microscopy investigation of the deformation mechanism in CoCrNi and CoCrNiSi0.3 nanopillars 139 7.1 Introduction 139 7.2 Experimental Procedure 140 7.3 Results and Discussion 141 7.3.1 Initial structures of CoCrNi and CoCrNiSi0.3 nanopillars 141 7.3.2 In-situ compression TEM test of CoCrNi nanopillar 142 7.3.4 Final stage of CoCrNi and CoCrNiSi0.3 nanopillars 148 7.4 Summary 151 Chapter 8 General Conclusions 152 Chapter 9 Future Works 155 Reference 156 | - |
| dc.language.iso | en | - |
| dc.title | 高強度Al-Cu-Mg-(Ag)鋁合金與輕量化CoCrNi-(Si)中熵合金之顯微結構與機械性質研究 | zh_TW |
| dc.title | Microstructures and Mechanical Properties Investigations on High-Strength Al-Cu-Mg-(Ag) Aluminum Alloys and Light-Weight CoCrNi-(Si) Medium Entropy Alloys | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李勝隆;鍾采甫;蕭健男;蘇德徵;陳志遠;王涵聖 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Long Lee;Tsai-Fu Chung;Chien-Nan Hsiao;Te-Cheng Su;Chih-Yuan Chen;Han-Shen Wang | en |
| dc.subject.keyword | AA2024鋁合金,微量銀添加,熱穩定Ω相,S相,溫成形,高解析掃描式穿透電子顯微鏡,CoCrNi中熵合金,矽添加,臨場壓縮穿透式電子顯微鏡,短距有序結構,變形雙晶, | zh_TW |
| dc.subject.keyword | AA2024 aluminum alloys,Minor Ag addition,Thermally stable Ω phase,S phase,Warm forming,High resolution scanning transmission electron microscopy,CoCrNi medium entropy alloy,Si addition,In-situ deformation transmission electron microscope (TEM),Short-range order,Deformation twin, | en |
| dc.relation.page | 170 | - |
| dc.identifier.doi | 10.6342/NTU202402844 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2029-07-31 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 10.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
