請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95886完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志鴻 | zh_TW |
| dc.contributor.advisor | Chih-Hung Chen | en |
| dc.contributor.author | 謝宗栢 | zh_TW |
| dc.contributor.author | Tsung-Po Hsieh | en |
| dc.date.accessioned | 2024-09-19T16:12:15Z | - |
| dc.date.available | 2024-09-20 | - |
| dc.date.copyright | 2024-09-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | M. A. H. Baky, M. M. Rahman, and A. S. Islam, “Development of renewable energy sector in bangladesh: Current status and future potentials,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 1184–1197, 2017.
M. M. Rahman, A. O. Oni, E. Gemechu, and A. Kumar, “Assessment of energy storage technologies: A review,” Energy Conversion and Management, vol. 223, p. 113 295, 2020. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, “A review of advanced and practical lithium battery materials,” Journal of Materials Chemistry,vol. 21, no. 27, pp. 9938–9954, 2011. A. Dehghani-Sanij, E. Tharumalingam, M. Dusseault, and R. Fraser, “Study of energy storage systems and environmental challenges of batteries,” Renewable and Sustainable Energy Reviews, vol. 104, pp. 192–208, 2019. B. Scrosati and J. Garche, “Lithium batteries: Status, prospects and future,” Journal of Power Sources, vol. 195, no. 9, pp. 2419–2430, 2010. Q. Li, S. Tan, L. Li, Y. Lu, and Y. He, “Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries,” Science Advances, vol. 3, no. 7, e1701246, 2017. M. Madian, A. Eychmüller, and L. Giebeler, “Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries,” Batteries, vol. 4, no. 1, p. 7, 2018. P. Verma, P. Maire, and P. Novák, “A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries,” Electrochimica Acta, vol. 55, no. 22, pp. 6332–6341, 2010. Y. Wang and F. Hao, “Interactions between solid electrolyte interphase and lithium dendrite,” Journal of Electrochemical Energy Conversion and Storage, vol. 19, no. 4, p. 040 801, 2022. S. Kim et al., “Pubchem 2023 update,” Nucleic Acids Research, vol. 51, no. D1, pp. D1373–D1380, 2023. M. S. Ding, K. Xu, and T. R. Jow, “Liquid-solid phase diagrams of binary carbonates for lithium batteries,” Journal of the Electrochemical Society, vol. 147, no. 5, p. 1688, 2000. A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, and M. R. Palacin, “In search of an optimized electrolyte for Na-ion batteries,” Energy & Environmental Science, vol. 5, no. 9, pp. 8572–8583, 2012. W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, “Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries,” Journal of Electrochemical Science and Technology, vol. 11, no. 1, pp. 1–13, 2020. C. Pastor-Fernández, K. Uddin, G. H. Chouchelamane, W. D. Widanage, and J. Marco, “A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems,” Journal of Power Sources, vol. 360, pp. 301–318, 2017. U. Westerhoff, K. Kurbach, F. Lienesch, and M. Kurrat, “Analysis of lithium-ion battery models based on electrochemical impedance spectroscopy,” Energy Technology, vol. 4, no. 12, pp. 1620–1630, 2016. A. Väyrynen and J. Salminen, “Lithium ion battery production,” The Journal of Chemical Thermodynamics, vol. 46, pp. 80–85, 2012. A. Pesaran, S. Santhanagopalan, and G. Kim, “Addressing the impact of temperature extremes on large format Li-ion batteries for vehicle applications (presentation),” National Renewable Energy Lab.(NREL), Golden, CO (United States),Tech. Rep., 2013. S. Ma et al., “Temperature effect and thermal impact in lithium-ion batteries: A review,” Progress in Natural Science: Materials International, vol. 28, no. 6, pp. 653–666, 2018. J. Jaguemont, L. Boulon, and Y. Dubé, “A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures,” Applied Energy, vol. 164, pp. 99–114, 2016. E. J. Plichta and W. K. Behl, “A low-temperature electrolyte for lithium and lithium-ion batteries,” Journal of Power Sources, vol. 88, no. 2, pp. 192–196, 2000. F. Gao and Z. Tang, “Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries,” Electrochimica Acta, vol. 53, no. 15, pp. 5071–5075, 2008. S. Zhang, K. Xu, and T. Jow, “The low temperature performance of Li-ion batteries,” Journal of Power Sources, vol. 115, no. 1, pp. 137–140, 2003. S. Zhang, K. Xu, and T. Jow, “Low temperature performance of graphite electrode in Li-ion cells,” Electrochimica Acta, vol. 48, no. 3, pp. 241–246, 2002. M. Petzl and M. A. Danzer, “Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries,” Journal of Power Sources, vol. 254, pp. 80–87, 2014. N. Gunawardhana, N. Dimov, M. Sasidharan, G.-J. Park, H. Nakamura, and M. Yoshio, “Suppression of lithium deposition at sub-zero temperatures on graphite by surface modification,” Electrochemistry Communications, vol. 13, no. 10, pp. 1116–1118, 2011. X. Zhang, “Thermal analysis of a cylindrical lithium-ion battery,” Electrochimica Acta, vol. 56, no. 3, pp. 1246–1255, 2011. V. V. Viswanathan et al., “Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management,” Journal of Power Sources, vol. 195, no. 11, pp. 3720–3729, 2010. M. Xiao and S.-Y. Choe, “Theoretical and experimental analysis of heat generations of a pouch type LiMn2O4/carbon high power Li-polymer battery,” Journal of Power Sources, vol. 241, pp. 46–55, 2013. J. Esmaeili and H. Jannesari, “Developing heat source term including heat generation at rest condition for lithium-ion battery pack by up scaling information from cell scale,” Energy Conversion and Management, vol. 139, pp. 194–205, 2017. Y. Liu et al., “LiPON as a protective layer on graphite anode to extend the storage life of Li-ion battery at elevated temperature,” Ionics, vol. 24, pp. 723–734, 2018. T. Gao et al., “Effect of aging temperature on thermal stability of lithium-ion batteries: Part A–high-temperature aging,” Renewable Energy, vol. 203, pp. 592–600, 2023. Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, “Thermal runaway caused fire and explosion of lithium ion battery,” Journal of Power Sources, vol. 208, pp. 210–224, 2012. W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, “A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters,” The Journal of Chemical Physics, vol. 76, no. 1, pp. 637–649, 1982. J. Hafner, “Ab-initio simulations of materials using vasp: Density-functional theory and beyond,” Journal of Computational Chemistry, vol. 29, no. 13, pp. 2044–2078, 2008. M. Stan, “Discovery and design of nuclear fuels,” Materials Today, vol. 12, no. 11, pp. 20–28, 2009. A. P. Thompson et al., “Lammps-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Computer Physics Communications, vol. 271, p. 108 171, 2022. A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool,” Modelling and Simulation in Materials Science and Engineering, vol. 18, no. 1, p. 015 012, 2009. L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, “PACKMOL: A package for building initial configurations for molecular dynamics simulations,” Journal of Computational Chemistry, vol. 30, no. 13, pp. 2157–2164, 2009. G. Fitzgerald, J. DeJoannis, and M. Meunier, “Multiscale modeling of nanomaterials: Recent developments and future prospects,” Modeling, Characterization, and Production of Nanomaterials, pp. 3–53, 2015. J. E. Lennard-Jones, “Cohesion,” Proceedings of the Physical Society, vol. 43, no. 5, p. 461, 1931. F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of silicon,” Physical Review B, vol. 31, no. 8, p. 5262, 1985. A. N. Kolmogorov and V. H. Crespi, “Registry-dependent interlayer potential for graphitic systems,” Physical Review B, vol. 71, no. 23, p. 235 415, 2005. A. C. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “Reaxff: A reactive force field for hydrocarbons,” The Journal of Physical Chemistry A, vol. 105, no. 41, pp. 9396–9409, 2001. R. Kubo, “Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems,” Journal of the Physical Society of Japan, vol. 12, no. 6, pp. 570–586, 1957. P. Boone, H. Babaei, and C. E. Wilmer, “Heat flux for many-body interactions: Corrections to lammps,” Journal of Chemical Theory and Computation, vol. 15, no. 10, pp. 5579–5587, 2019. P. Howell, “Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon,” The Journal of Chemical Physics, vol. 137, no. 22, 2012. Z. Wang, S. Safarkhani, G. Lin, and X. Ruan, “Uncertainty quantification of thermal conductivities from equilibrium molecular dynamics simulations,” International Journal of Heat and Mass Transfer, vol. 112, pp. 267–278, 2017. S. G. Volz and G. Chen, “Molecular-dynamics simulation of thermal conductivity of silicon crystals,” Physical Review B, vol. 61, no. 4, p. 2651, 2000. P. K. Schelling, S. R. Phillpot, and P. Keblinski, “Comparison of atomic-level simulation methods for computing thermal conductivity,” Physical Review B, vol. 65, no. 14, p. 144 306, 2002. A. Tenenbaum, G. Ciccotti, and R. Gallico, “Stationary nonequilibrium states by molecular dynamics. Fourier’s law,” Physical Review A, vol. 25, no. 5, p. 2778, 1982. R. D. Mountain and R. A. MacDonald, “Thermal conductivity of crystals: A molecular-dynamics study of heat flow in a two-dimensional crystal,” Physical Review B, vol. 28, no. 6, p. 3022, 1983. X. Zhou, S. Aubry, R. Jones, A. Greenstein, and P. Schelling, “Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals,” Physical Review B, vol. 79, no. 11, p. 115 201, 2009. A. Krishnamoorthy et al., “Thermal conductivity of MoS2 monolayers from molecular dynamics simulations,” AIP Advances, vol. 9, no. 3, 2019. S. Ghosh et al., “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Applied Physics Letters, vol. 92, no. 15, 2008. R. H. Poetzsch and H. Böttger, “Interplay of disorder and anharmonicity in heat conduction: Molecular-dynamics study,” Physical Review B, vol. 50, no. 21, p. 15 757, 1994. J. Michalski, “Thermal conductivity of amorphous solids above the plateau: Molecular-dynamics study,” Physical Review B, vol. 45, no. 13, p. 7054, 1992. C. Oligschleger and J. Schön, “Simulation of thermal conductivity and heat transport in solids,” Physical Review B, vol. 59, no. 6, p. 4125, 1999. W.-X. Zhou, Y. Cheng, K.-Q. Chen, G. Xie, T. Wang, and G. Zhang, “Thermal conductivity of amorphous materials,” Advanced Functional Materials, vol. 30, no. 8, p. 1 903 829, 2020. C. Kittel and P. McEuen, Introduction to solid state physics. John Wiley & Sons, 2018. M. H. Khadem and A. P. Wemhoff, “Comparison of Green–Kubo and NEMD heat flux formulations for thermal conductivity prediction using the Tersoff potential,” Computational Materials Science, vol. 69, pp. 428–434, 2013. D. Chung, “Review graphite,” Journal of Materials Science, vol. 37, pp. 1475–1489, 2002. A. Maffucci and G. Miano, “Electrical properties of graphene for interconnect applications,” Applied Sciences, vol. 4, no. 2, pp. 305–317, 2014. G. A. Slack, “Anisotropic thermal conductivity of pyrolytic graphite,” Physical Review, vol. 127, no. 3, p. 694, 1962. J. H. Seol et al., “Two-dimensional phonon transport in supported graphene,” Science, vol. 328, no. 5975, pp. 213–216, 2010. R. B. Ross, Metallic materials specification handbook. Springer Science & Business Media, 2013. R. N. Salaway and L. V. Zhigilei, “Molecular dynamics simulations of thermal conductivity of carbon nanotubes: Resolving the effects of computational parameters,” International Journal of Heat and Mass Transfer, vol. 70, pp. 954–964, 2014. M. Park, S.-C. Lee, and Y.-S. Kim, “Length-dependent lattice thermal conductivity of graphene and its macroscopic limit,” Journal of Applied Physics, vol. 114, no. 5, 2013. J. Dickey and A. Paskin, “Computer simulation of the lattice dynamics of solids,” Physical Review, vol. 188, no. 3, p. 1407, 1969. B. Fultz, “Vibrational thermodynamics of materials,” Progress in Materials Science, vol. 55, no. 4, pp. 247–352, 2010. L. Lindsay and D. Broido, “Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene,” Physical Review B—Condensed Matter and Materials Physics, vol. 81, no. 20, p. 205 441, 2010. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95886 | - |
| dc.description.abstract | 鋰離子電池在電池儲能領域當中佔據極為重要的地位,然而,隨著科技發展,人們對儲能設備續航力的要求日益月滋,傳統以石墨作為主要負極材料的鋰離子電池 (lithium ion battery, LIB) 已逐漸難以負荷。而設備的性能往往取決於材料的選擇,而這在鋰電池當中同樣適用,因此,更換電極材料或者電解液系統是電池效能提昇的主要研究方向。
影響鋰電池效能的原因除了材料本身,溫度也是一個影響電池效能的主要原因,過低的溫度會導致鋰電池性能下降,而過高的溫度則會造成電池老化,甚至有引發爆炸的風險,因此,了解電池內部材料的熱性能可以有效的幫助鋰電池的設計。因此,本研究選用非平衡分子動力學 (non-equilibrium molecular dynamics,NEMD) 模擬多種電極材料以及固態電解質界面的熱傳導係數。 將研究結果與實驗比對後發現,我們所使用的 ReaxFF 力場所搭配的勢能函數對於熱傳導係數的估計都略有所低估,而後使用相同力場對由 EC 以及 DEC 組成的電解液系統與鋰金屬負極反應而成的 SEI 進行熱傳導係數的模擬,而經過計算所得 SEI 的熱傳導係數為 1.12 W/m · K。 | zh_TW |
| dc.description.abstract | Lithium-ion battery (LIB) hold a crucial position in the field of battery energy storage. However, with the advancement of technology, the demand for the endurance of energy storage devices has been increasing. Traditional lithium-ion batteries, which mainly use graphite as the anode material, are gradually struggling to meet these demands. The performance of devices often depends on the materials, and this is equally applicable to lithium-ion batteries. Therefore, replacing electrode materials or the electrolyte system is a primary research direction for improving battery performance.
Besides the battery materials, temperature is also a major factor affecting battery performance. Extremely low temperatures can lead to a decline in lithium battery performance, while excessively high temperatures can cause battery aging and even pose a risk of explosion. Hence, understanding the thermal properties of the materials of the battery can aid in the design of lithium batteries. In this study, we use non-equilibrium molecular dynamics (NEMD) to simulate the thermal conductivity of various electrode materials and solid electrolyte interphases (SEI). Comparing the simulation results with experiments, we found that the potential parameters paired with the ReaxFF force field tend to slightly underestimate the thermal conductivity. Subsequently, using the same force field, we simulated the thermal conductivity of the SEI formed by the reaction between an electrolyte system composed of EC and DEC and a lithium metal anode. The calculated thermal conductivity of the SEI is 1.12 W/m · K. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-19T16:12:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-19T16:12:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 xi 第一章 緒論 1 1.1 前言 1 1.2 鋰離子電池與鋰金屬電池 2 1.2.1 電解液與固態電解質界面 4 1.3 電化學阻抗圖譜 5 1.4 溫度對鋰離子電池的影響 7 1.4.1 低溫效應 7 1.4.2 高溫效應 10 第二章 研究方法 13 2.1 分子動力學 13 2.2 力場 15 2.2.1 Lennard-Jones 16 2.2.2 Stillinger-Weber 16 2.2.3 Kolmogorov-Crespi 17 2.2.4 ReaxFF 17 2.3 熱傳導係數 19 2.3.1 平衡分子動力學 20 2.3.2 非平衡分子動力學 22 2.3.2.1 聲子平均自由程 24 第三章 系統設置與結果 26 3.1 NEMD 模擬設置 26 3.2 石墨 28 3.2.1 晶格結構 28 3.2.2 系統建構 29 3.2.3 溫差影響 29 3.2.4 尺寸效應 32 3.3 石墨烯 36 3.3.1 晶格結構 36 3.3.2 系統建構 37 3.3.3 溫差影響 37 3.3.4 尺寸效應 39 3.4 鋰金屬 42 3.4.1 系統建構 42 3.4.2 溫差影響 42 3.4.3 尺寸效應 44 3.5 固態電解質界面 46 3.5.1 SEI 生成設置 46 3.5.2 溫差影響 47 3.5.3 尺寸效應 48 3.6 模擬結果討論 50 第四章 結論與未來展望 54 4.1 結論 54 4.2 未來展望 55 4.2.1 聲子狀態密度 56 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 非平衡分子動力學分析鋰電池固態電解質界面熱傳導係數 | zh_TW |
| dc.title | Analysis of Thermal Conductivity of Solid Electrolyte Interphases in Lithium Batteries Using Non-Equilibrium Molecular Dynamics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹楊皓;江宏仁 | zh_TW |
| dc.contributor.oralexamcommittee | Yang-Hao Chan;Hong-Ren Jiang | en |
| dc.subject.keyword | 鋰電池,固態電解質介面,非平衡分子動力學,熱傳導係數,反應力場, | zh_TW |
| dc.subject.keyword | Lithium Battery,Solid Electrolyte Interphase,Non-Equilibrium Molecular Dynamics,Thermal Conductivity,Reactive Force Field, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202403822 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2025-09-01 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
